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The Direct Comparison Test:
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For the series ,  it must be known whether it converges or diverges, so

it is usually chosen to be a              or a                           .
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The inequality  or  doesn't need to be satisfied for all values of .
n n n n
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If it doesn't hold for the first few terms but it holds for all  for some ,n N N>

then the comparison test will still work.
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  is the harmonic 

series, so it is divergent
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The inequality doesn't hold for 1 or 2 but it holds for all 3n n n= = ≥

1 ln n⇒ ≤ 1 ln n
e e⇒ ≤ n e⇒ >

The convergence or divergence of the series does not depend on the first two terms.

These terms can be subtracted off and we can look at both series starting at 3.n =

1 1

1 ln
 diverges  also diverges by the Comparison Test 
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If the lim  where  is a finite positive number, then 
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The Limit Comparison Test:

the series will 
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