

Area of the band $=2 \pi$ (radius) (length) For the radius, take an average.

$$
\begin{array}{lr}
=2 \pi\left(\frac{y_{i-1}+y_{i}}{2}\right) d\left(P_{i-1} P_{i}\right) & \text { For the length, take the distance from } P_{i-1} \text { to } P_{i} \\
=2 \pi f^{\prime}\left(x_{i}^{*}\right) \sqrt{1+\left(f^{\prime}\left(x_{i}^{*}\right)\right)^{2}} \Delta x & \text { In 9.1 we saw } d\left(P_{i-1} P_{i}\right)=\sqrt{1+\left(f^{\prime}\left(x_{i}^{*}\right)\right)^{2}} \Delta x \\
n & \text { For small } \Delta x, y_{i}=f\left(x_{i}\right) \approx f\left(x_{i}^{*}\right)
\end{array}
$$

Total surface area $=\sum_{i=1}^{n} 2 \pi f^{\prime}\left(x_{i}^{*}\right) \sqrt{1+\left(f^{\prime}\left(x_{i}^{*}\right)\right)^{2}} \Delta x$ and $y_{i-1}=f\left(x_{i-1}\right) \approx f\left(x_{i}^{*}\right)$
$\underset{\text { (better approximation) }}{\operatorname{Total} \text { surface area }}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi f^{\prime}\left(x_{i}^{*}\right) \sqrt{1+\left(f^{\prime}\left(x_{i}^{*}\right)\right)^{2}} \Delta x$
Surface Area $=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x \quad \begin{aligned} & \text { the area of surface obtained by rotating } \\ & \text { the curve } y=f(x) \text { about the } x \text {-axis for } a \leq x \leq b \text { is }\end{aligned}$
$\begin{aligned} & \text { A function with a continuous } \\ & \text { derivative on }[a, b]\end{aligned} \Longrightarrow \quad \begin{aligned} & \text { the area of surface obtained by rotating the graph of } \\ & \text { a function about the } y \text {-axis for } a \leq x \leq b \text { is }\end{aligned}$

$$
S A=2 \pi \int_{a}^{b} x d s
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { A function with a continuous } \\
\text { derivative on }[a, b]
\end{array} \Rightarrow \begin{array}{l}
\text { the area of surface obtained by rotating the graph of } \\
\text { a function about the } \underset{x-\text { axis }}{ } \text { for } a \leq x \leq b \text { is }
\end{array} \\
& \qquad S A=2 \pi \int_{a}^{b} y d s
\end{aligned}
$$

Math 104-Rimmer 9.2 Surface Area of Revolution

Find the area of the surface formed by revolving the graph of $x=\frac{1}{9} y^{2}+2$ on the interval $[2,6]$ about the x-axis.

(ax) Math 104-Rimmer
Math 104 - Rimmer
9.2 Surface Area of Revolution
Find the area of the surface formed by revolving the graph of $f(x)=\sqrt{x}$
on the interval $[4,9]$ about the x-axis.

