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7.8 – L’Hopital’s Rule
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These two types of indeterminate forms can be simplified using

 ' '  L Hopital s Rule
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7.8 – L’Hopital’s RuleOther indeterminate forms

1.  Indeterminate products
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2.  Indeterminate differences " "∞ − ∞

Convert the difference into a quotient

)  factor out a common factora

)  find a common denominatorb
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3.  Indeterminate powers
0"0 "

Use ln to convert into a quotient
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