Taylor \& Maclaurin Serie

Suppose f is a function which has a power series representation

$$
\begin{array}{r}
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots \\
\text { for }|x-a|<R
\end{array}
$$

We can find the coefficients c_{n} in the following manner:

$$
f(a)=c_{0}+c_{1} \underbrace{(a-a)}_{0}+c_{2} \underbrace{(a-a)^{2}}_{0}+c_{3} \underbrace{(a-a)^{3}}_{0}+\cdots \Rightarrow f(a)=c_{0}
$$

Now let's take the derivative:

$$
\begin{aligned}
& f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+4 c_{4}(x-a)^{3}+\cdots \\
& f^{\prime}(a)=c_{1}+2 c_{2} \underbrace{(a-a)}_{0}+3 c_{3} \underbrace{(a-a)^{2}}_{0}+4 c_{4} \underbrace{(a-a)^{3}}_{0}+\cdots \Rightarrow f^{\prime}(a)=c_{1}
\end{aligned}
$$

Now let's take the second derivative:
$f^{\prime \prime}(x)=2 c_{2}+2 \cdot 3 c_{3}(x-a)+3 \cdot 4 c_{4}(x-a)^{2}+\cdots$
$f^{\prime \prime}(a)=2 c_{2}+2 \cdot 3 c_{3} \underbrace{(a-a)}_{0}+3 \cdot 4 c_{4} \underbrace{(a-a)^{2}}_{0}+4 c_{5} \underbrace{(a-a)^{3}}_{0}+\cdots$

Finally let's take the third derivative:
$f^{\prime \prime \prime}(x)=2 \cdot 3 c_{3}+2 \cdot 3 \cdot 4 c_{4}(x-a)+3 \cdot 4 \cdot 5 c_{5}(x-a)^{2}+\cdots$
$f^{\prime \prime \prime}(a)=2 \cdot 3 c_{3}+2 \cdot 3 \cdot 4 c_{4}(a-a)+3 \cdot 4 \cdot 5 c_{5}(a-a)^{2}+\cdots \Rightarrow f^{\prime \prime \prime}(a)=2 \cdot 3 c_{3}$

Continuing in this manner, we'll obtain:
$c_{3}=\frac{f^{\prime \prime \prime}(a)}{2 \cdot 3}$

$$
c_{4}=\frac{f^{(4)}(a)}{2 \cdot 3 \cdot 4} \quad c_{5}=\frac{f^{(5)}(a)}{2 \cdot 3 \cdot 4 \cdot 5} \quad \ldots \quad c_{n}=\frac{f^{(n)}(a)}{n!}
$$

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots
$$

\qquad series of the function f centered at a.

If $a=0$, then we call the series the \qquad series of the function f.

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots
$$

Find the Maclaurin series for $f(x)=e^{x}$
Taylor \& Maclaurin Series

$$
\begin{array}{rlrl}
f(x) & =e^{x} & f(0) & =1 \\
f^{\prime}(x) & =e^{x} & f^{\prime}(0) & =1 \\
f^{\prime \prime}(x) & =e^{x} & f^{\prime \prime}(0) & =1 \\
f^{\prime \prime \prime}(x) & =e^{x} & f^{\prime \prime \prime}(0) & =1 \\
f^{(4)}(x) & =e^{x} & f^{(4)}(0) & =1 \\
\vdots & \vdots
\end{array}
$$

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{n!}{(n+1)!} \cdot \frac{x^{n+1}}{x^{n}}\right|
$$

$$
=\lim _{n \rightarrow \infty}\left|\frac{x!}{(n+1) \cdot n!} \frac{y!x}{}\right|
$$

$$
\frac{f^{(n)}(0)}{n!} x^{n}=
$$

$$
e^{x}=\quad, \text { with } R=\infty
$$

Find the Maclaurin series for $f(x)=\sin x$

```
Math 104-Rimmer 10.8-10.10
```

Taylor \& Maclaurin Series

$$
\begin{aligned}
f(x) & =\sin x & & f(0)= \\
f^{\prime}(x) & =\cos x & & f^{\prime}(0)= \\
f^{\prime \prime}(x) & =-\sin x & & f^{\prime \prime}(0)= \\
f^{\prime \prime \prime}(x) & =-\cos x & & f^{\prime \prime \prime}(0)= \\
f^{(4)}(x) & =\sin x & & f^{(4)}(0)= \\
f^{(5)}(x) & =\cos x & & f^{(5)}(0)=
\end{aligned}
$$

$=\lim _{n \rightarrow \infty}\left|\frac{x^{2}}{(2 n+3)(2 n+2)}\right| \begin{aligned} & =0<1 \\ & \text { for all } x\end{aligned}$ $\Rightarrow R=\infty$
only odd powers so we should use $2 n-1$ or $2 n+1$
the first term $($ when $n=0)$ is x^{1} so we choose $2 n+1 \frac{f^{(n)}(0)}{n!} x^{n}=$

$$
\begin{aligned}
& \text { List of important Maclaurin series: } \\
& \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots \quad R=1 \\
& \frac{1}{(1-x)^{2}}=\sum_{n=1}^{\infty} n x^{n-1}=1+2 x+3 x^{2}+4 x^{3}+\cdots \quad \text { with } R=1 \\
& \ln (1-x)=-\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\cdots \text { with } R=1 \\
& \arctan x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots \quad \text {, with } R=1 \\
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \text {, with } R=\infty \\
& \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \quad \text {, with } R=\infty \\
& \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \quad \text {, with } R=\infty
\end{aligned}
$$

Find the third degree Taylor polynomial for $f(x)=\sqrt{x}$ centered at $x=1$.

$$
\begin{aligned}
f(x) & =x^{1 / 2} \\
f^{\prime}(x) & =\frac{1}{2} x^{-1 / 2} \\
f^{\prime \prime}(x) & = \\
f^{\prime \prime \prime}(x) & = \\
T_{3}(x) & =
\end{aligned}
$$

$$
\begin{gathered}
T_{3}(1.5)=1.226562500 \\
\sqrt{1.5} \approx 1.224744871 \\
T_{3}(1.5)-\sqrt{1.5}=0.001817629
\end{gathered}
$$

Taylor \& Maclaurin Series

Use a power series to integrate a function when there is no integration technique you could use. Integrate and find the coefficient on x^{10}

$$
\begin{aligned}
\int x^{3} e^{-x^{3}} d x & = \\
e^{-x^{3}} & = \\
e^{-x^{3}} & = \\
x^{3} e^{-x^{3}} & =
\end{aligned}
$$

$\int x^{3} e^{-x^{3}} d x=$

Use a power series to evaluate a limit
$\lim _{x \rightarrow 0} \frac{\sin x-x+\frac{x^{3}}{6}}{x^{5}}$

Use a power series to find the sum of a series.

$$
\sum_{n=0}^{\infty} \frac{\pi^{n}}{n!}=1+\pi+\frac{\pi^{2}}{2!}+\frac{\pi^{3}}{3!}+\frac{\pi^{4}}{4!}+\cdots
$$

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n+1}}{2^{2 n+1}(2 n+1)!}=\frac{\pi}{2}-\frac{\pi^{3}}{3!8}+\frac{\pi^{5}}{5!32}-\frac{\pi^{7}}{7!128}+\cdots
$$

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots
$$

$$
\begin{aligned}
& 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\cdots=\frac{\pi}{4} \\
& 4\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\cdots\right)=\pi \\
& \pi=4-\frac{4}{3}+\frac{4}{5}-\frac{4}{7}+\frac{4}{9}-\frac{4}{11}+\frac{4}{13}-\frac{4}{15}+\cdots
\end{aligned}
$$

This is a series that sums to π but it does it very slowly.

$$
S_{50}=3.121594653
$$

(2) Math 104-Rimmer

 10.8-10.10Find the first three non-zero terms of the Maclaurin series for $\bar{f}(x)=e^{\text {Taslor } \&} \ln \operatorname{lnclawnin~Series~}$
by \qquad two series. $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots$, with $R=\infty$ and $I=(-\infty, \infty)$
$\ln (1-x)=-\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\cdots$, with $R=1$ and $I=|x|<1$
$e^{x} \ln (1-x)=$

Find the first three non-zero terms of the Maclaurin series for $f(x)=\tan x$

$$
\begin{aligned}
& \tan x=\frac{\sin x}{\cos x}=\frac{x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots}{1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots} \\
& 1 - \frac { x ^ { 2 } } { 2 } + \frac { x ^ { 4 } } { 2 4 } - \frac { x ^ { 6 } } { 7 2 0 } + \cdots \longdiv { x - \frac { x ^ { 3 } } { 6 } + \frac { x ^ { 5 } } { 1 2 0 } - \frac { x ^ { 7 } } { 5 0 4 0 } + \cdots } \quad \text { by } \\
& -\frac{x^{3}}{6}+\frac{x^{3}}{2}=\frac{-1+3}{6} x^{3}=\frac{x^{3}}{3} \\
& \frac{x^{5}}{120}-\frac{x^{3}}{24}=\frac{1-5}{12 x^{x}}=-\frac{x^{5}}{30} \\
& -\frac{x^{x}}{5040}+\frac{x^{7}}{720}=\frac{-1+7}{5040} x^{x}=\frac{x^{3}}{840} \\
& -\frac{x^{5}}{30}+\frac{x^{5}}{6}=\frac{-1+5}{30} x^{5}=\frac{2 x^{5}}{15} \\
& \frac{x^{7}}{840}-\frac{x^{7}}{72}=\frac{3-35}{2520} x^{2}=\frac{-4 x^{7}}{315}
\end{aligned}
$$

