12.4 Cross Product

The cross product of two vectors is a \qquad with the special quality of being \qquad to both original vectors.

The cross product yields a \qquad in contrast to the dot product that yields a \qquad
The cross product of $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ is
$\mathbf{u} \times \mathbf{v}=\left\langle u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right\rangle$
The definition \qquad .
(The cross product is \qquad defined for two-dimensional vectors.)

Instead of memorizing what gets multiplied by what, there is a convenient way to calculate $\mathbf{u} \times \mathbf{v}$ using the
\qquad form with \qquad _.

D®terninank

2×2
$\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=$
$\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|=$
$\left|\begin{array}{ll}-6 & 2 \\ -9 & 3\end{array}\right|=$
$\left|\begin{array}{cc}0 & 3 \\ -1 & 99\end{array}\right|=$

ช정 Dectommant

Reduces to finding _ 2×2 determinants using cofactor expansion on the \qquad
Take each entry in the first row, we will multiply each of these entries by a 2×2 determinant.

The 2×2 determinants are found by \qquad that entry's column and row.

One last thing is to \qquad _.
$\left|\begin{array}{ccc}1 & -3 & 2 \\ -1 & 9 & 4 \\ -5 & 3 & 1\end{array}\right|=$

$$
\begin{aligned}
& \underline{3 \times 3 \text { Shortcut }} \\
& \begin{array}{|ccc|cc}
1 & 6 & -2 & 1 & 6 \\
3 & -1 & 3 & 3 & -1 \\
4 & 5 & 2 & 4 & 5
\end{array}=
\end{aligned}
$$

How to find the cross product using determinants

$\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3}\end{array}\right|=$
$\mathbf{u} \times \mathbf{v}=\left(u_{2} v_{3}-u_{3} v_{2}\right) \mathbf{i}-\left(u_{1} v_{3}-u_{3} v_{1}\right) \mathbf{j}+\left(u_{1} v_{2}-u_{2} v_{1}\right) \mathbf{k}$
$\mathbf{u} \times \mathbf{v}=\left\langle u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right\rangle$

Let $\mathbf{u}=\langle 1,-2,1\rangle$ and $\mathbf{v}=\langle 3,1,-2\rangle$ Find $\mathbf{u} \times \mathbf{v}$.
$\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -2 & 1 \\ 3 & 1 & -2\end{array}\right|=$

Let $\mathbf{u}=\langle 1,1,1\rangle$ and $\mathbf{v}=\langle 2,1,-1\rangle$ Find $\mathbf{u} \times \mathbf{v}$ and show that it is orthogonal to both \mathbf{u} and \mathbf{v}.

Algebraic Properties of the cross product:
Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be vectors and let c be a scalar.

1. $\mathbf{u} \times \mathbf{v}=$
2. $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=$
3. $c(\mathbf{u} \times \mathbf{v})=$
4. $\mathbf{0} \times \mathbf{v}=$
5. $\mathbf{v} \times \mathbf{v}=$
6. $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=$
7. $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=$

Right - hand rule

Place your 4 fingers in the direction of the \qquad _,
\qquad them in the direction of the \qquad
Your \qquad will point in the $\mathbf{u} \times \mathbf{v}=-(\mathbf{v} \times \mathbf{u})$ direction of the cross product
(by switching the order, you get a vector \qquad)

Geometric Properties of the cross product:
Let \mathbf{u} and \mathbf{v} be nonzero vectors and let θ be the angle between \mathbf{u} and \mathbf{v}.

1. $\mathbf{u} \times \mathbf{v}$ is \qquad to both \mathbf{u} and \mathbf{v}.
2. $|\mathbf{u} \times \mathbf{v}|=$
3. $\mathbf{u} \times \mathbf{v}=\mathbf{0}$ if and only if
4. $|\mathbf{u} \times \mathbf{v}|=$
5. $\frac{1}{2}|\mathbf{u} \times \mathbf{v}|=$

$|\mathbf{v}|$

A nice online java applet for the cross product can be found here:
http://www.phy.syr.edu/courses/java-suite/crosspro.html

Volume of the parallelepiped determined by the vectors \mathbf{a}, \mathbf{b}, and \mathbf{c}.

Area of the base $=$
Height $=$
Volume $=$
Volume $=$
$\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$ is called the \qquad
The vectors are in the same plane \qquad) if the scalar triple product \qquad -

The scalar triple product can be written as a determinant:

Let $\mathbf{u}=\langle 2,0,1\rangle, \mathbf{v}=\langle 1,1,1\rangle$ and $\mathbf{w}=\langle 0,2,2\rangle$. Find $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})$.

In physics, the cross product is used to measure \qquad .

Consider a force \mathbf{F} acting on a rigid body at a point given by a position vector \mathbf{r}.
The \qquad (τ) measures the tendency of the body to \qquad about the origin (point P)

$$
\begin{gathered}
\tau= \\
|\tau|=
\end{gathered}
$$

. \quad r

(θ is the angle between the \qquad and \qquad vectors)

