



Consider the series $\sum_{n=9}^{\infty} \frac{\sqrt{n}}{n-8}$

The inequality $a_n \le b_n$ or $b_n \le a_n$ doesn't need to be satisfied for all values of n. If it doesn't hold for the first few terms but it holds for all n > N for some N, then the comparison test will still work. Consider the series $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ Choose $b_n = \frac{1}{n}$ $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n}$ is the harmonic series, so it is divergent Since $\sum_{n=1}^{\infty} b_n$ is divergent, the inequality should be $\frac{1}{n} \le \frac{\ln n}{n}$ $\Rightarrow n \le n \ln n \Rightarrow \frac{n}{n} \le \frac{n \ln n}{n} \Rightarrow 1 \le \ln n \Rightarrow e^1 \le e^{\ln n} \Rightarrow n > e$ The inequality doesn't hold for n = 1 or n = 2 but it holds for all $n \ge 3$ The convergence or divergence of the series does not depend on the first two terms. These terms can be subtracted off and we can look at both series starting at n = 3. $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges $\Rightarrow \sum_{n=1}^{\infty} \frac{\ln n}{n}$ also diverges by the Comparison Test

Math 104 – Rimmer 10.4 Comparison Tests Consider the series $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^3 + 1}}$

EXAMPLE Solution **The Limit Comparison Test:** Given the series $\sum_{n=1}^{\infty} a_n$, $(a_n > 0)$ and a known convergent or divergent series $\sum_{n=1}^{\infty} b_n$, $(b_n > 0)$ If the $\lim_{n \to \infty} - = c$ where c is a finite positive number, then the series will If the $\lim_{n \to \infty} - = 0$ and If the $\lim_{n \to \infty} - = \infty$ and

Math 104 – Rimmer 10.4 Comparison Tests

Back to the series
$$\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^3 + 1}}$$
.

Consider the series
$$\sum_{n=1}^{\infty} \frac{1+3^n}{4+2^n}$$

