8.7 Improper	Inte	grals	Math 104 – Rimmer 8.7 Improper Integrals
An integral can be called "improper" with one or any combination of the following:			
8	Example	s:	If the limit
• Infinite upper limit	$\int_{1}^{\infty} e^{-2x} dx$	$=\lim_{t\to\infty}\int_{1}^{t}e^{-2x}dx$	exists, we say the integral
• Infinite lower limit	$\int_{-\infty}^{1} x e^{x} dx$	$=\lim_{t\to\infty}\int_{t}^{1}xe^{x}dx$	converges and if it fails to
 Infinite discontinuity at: upper limit 	$\int_{0}^{8} \frac{dx}{\sqrt[3]{8-x}}$	$= \lim_{t \to 8^{-}} \int_{0}^{t} \frac{dx}{\sqrt[3]{8-x}}$	exist (this includes infinite limits), we
• lower limit	$\int_{0}^{9} \frac{dx}{\sqrt{x}}$	$=\lim_{t\to 0^+}\int_t^9\frac{dx}{\sqrt{x}}$	say the integral diverges.
 some value between the upper and lower limit 	$\int_{-2}^{3} \frac{dx}{x^4}$	$= \lim_{t \to 0^{-}} \int_{-2}^{t} \frac{dx}{x^{4}} + \lim_{t \to 0^{+}}$	$\int_{t}^{3} \frac{dx}{x^{4}}$

