9.3 Center of Mass 1-d

Archimedes'

Law of the Lever
the rod will balance if

$$
m_{1} d_{1}=m_{2} d_{2}
$$

\ldots fulcrum

$$
\begin{aligned}
& m_{1}\left(\bar{x}-x_{1}\right)=m_{2}\left(x_{2}-\bar{x}\right) \\
& m_{1} \bar{x}-m_{1} x_{1}=m_{2} x_{2}-m_{2} \bar{x} \\
& \bar{x}\left(m_{1}+m_{2}\right)=m_{1} x_{1}+m_{2} x_{2}
\end{aligned}
$$

$$
\bar{x}=\frac{\sum_{i=1}^{n} m_{i} x_{i}}{\text { total mass }}
$$

$$
\underbrace{\bar{x} \cdot(\text { total mass })}_{\text {moment for the total mass }}=\underbrace{\sum_{i=1}^{n} m_{i} x_{i}}_{\substack{\text { moment for } \\ \text { the system }}}
$$

If the total mass was concentrated at \bar{x}, then its moment would be the same as the moment for the system.

9.3 Center of Mass 2-d

$M_{y}=$ moment of the system about the y-axis measures the tendency of the system to rotate about the y-axis

$$
\begin{aligned}
& M_{y}=m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3} \\
& \bar{x}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}}{m_{1}+m_{2}+m_{3}} \quad \bar{x}=\frac{M_{y}}{\text { total mass }}
\end{aligned}
$$

$$
M_{y}=\bar{x}(\text { total mass })
$$

$M_{x}=$ moment of the system about the x-axis measures the tendency of the system to rotate about the x-axis

$$
M_{x}=\bar{y}(\text { total mass })
$$

$$
M_{x}=m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}
$$

The center of mass is the point (\bar{x}, \bar{y}) where a single particle with the same mass as the total mass

$$
\bar{y}=\frac{m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}}{m_{1}+m_{2}+m_{3}} \quad \bar{y}=\frac{M_{x}}{\text { total mass }}
$$ would have the same moments as the system

9.3 Center of Mass 3-d

Consider a flat plate (called a lamina) with uniform density ρ that occupies a region \mathfrak{R} of the plane.

The center of mass of the plate is called the centroid of \mathfrak{R}.

General Formulas

(4xay Math 104-Rimmer 9.3 Center of Mass

Thin plate : region between $y=f(x)$ and $y=g(x)$ with $f(x) \geq g(x)$
Constant density function $\rho(x)=\rho$
Moment about the x-axis

$M_{x}=\frac{\rho}{2} \int_{a}^{b}\left([f(x)]^{2}-[g(x)]^{2}\right) d x$

Moment about the y-axis

$M_{y}=\rho \int_{a}^{b} x \cdot(f(x)-g(x)) d x$
Mass
$M=\rho \cdot \underbrace{\int_{a}^{b}(f(x)-g(x)) d x}_{\text {Area of the region } \mathrm{b} / \mathrm{w} f(x) \text { and } g(x)}$

Center of Mass

(\bar{x}, \bar{y})

$$
\begin{aligned}
& \bar{x}=\frac{M_{y}}{M}=\frac{1}{A} \int_{a}^{b} x \cdot(f(x)-g(x)) d x \\
& \bar{y}=\frac{M_{x}}{M}=\frac{1}{2 A} \int_{a}^{b}\left([f(x)]^{2}-[g(x)]^{2}\right) d x
\end{aligned}
$$

Let $A=$ area of the region $\mathrm{b} / \mathrm{w} f(x)$ and $g(x)$

Thin plate : region between $y=x-x^{2}$ and $y=-x$ Constant density function $\rho(x)=\rho$ Limits of integration: $\begin{array}{r} 2 x- \\ x(2- \\ x=0, \end{array}$	

Moment about the y-axis

$$
\begin{aligned}
M_{y} & =\rho \int_{a}^{b} x \cdot(f(x)-g(x)) d x \\
& =\rho \int_{0}^{2} x\left[\left(x-x^{2}\right)-(-x)\right] d x=\rho \int_{0}^{2} x \cdot\left(2 x-x^{2}\right) d x=\rho \int_{0}^{2}\left(2 x^{2}-x^{3}\right) d x \\
& =\rho\left(\frac{2 x^{3}}{3}-\frac{x^{4}}{4}\right)_{0}^{2}=\rho\left(\frac{16}{3}-\frac{16}{4}\right)=\rho\left(\frac{16}{3}-4\right)=\rho\left(\frac{16-12}{3}\right)=\frac{4}{3} \rho
\end{aligned}
$$

Mass

$$
M=\rho \cdot \underbrace{\int_{a}^{b}(f(x)-g(x)) d x}_{\text {Area of the region } \mathrm{b} / \mathrm{w} f(x) \text { and } g(x)}
$$

$$
=\rho \cdot \int_{0}^{2}\left(2 x-x^{2}\right) d x=\rho\left(x^{2}-\frac{x^{3}}{3}\right)_{0}^{2}=\rho\left(4-\frac{8}{3}\right)=\rho\left(\frac{12-8}{3}\right)=\frac{4}{3} \rho
$$

Center of Mass
$\bar{x}=\frac{M_{y}}{M} \quad \bar{y}=\frac{M_{x}}{M} \quad \bar{x}=\frac{\frac{4}{3} \delta}{\frac{4}{3} \delta} \quad \bar{y}=\frac{\frac{-4}{5} \delta}{\frac{4}{3} \delta} \quad \bar{x}=1 \quad \bar{y}=\frac{-3}{5}$

$$
(\bar{x}, \bar{y})=\left(1, \frac{-3}{5}\right)
$$

General Formulas

$\begin{array}{ll}\text { Y. } & \left.\begin{array}{ll}\text { Math } 104-\text { Rimmer } \\ 9.3 \text { Center of Mass }\end{array}\right)\end{array}$
Thin plate : region under the graph of $y=f(x)$ and above the x-axis Constant density function $\rho(x)=\rho$
Set $g(x)=0$ in the previous formulas.

$$
M_{x}=\frac{\rho}{2} \int_{a}^{b}[f(x)]^{2} d x
$$

$M_{y}=\rho \int_{a}^{b} x f(x) d x$
$M=\rho \underbrace{\int_{a}^{b} f(x) d x}_{\text {Area under } f(x)}$
Let $A=$ area under $f(x)$

Center of Mass

(\bar{x}, \bar{y})
$\bar{x}=\frac{1}{A} \int_{a}^{b} x \cdot f(x) d x$
$\bar{y}=\frac{1}{2 A} \int_{a}^{b}[f(x)]^{2} d x$

