7.8 L'Hopital's Rule

$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ when $f(x) \rightarrow 0$ and $g(x) \rightarrow 0$ as $x \rightarrow a$
$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{0 "}{0} \leftarrow$ this is called an indeterminate form
$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ when $f(x) \rightarrow \pm \infty$ and $g(x) \rightarrow \pm \infty$ as $x \rightarrow a$

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}= \pm \frac{\infty}{\infty} \leftarrow \text { this is called an indeterminate form }
$$

These two types of indeterminate forms can be simplified using

L'Hopital's Rule

L'HOSPITAL'S RULE Suppose f and g are differentiable and $g^{\prime}(x) \neq 0$ on an open interval I that contains a (except possibly at a). Suppose that

$$
\lim _{x \rightarrow a} f(x)=0 \quad \text { and } \quad \lim _{x \rightarrow a} g(x)=0
$$

or that $\quad \lim _{x \rightarrow a} f(x)= \pm \infty \quad$ and $\quad \lim _{x \rightarrow a} g(x)= \pm \infty$
(In other words, we have an indeterminate form of type $\frac{0}{0}$ or ∞ / ∞.) Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

if the limit on the right side exists (or is ∞ or $-\infty$).

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{x^{5}-1}{x^{9}-1}=\frac{" 0}{0} \\
& \quad \begin{array}{l}
\text { L'H }^{=} \lim _{x \rightarrow 1} \frac{5 x^{4}}{9 x^{8}}=\frac{5}{9}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Math } 103 \text { - Rimmer } \\
& \lim _{x \rightarrow 0} \frac{\sin (4 x)}{\tan (5 x)}=\frac{" 0}{0} \\
& \stackrel{L^{\prime} H}{=} \lim _{x \rightarrow 0} \frac{4 \cos (4 x)}{5 \sec ^{2}(5 x)} \\
& \cos 0=1 \\
& \sec 0=\frac{1}{\cos 0}=1 \\
& =\frac{4}{5} \\
& \lim _{x \rightarrow 0} \frac{x}{\arctan (8 x)}=\frac{" 0 "}{0} \\
& \stackrel{L^{\prime} H}{=} \lim _{x \rightarrow 0} \frac{1}{\frac{1}{1+(8 x)^{2}} \cdot 8}=\lim _{x \rightarrow 0} \frac{1}{\frac{8}{1+64 x^{2}}}=\lim _{x \rightarrow 0} \frac{1+64 x^{2}}{8}=\frac{1}{8}
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{(\ln x)^{2}}{x} & =" \infty \\
& =\frac{L^{\prime} H}{\infty} \\
& =\lim _{x \rightarrow \infty} \frac{2 \ln x \cdot\left(\frac{1}{x}\right)}{1} \\
& =\lim _{x \rightarrow \infty} \frac{2 \ln x}{x}=\frac{\infty}{\infty} \\
& \stackrel{L^{\prime} H}{=} \\
& \lim _{x \rightarrow \infty} \frac{2\left(\frac{1}{x}\right)}{1} \\
& =\lim _{x \rightarrow \infty} \frac{2}{x}=0
\end{aligned}
$$

Other indeterminate forms

Need to be converted into $\frac{0}{0}$ " or " $\frac{\infty}{\infty}$

1. Indeterminate products " $0 \cdot \pm \infty$ "
$\begin{array}{lr}\text { Write the product as a quotient } & f \cdot g=\frac{f}{\frac{1}{g}} \quad \text { or } \quad f \cdot g=\frac{g}{\frac{1}{f}} \\ \left(\frac{4}{x}\right)= & \end{array}$

$$
\lim _{x \rightarrow \infty} x \tan \left(\frac{4}{x}\right)=" \infty \cdot 0 "
$$

$\lim _{x \rightarrow \infty} x \tan \left(\frac{4}{x}\right)=\lim _{x \rightarrow \infty} \frac{\tan \left(\frac{4}{x}\right)}{\frac{1}{x}}=\frac{" 0}{0}$

$$
\stackrel{L^{\prime} H}{=} \lim _{x \rightarrow \infty} \frac{\sec ^{2}\left(\frac{4}{x}\right) \cdot\left(\frac{-4}{x^{2}}\right)^{4}}{\frac{-y}{x^{2}}}=\lim _{x \rightarrow \infty} 4 \sec ^{2}\left(\frac{4}{x}\right)=4
$$

Other indeterminate forms

2. Indeterminate differences $" \infty-\infty$ "

Convert the difference into a quotient How?
a) factor out a common factor
b) find a common denominator
c) rationalize

$$
\begin{aligned}
\lim _{x \rightarrow \infty} x e^{6 / x}-x & =" \infty-\infty " \\
& =\lim _{x \rightarrow \infty} x\left(e^{6 / x}-1\right)=" \infty \cdot 0 " \\
& =\lim _{x \rightarrow \infty} \frac{e^{6 / x}-1}{\frac{1}{x}}=\frac{0^{"}}{0} \stackrel{L^{\prime} H}{=} \lim _{x \rightarrow \infty} \frac{e^{6 / x}\left(\frac{-x}{2}\right)}{\frac{-y}{x^{2}}}=\lim _{x \rightarrow \infty} 6 e^{6 / x}=6
\end{aligned}
$$

$$
\lim _{x \rightarrow 1^{+}}\left(\frac{x}{x-1}-\frac{1}{\ln x}\right)=" \infty-\infty "
$$

Get a common denominator

$$
\begin{aligned}
&=\lim _{x \rightarrow 1^{+}}\left(\frac{x \cdot \ln x}{(x-1) \ln x}-\frac{1(x-1)}{(x-1) \ln x}\right)=\lim _{x \rightarrow 1^{+}}\left(\frac{x \cdot \ln x-x+1}{(x-1) \ln x}\right)=\frac{0^{\prime \prime}}{0} \\
&=\lim _{x \rightarrow 1^{+}} \frac{1 \cdot \ln x+x \cdot \frac{1}{x}-1}{1 \cdot \ln x+(x-1) \cdot \frac{1}{x}} \\
&=\lim _{x \rightarrow 1^{+}} \frac{\ln x+1-1}{\ln x+1-\frac{1}{x}}=\lim _{x \rightarrow 1^{+}} \frac{\ln x}{\ln x+1-\frac{1}{x}}=\frac{0^{\prime \prime}}{0} \\
& \stackrel{L^{\prime} H}{=} \lim _{x \rightarrow 1^{+}} \frac{\frac{1}{x}}{\frac{1}{x}+\frac{1}{x^{2}}}=\frac{1}{2}
\end{aligned}
$$

Other indeterminate forms

3. Indeterminate powers $\quad 0^{0} " \quad " \infty^{0} " \quad "^{\infty} "$

Use \ln to convert into a quotient

$$
\begin{aligned}
& \lim _{x \rightarrow a} f(x)^{g(x)} \\
& y=\lim _{x \rightarrow a} f(x)^{g(x)} \quad \Rightarrow \ln y=\ln \left[\lim _{x \rightarrow a} f(x)^{g(x)}\right] \Rightarrow \ln y=\lim _{x \rightarrow a}\left[\ln f(x)^{g(x)}\right] \\
& \text { let } y \text { equal the limit take the } \ln \text { of both sides interchange } \ln \text { and } \lim \\
& \Rightarrow \ln y=\lim _{x \rightarrow a}[g(x) \cdot \ln f(x)] \leftarrow \text { this will be in the form " } 0 \cdot \pm \infty \text { " } \\
& \text { use the power rule for } \ln \quad \text { follow the directions for } 0 \cdot \infty \text { to find the limit } L \\
& \Rightarrow \ln y=L \quad \Rightarrow e^{\ln y}=e^{L} \quad \Rightarrow y=e^{L} \\
& \text { make both sides the exponent } \\
& \text { on } e \text { to get back to } y
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow 0}(1-6 x)^{\frac{1}{x}}=" 1^{\infty} n & \\
y & =\lim _{x \rightarrow 0}(1-6 x)^{\frac{1}{x}} \\
\ln y & =\ln \left[\lim _{x \rightarrow 0}(1-6 x)^{\frac{1}{x}}\right]
\end{aligned} \quad \ln y=\lim _{x \rightarrow 0}\left[\frac{-6}{1-6 x}\right] .
$$

$$
y=\lim _{x \rightarrow \infty}\left(1+\frac{a}{x}\right)^{b x}
$$

$$
\ln y=\ln \left[\lim _{x \rightarrow \infty}\left(1+\frac{a}{x}\right)^{b x}\right]
$$

$$
\ln y \stackrel{L^{\prime} H}{=} \lim _{x \rightarrow \infty}\left[\frac{\frac{b}{1+\frac{a}{x}}\left(\frac{-x}{x^{2}}\right)}{\frac{-y}{x^{2}}}\right]
$$

$$
\ln y=\lim _{x \rightarrow \infty}\left[\ln \left(1+\frac{a}{x}\right)^{b x}\right]
$$

$$
\ln y=\lim _{x \rightarrow \infty}\left[\frac{a b}{1+\frac{a}{x}}\right]
$$

$$
\ln y=\lim _{x \rightarrow \infty}\left[b x \cdot \ln \left(1+\frac{a}{x}\right)\right]=" \infty \cdot 0^{"}
$$

$$
\ln y=a b
$$

$\ln y=\lim _{x \rightarrow \infty}\left[\frac{b \cdot \ln \left(1+\frac{a}{x}\right)}{\frac{1}{x}}\right]=\frac{0}{0}$

$$
\begin{gathered}
e^{\ln y}=e^{a b} \\
y=e^{a b} \\
y=\lim _{x \rightarrow \infty}\left(1+\frac{a}{x}\right)^{b x}=e^{a b}
\end{gathered}
$$

