
(a) Surface of revolution

(b) Approximating band

Area of the band $=2 \pi($ radius $)($ length $)$

$$
=2 \pi\left(\frac{y_{i-1}+y_{i}}{2}\right) d\left(P_{i-1} P_{i}\right)
$$

$$
=2 \pi f\left(x_{i}^{*}\right) \sqrt{1+\left(f^{\prime}\left(x_{i}^{*}\right)\right)^{2}} \Delta x \quad \text { In } 6.3 \text { we saw } d\left(P_{i-1} P_{i}\right)=\sqrt{1+\left(f^{\prime}\left(x_{i}^{*}\right)\right)^{2}} \Delta x
$$

$$
\text { For small } \Delta x, y_{i}=f\left(x_{i}\right) \approx f\left(x_{i}^{*}\right)
$$

Total surface area $\approx \sum_{i=1}^{n} 2 \pi f\left(x_{i}^{*}\right) \sqrt{1+\left(f^{\prime}\left(x_{i}^{*}\right)\right)^{2}} \Delta x \quad$ and $y_{i-1}=f\left(x_{i-1}\right) \approx f\left(x_{i}^{*}\right)$
$\underset{\text { (better approximation) }}{\text { Total surface area }}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi f\left(x_{i}^{*}\right) \sqrt{1+\left(f^{\prime}\left(x_{i}^{*}\right)\right)^{2}} \Delta x$
Surface Area $=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x \quad \begin{aligned} & \text { the area of surface obtained by rotating } \\ & \text { the curve } y=f(x) \text { about the } x-\text { axis for } a \leq x \leq b \text { is }\end{aligned}$

A function with a continuous derivative on $[a, b]$
the area of surface obtained by rotating the graph of a function about the y-axis for $a \leq x \leq b$ is

$$
S A=2 \pi \int^{b} x d s
$$

$$
\begin{aligned}
& \text { function: } y=f(x) \\
& S A=2 \pi \int_{a}^{b} x \sqrt{1+\left[\frac{d y}{d x}\right]^{2}} d x
\end{aligned}
$$

A function with a continuous derivative on $[a, b]$

the area of surface obtained by rotating the graph of a function about the x-axis for $a \leq x \leq b$ is

$$
S A=2 \pi \int_{a}^{b} y d s
$$

$$
\begin{aligned}
& \text { function: } y=f(x) \\
& S A=2 \pi \int_{a}^{b} f(x) \sqrt{1+\left[\frac{d y}{d x}\right]^{2}} d x
\end{aligned}
$$

$$
\text { function: } x=g(y) \quad c \leq y \leq d
$$

$$
S A=2 \pi \int_{c}^{d} y \sqrt{1+\left[\frac{d x}{d y}\right]^{2}} d y
$$

Find the area of the surface formed by revolving the graph of $f(x)=x^{2}$ on the interval $0 \leq x \leq \sqrt{2}$ about the y-axis.

Find the area of the surface formed by revolving the graph of $x=\frac{1}{9} y^{2}+2$ on the interval $2 \leq y \leq 6$ about the x-axis.

Find the area of the surface formed by revolving the graph of $f(x)=\sqrt{x}$ on the interval $4 \leq x \leq 9$ about the x-axis.

