

A power series is a series of the form

$$
\sum_{n=0}^{\infty} c_{n} x^{n}=
$$

where:
a)
b)

For each fixed x, the series above is a series of constants that we can test for convergence or divergence.

A power series may converge for some values of x and diverge for other values of x.

The sum of the series is a function
whose \qquad is the set of all x for which the series converges. $f(x)$ is reminiscent of a \qquad but it has infinitely many terms

If all $c_{n}{ }^{\prime} \mathrm{s}=1$, we have

$$
f(x)=1+x+x^{2}+\ldots+x^{n}+\ldots=\sum_{n=0}^{\infty} x^{n}
$$

This is the \qquad with \qquad .

The power series will converge for \qquad and diverge for all other x.

In general, a series of the form

is called a power series \qquad or a power series about a

We use the \qquad to find for what values of x the series converges.
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L$ \qquad

solve for $|x-a|$ to get $|x-a|<R$
$\Rightarrow-R<x-a<R$
$\Rightarrow a-R<x<a+R$
This is called the \qquad Plug in the endpoints to check for convergence
\qquad (I.O.C.). or divergence at the endpoints.

Find the radius of convergence and the interval of convergence.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2} x^{n}}{2^{n}}
$$

\qquad Interval of convergence:

Find the radius of convergence and the interval of convergence.

$$
\sum_{n=1}^{\infty} \frac{3^{n}(x+4)^{n}}{\sqrt{n}}
$$

\qquad $x=$

> R.O.C.:
\qquad
I.O.C. : \qquad

Find the radius of convergence and the interval of convergence.

$$
\sum_{n=1}^{\infty} \frac{(4 x+1)^{n}}{n^{2}}
$$

Check endpoints:

$$
\underline{x=} \quad \underline{x}=
$$

R.O.C.: \qquad
I.O.C. :

Sometimes the Root Test can be used just as the Ratio Test.
When a_{n} can be written as $\left(b_{n}\right)^{n}$, then the Root Test should be used.

$$
\sum_{n=1}^{\infty} \frac{3^{n}(x-5)^{n}}{n^{n}}
$$

$$
\begin{aligned}
& \text { R.O.C. }= \\
& \text { I.O.C. }=
\end{aligned}
$$

$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=0 \Rightarrow$

$$
\sum_{n=1}^{\infty} \frac{n!(x-7)^{n}}{2^{n}}
$$

R.O.C. $=$ \qquad ..O.C. $=$
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\infty \Rightarrow$

Find the radius of convergence.
$\sum_{n=1}^{\infty} \frac{(-1)^{n}(n!)^{2} x^{2 n}}{(2 n)!}$

Radius of convergence:

Functions as Power Series

The very first function we have seen represented as a power series is the geometric series with $a=1$ and $r=x$
$\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots,|x|<1$
We can find the power series representation of other functions by algebraically manipulating them to to be some multiple of this series.

$$
\begin{aligned}
& \frac{1}{1+x}=\frac{1}{1-(-x)} \\
& \frac{1}{1+x}=
\end{aligned}
$$

The interval of convergence remains unchanged since this is still a type of geometric series.

Math 104-Rimmer 10.7 Power Series

Represent the function as a power series and determine the interval of convergence.
$\frac{3}{4+x^{2}}$
, so the interval of convergence is
$\frac{3}{4+x^{2}}=$

$f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots$
If the power series representation of $f(x)$ has a radius of convergence $R>0$,
we can obtain a power series representation for $f^{\prime}(x)$ by
term-by - term \qquad :
$f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots$
$f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+\cdots$

$$
f^{\prime}(x)=\frac{d}{d x}\left(\sum_{n=0}^{\infty} c_{n}(x-a)^{n}\right)=\sum_{n=0}^{\infty} \frac{d}{d x}\left[c_{n}(x-a)^{n}\right]=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1} \underset{\substack{\text { with the same radius } \\ \text { starts at } n=1 \\ \text { of convergence } R}}{ }
$$

we can obtain a power series representation for $\int f(x) d x$ by term-by - term \qquad _:
$\int f(x) d x=C+c_{0} x+c_{1} \frac{(x-a)^{2}}{2}+c_{2} \frac{(x-a)^{3}}{3}+c_{3} \frac{(x-a)^{4}}{4}+\cdots$
$\int\left(\sum_{n=0}^{\infty} c_{n}(x-a)^{n}\right) d x=\sum_{n=0}^{\infty} \int\left[c_{n}(x-a)^{n}\right] d x=C+\sum_{n=0}^{\infty} \frac{c_{n}(x-a)^{n+1}}{n+1} \quad \begin{aligned} & \text { with the same radius } \\ & \text { of convergence } R\end{aligned}$
C is a constant of integration

Represent the function as a power series and determine the radius of convergence.
$f(x)=\frac{x^{3}}{(1-x)^{2}}$
$g(x)=\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ with $R=1$

Math 104 - Rimmer

Represent the function as a power series and determine the radius of convergence.
$f(x)=\arctan x$

$$
\begin{aligned}
\frac{1}{1+x^{2}}= & \sum_{n=0}^{\infty}(-1)^{n} x^{2 n}, \text { with } R=1 \\
& =1-x^{2}+x^{4}-x^{6}+\ldots
\end{aligned}
$$

$\arctan x=C+$
$\arctan x=$

Represent the function as a power series and determine the radius of convergence.

$$
\begin{aligned}
& f(x)=\ln (1-x) \\
& \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \text { with } R=1 \\
& -\ln (1-x)= \\
& \ln (1-x)=
\end{aligned}
$$

$\arctan x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$,with $R=1$	$\ln (1-x)=-\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$, with $R=1$
$\arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots$	$\ln (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots$
$\ln \left(1-\frac{1}{2}\right)=$	
$\ln \left(\frac{1}{2}\right)=$	
$\ln 1-\ln 2=$	

Algebraically manipulate $\frac{1}{(1-x)^{2}}$
(the same way we manipulated $\frac{1}{1-x}$)
$\frac{1}{(1-x)^{2}}=\sum_{n=1}^{\infty} n x^{n-1}$ with $R=1$
Represent $\frac{1}{(4-3 x)^{2}}$ as a power series and determine the radius of convergence. $\frac{1}{(4-3 x)^{2}}$

Algebraically manipulate $\ln (1-x) \quad\left(\right.$ the same way we manipulated $\left.\frac{1}{1-x}\right)$
$\ln (1-x)=-\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$, with $R=1$
Represent $\ln (3+2 x)$ as a power series and determine the radius of convergence.
$\ln (3+2 x)$

