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The Comparison Test:
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The Limit Comparison Test:

the series will behave alike, i.e. either both converge or both diverge.

( )
1

known convergent or divergent series ,  0n n

n

b b
∞

=

>∑



3

Math 104 – Rimmer

12.7 All Tests

{ } 1Let  be a sequence and assume that the following limit exists: lim n
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  If 1,  then the series  is absolutely convergent.n
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  If 1,  the Ratio Test is inconclusive.

the series could be absolutely convergent, conditionally convergent, or divergent
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  If 1,  the Root Test is inconclusive.

the series could be absolutely convergent, conditionally convergent, or divergent
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