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Forms for the term that makes the series alternate in sign:
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Note:

)  This test is for convergence only.  It says nothing about divergence.a
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An infinite series 

__________________ implies ______________.

An infinite series

1 1

 is called  if the positive se______________ ries  converges._____
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( )If the series of absolute value converges, then the original series also converges

If the series of absolute value ________ , it is still possible 

for the original series to converge.

Use the __________________ on the original series.

If the Alternating Series Test gives convergence, then this is a special 

type of convergence.
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A major difference between absolutely convergent and conditionally convergent

comes in the ______________________.
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1 ln 2  We will show this later
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same terms

 different sums
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Determine whether the series is absolutely convergent, 

conditionally convergent, or divergent.
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