12.5 Equations of Lines and Planes

In order to find the equation of a line, we need :
A)
B)
\qquad of line L

\qquad of the line L
\qquad of the line L

0 Math 114 - Rimmer 12.5 Equations of Lines and Planes

Find parametric equations of the line containing $(5,1,3)$ and $(3,-2,4)$. In order to find the equation of a line, we need :
A)
B)

Two lines in 3 space can interact in 3 ways:
A) Parallel Lines -

B) Intersecting Lines -

C) Skew Lines -
their direction vectors are \qquad parallel and there is \qquad values of t and s that make the
 lines share the same point.

Determine whether the lines L_{1} and L_{2} are parallel, skew
or intersecting. If they intersect, find the point of intersection.
L_{1}
$x=3-t \quad x=8+2 s$
$y=5+3 t \quad y=-6-4 s$
$z=-1-4 t \quad z=5+s$

Determine whether the lines L_{1} and L_{2} are parallel, skew or intersecting. If they intersect, find the point of intersection.

$$
\begin{array}{ll}
L_{1} & L_{2} \\
x & =4+t \\
y & =-8-2 t \\
y & =3+2 s \\
z & =-1+s \\
z & z t
\end{array}
$$

Planes

In order to find the equation of a plane, we need :
A)
B)

Determine the equation of the plane that contains the lines L_{1} and L_{2}. Math $\mathbf{1 1 4}$ - Rimmer

B)

Determine the equation of the plane that passes through $(1,2,3),(3,2,1)$, and $(-1,-2,2)$.
$P \quad Q \quad R$

Math 114 - Rimmer

 12.5 Equations of Lines and PlanesIn order to find the equation of a plane, we need : A) a point on the plane
B) a vector that is orthogonal to the plane
$\mathbf{n}=\langle a, b, c\rangle$

Two distinct planes in 3-space either are
\qquad or \qquad .

Find the line of intersection of the two planes
$x-2 y+z=0$
$2 x+3 y-2 z=0$

If two planes intersect, then you can determine the angle between them.
\measuredangle between \qquad $=\measuredangle$ between \qquad
$\cos \theta=$

Find the angle between the planes
$x-2 y+z=0$
$2 x+3 y-2 z=0$

Distance between a point and a plane:
Math 114 - Rimmer 12.5 Equations of Lines and Planes $D=$

