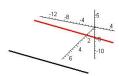
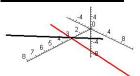

12.5 Equations of Lines and Planes In order to find the equation of a line, we need: A) B) _______ of line L $P_0(x_0, y_0, z_0)$ $r_0 = r$ of the line $r_0 = r$ of the line $r_0 = r$

Find parametric equations of the line containing (5,1,3) and (3,-2,4).


In order to find the equation of a line, we need:

- A)
- B)

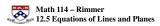

Two lines in 3 space can interact in 3 ways:

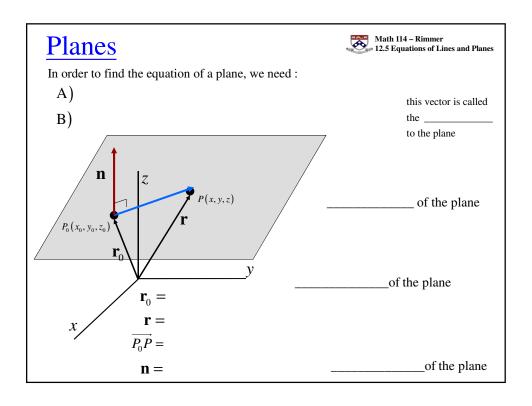
Math 114 – Rimmer 12.5 Equations of Lines and Planes

A) Parallel Lines -

B) Intersecting Lines -

C) Skew Lines -


their direction vectors are $__$ parallel and there is $__$ values of t and s that make the lines share the same point.



Determine whether the lines L_1 and L_2 are parallel, skew or intersecting. If they intersect, find the point of intersection.

$$L_1$$
 L_2 $x = 3 - t$ $x = 8 + 2s$ $y = 5 + 3t$ $y = -6 - 4s$ $z = -1 - 4t$ $z = 5 + s$

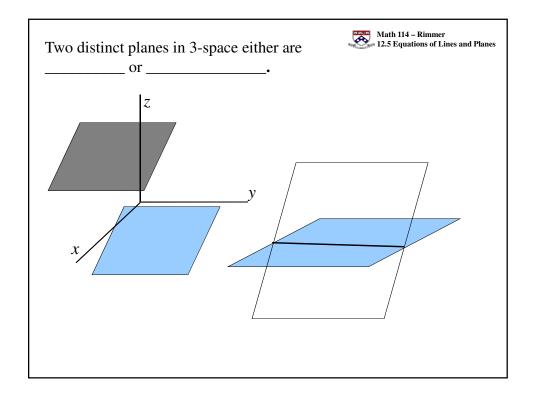
Determine whether the lines L_1 and L_2 are parallel, skew or intersecting. If they intersect, find the point of intersection.

Determine the equation of the plane that contains the lines L_1 and L_2 . Math 114 - Rimmer 12.5 Equations of Lines and Planes

$$x = 8 + 2s$$

In order to find the equation of a plane, we need:

$$y = 5 + 3t$$
 $y = -6 - 4s$ A


$$z = -1 - 4t \qquad z = 5 + s$$

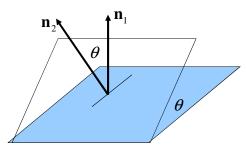
Determine the equation of the plane that passes through (1,2,3),(3,2,1), and (-1,-2,2).

Math 114 – Rimmer 12.5 Equations of Lines and Planes

In order to find the equation of a plane, we need : A) a point on the plane

B) a vector that is orthogonal to the plane $\mathbf{n} = \langle a, b, c \rangle$

Find the line of intersection of the two planes


$$x-2y+z=0$$
$$2x+3y-2z=0$$

If two planes intersect, then you can determine the angle between them.

∠ between ____ = ∠ between ____

 $\cos\theta =$

Find the angle between the planes

$$x - 2y + z = 0$$

$$2x + 3y - 2z = 0$$

Distance between a point and a plane:

Math 114 – Rimmer 12.5 Equations of Lines and Planes

$$D =$$

