Goal: To find the volume of a solid using second semester calculus

- Volume by Cross-Sections
- Volume by Disk

Volume by Slicing

- Volume by Washer
- Volume by Shells

6.1 Volumes by Slicing

Goal: To find the volume of a solid
Method: "Cutting" the solid into many "pieces", find the volume of the pieces and add to find the total volume.

- The "pieces" are treated are cylinders.
- The base of each cylinder is called a cross-section.

6.1 Volumes

- The volume of each cylinder is found by taking the area of the cross-section, $A\left(x_{i}^{*}\right)$, and multiplying by the height, Δx.

- The volume of the solid can be approximated by the sum of all cylinders.

$$
V \approx \sum_{i=1}^{n} A\left(x_{i}^{*}\right) \Delta x
$$

- Taking the limit as the number of cylinders goes to infinity gives the exact volume of the solid.

$$
V=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} A\left(x_{i}^{*}\right) \Delta x \quad \Rightarrow V=\int_{a}^{b} A(x) d x
$$

http://www.mathdemos.org/mathdemos/sectionmethod/sectiongallery.html

Area of a square with side length s :
$s+$
Area $=s^{2}$

Area of a semicircle with diameter length s :

Area of an isosceles right triangle with leg length s :

$$
\text { Area }=\frac{1}{2} s^{2}
$$

S

Area of an isosceles right triangle with hypotenuse length s :

$$
\begin{aligned}
& x^{2}+x^{2}=s^{2} \quad \text { base }=\frac{1}{\sqrt{2}} \\
& \text { Area }=\frac{1}{2}\left(\frac{1}{\sqrt{n}}\right)\left(\frac{1}{\sqrt{2}}\right) \\
& 2 x^{2}=s^{2} \quad \text { height }=\frac{s}{\sqrt{2}} \\
& =\frac{s \cdot s}{2 \cdot 2} \\
& x^{2}=\frac{s^{2}}{2} \\
& \text { Area }=\frac{1}{4} s^{2}
\end{aligned}
$$

Some Area Formulas

Area of a square with side length s : Area $=s^{2}$
Area of a semicircle with diameter length $s:$ Area $=\frac{\pi}{8} s^{2}$
Area of an isosceles right triangle with leg length $s:$ Area $=\frac{1}{2} s^{2}$
Area of an isosceles right triangle with hypotenuse length $s:$ Area $=\frac{1}{4} s^{2}$
Area of a equilateral triangle with side length $s:$ Area $=\frac{\sqrt{3}}{4} s^{2}$ A solid has a circular base of radius 4. If every plane cross section perpendicular to the x-axis is a square, then find the volume of the solid.

Section 6.1
(10) Math 104-Rimmer
10. The base of the solid is the disk $x^{2}+y^{2} \leq 1$. The cross-sections by planes perpendicular to the y-axis between $y=-1$ and $y=1$ are isosceles right triangles with one leg in the disk.

When you revolve a plane region about an axis, the cross-sections are circular and the solid generated is called a solid of revolution.

If there is no gap between the axis of rotation and the region, then the method used is called the disk method.

If there is a gap between the axis of rotation and the region, then the method used is called the washer method.

Disk Method with horizontal axis of rotation (not necessarily the x-axis)
Cross-sections are circular: $\quad A(x)=\pi[r(x)]^{2}$ radius as a
function of x
Volume $=\int_{a}^{b} A(x) d x=\pi \int_{\substack{a \\ \text { a radius as a } \\ \text { function of } x}}^{b}[r(x)]^{2} d x$

\qquad (b)

Disk Method with vertical axis of rotation (not necessarily the y-axis)
Cross-sections are circular: $\quad A(y)=\pi \underset{\text { radius as a }}{\pi} \underset{(y)}{r}$
function of y
Volume $=\int_{a}^{b} A(y) d y=\pi \int_{\substack{a \\ a \\ \text { fadius as an } \\ \text { funcion of } y}}^{b}[y){ }^{2} d y$

.nemurratece ${ }^{\text {(a) }}$

Washer Method with horizontal axis of rotation (not necessarily the x-axis)
Draw a radius from the axis of rotation to the outer curve and call this outer radius
Draw a radius from the axis of rotation to the inner curve and call this inner radius
Volume $=\int_{a}^{b} A(x) d x=\pi \int_{a}^{b}\left(\underset{\substack{\text { outer radius as } \\ \text { a function of } x}}{\left.r_{\text {out }}(x)\right]^{2}-\left[r_{i n}(x)\right]^{\text {inner radius as }} \text { a function of } x}\right) ~ d x$

Washer Method with vertical axis of rotation (not necessarily the y-axis)
Draw a radius from the axis of rotation to the outer curve and call this outer radius Draw a radius from the axis of rotation to the inner curve and call this inner radius

$$
\text { Volume }=\int_{a}^{b} A(y) d y=\pi \int_{a}^{b}\left(\left[\begin{array}{c}
\text { ant } \\
\text { outer radius as } \\
\text { a function of } y
\end{array}(y)\right]_{\substack{\text { inner radius as } \\
\text { of function of } y}}^{2}\left[r_{i n}(y)\right]^{2}\right) d y
$$

Calculate the volume of the solid generated by rotating the region between
the curves $y=\sqrt{x}$ and $y=0$ about the x-axis.

\qquad (a)
(b)

Calculate the volume of the solid generated by rotating the region between

the curves $y=x^{3}, y=8$, and $x=0$ about the y-axis.

\qquad (a)

(b)

Calculate the volume of the solid generated by rotating the region between
the curves $y=4-x^{2}$ and $y=0$ about the \boldsymbol{x}-axis.

Calculate the volume of the solid generated by rotating the region between
the curves $y=\frac{1}{x-2}$ and $x=2, y=\frac{1}{2}$, and $y=4$ about the line $x=-4$

Calculate the volume of the solid generated by rotating the region between

the curves $y=\frac{x}{2}$ and $y=\sqrt{x}$ about the y-axis.

