

In general, a series of the form
is called a power series or a power series about <i>a</i>
We use the to find for what values of <i>x</i> the series converges.
$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = L$ solve for $ x-a $ to get $ x-a < R$ $\Rightarrow -R < x - a < R$ $\Rightarrow a - R < x < a + R$
This is called the Plug in the endpoints to check for convergence
(I.O.C.). or divergence at the endpoints.

Find the radius of convergen	nce and the interval of conve	argence. Math 104 – Rimmer 10.7 Power Series
$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n n^2 x^n}{2^n}$		
×-		
<u>x =</u>	<u>x=</u>	
		Radius of convergence: Interval of convergence:

Find the radius of convert $\sum_{n=1}^{\infty} \frac{(4x+1)^n}{n^2}$	rgence and the interval of convergence.	Math 104 – Rimmer 10.7 Power Series
Check endpoints: <u>x =</u>	<u>x =</u>	R.O.C.: I.O.C.:

Functions as Power Series We have seen represented as a power series is the geometric series with a = 1 and r = x $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots , |x| < 1$ We can find the power series representation of other functions by algebraically manipulating them to to be some multiple of this series. $\frac{1}{1+x} = \frac{1}{1-(-x)}$ The interval of convergence remains unchanged since this is still a type of geometric series. $\frac{1}{1+x} = \frac{1}{1+x} = \frac{1}{1+x}$

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + c_3 (x-a)^3 + \cdots$$
If the power series representation of $f(x)$ has a radius of convergence $R > 0$,
we can obtain a power series representation for $f'(x)$ by
term - by - term ______:
 $f(x) = c_0 + c_1 (x-a) + c_2 (x-a)^2 + c_3 (x-a)^3 + \cdots$
 $f'(x) = c_1 + 2c_2 (x-a) + 3c_3 (x-a)^2 + \cdots$
 $f'(x) = \frac{d}{dx} \left(\sum_{n=0}^{\infty} c_n (x-a)^n \right) = \sum_{n=0}^{\infty} \frac{d}{dx} \left[c_n (x-a)^n \right] = \sum_{n=1}^{\infty} nc_n (x-a)^{n-1}$ with the same radius
of convergence R
we can obtain a power series representation for $\int f(x) dx$ by
term - by - term ______:
 $\int f(x) dx = C + c_0 x + c_1 \frac{(x-a)^2}{2} + c_2 \frac{(x-a)^3}{3} + c_3 \frac{(x-a)^4}{4} + \cdots$
 $\int \left(\sum_{n=0}^{\infty} c_n (x-a)^n \right) dx = \sum_{n=0}^{\infty} \int \left[c_n (x-a)^n \right] dx = C + \sum_{n=0}^{\infty} \frac{c_n (x-a)^{n+1}}{n+1}$ with the same radius
of convergence R

arctan
$$x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$
, with $R = 1$
arctan $x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$
arctan $1 = \ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} + \dots$
 $\ln(1-\frac{1}{2}) = \ln(\frac{1}{2}) = \ln(\frac{1}{2}) = \ln(\frac{1}{2}) = \ln(1-\ln 2) = \ln(1-\ln 2) = \ln(1-\ln 2) = \ln(1-\ln 2)$

Algebraically manipulate $\frac{1}{(1-x)^2}$ (the same way we manipulate $\frac{1}{1-x}$) $\frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} nx^{n-1}$ with R = 1Represent $\frac{1}{(4-3x)^2}$ as a power series and determine the radius of convergence. $\frac{1}{(4-3x)^2}$

