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1. Poisson processes and rate constants

The object of these problems is to relate the rate constants appearing in the simplest
epidemic model we’ve discussed to hypotheses about how people develop and recover from
diseases.

As in the notes, let S(t), I(t) andR(t) be the proportion of the total population consisting
of susceptibles, infected individuals and individuals who have been removed. Then

S(t) + I(t) +R(t) = 1

and S(t) and I(t) satisfy differential equations

(1.1)
dS

dt
= −αS · I and

dI

dt
= αSI − δ2I

for some constants α, δ2 ≥ 0. The term αSI represents the increase in the infected popu-
lation resulting from contact with susceptibles, while the term δ2I represents the rate at
which infected individual are becoming removed due to recovery or passing away.

Problem 1 If α = 0, then (1.1) gives
dI

dt
= −δ2I.

This corresponds to infected individuals not being contagious but becoming removed
at a rate δ2. Explain why the solution

(1.2) I(t) = I(0)e−δ2t

in this case can be interpreted as saying that the odds that a person who is infected
at time 0 will still be infected at time t are equal to e−δ2t. Recall that if X is a
Poisson random variable associated to a process which produces events at a rate of
δ2 events per unit time, the probability of observing j events in time t is

(1.3) Prob(X = j) = e−δ2t
(δ2t)

j

j!
.

Explain, using j = 0 in (1.3), why the formula (1.2) makes sense if we imagine that
removal events happen to an infected person according to a Poisson process at the
rate of δ2 per unit time, and the first removal event leads to an infected person
becoming removed.

Problem 2 Problem #1 explains that δ2 is the rate per unit time associated to a Poisson
process X which represents the number of removal events which occur in time t to
an infected person. Let Y be the random variable giving the first time a removal
event occurs. Explain why

Prob(Y > t) = Prob(X = 0) = e−δ2t.
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We are assuming that events occur at a certain rate per unit time. Explain why
this implies Prob(Y = t) = 0 using that the one point set {t} represents a time
interval of length 0. So

Prob(Y ≥ t) = Prob(Y > t) = e−δ2t =

∫ ∞
t

fY (r)dr

when fY (r) is the density function of Y . Show that this implies

δ2 · e−δ2t = fY (t).

Such Y are called exponentially distributed random variables with parameter δ2.
Show that the expected value T = E(Y ) of Y is 1/δ2 using integration by parts.
Finally explain why this means that

(1.4) δ2 = 1/T

when T is the expected value of the time it takes for an infected person to be
removed.

Problem 3 Suppose now that δ2 = 0 in the model (1.1), so that (1.1) gives

(1.5)
dS

dt
= −αSI and

dI

dt
= αSI.

and assume α > 0. Let T be as in problem 2 the expected time it takes for an
infected person to be removed. An extra credit problem below is to show that if
ε > 0 is an arbitrary small positive constant, there is a positive constant δ > 0
depending on ε such that if S(0) > 1− δ then

(1.6) 1 ≥ S(0) ≥ S(t) ≥ S(T ) ≥ 1− ε for 0 ≤ t ≤ T.

Show, using (1.5) and (1.6) and S(t) + I(t) +R(t) = 1, that

(1.7) (1− ε) · α ≤ 1

I
· dI
dt

=
d ln(I)

dt
≤ α for 0 ≤ t ≤ T.

Deduce from this that if S(0) > 1− δ then

(1.8) e(1−ε)αtI(0) ≤ I(t) ≤ eαtI(0) for 0 ≤ t ≤ T.

Problem 4 Show that (1.8) is compatible with the following model for how new infections
occur. Suppose that the initially susceptible population S(0) is very nearly the
entire population, i.e. S(0) > 1 − δ, and that I(0) > 0 so that I(0) ≤ δ since
S(0)+I(0) = 1−R(0) ≤ 1. Suppose δ2 = 0, so that we consider only new infections.
In each small time interval ∆, contact between an infected person and the entire
susceptible population has a probability of α∆ of producing a new infection. If ∆
is small enough, at most one new infection of this kind is produced in each time
interval. What happens in different time intervals does not depend on what happens
in other time intervals. Show that (1.8) is consistent with this model. Namely, let
∆→ 0, and explain why the limit

(1.9) lim
m→∞

I(0) · (1 + α · t
m

)m

should be I(t). Then evaluate

(1.10) lim
m→∞

m · ln(1 + α · t
m

)
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using L’Hopital’s rule and explain why (1.9) is consistent with (1.8) as we let ε→ 0+.
Explain why this leads to interpreting α as the rate per unit time that an infected
person produces new infections when almost everyone is susceptible and we ignore
recoveries from an infection.

Comment: The constant δ2/α = 1/(αT ) is the reciprocal of the number of new
infections an infected person is expected to produce over time interval T in a pop-
ulation which is almost entirely susceptible. The notes show that when

S(0) > 1/(αT )

and I(0) is near 0, the number if infections initially rises, corresponding to an
epidemic. On the other hand, if

S(0) < 1/(αT )

and I(0) is near 0, I(t) decreases monotonically to 0. Thus 1/(αT ) represents the
maximal fraction of the total population which can be susceptible if herd immunity
is to occur. Suppose, for example, that 20% of the population of New York City
has antibodies demonstrating that they are no longer susceptible to covid-19. Then
S(0) = 0.80 = 1/(1.25), so herd immunity occurs in this case when the number of
new infections produced over the time T it takes a person to recover or pass away
is αT = 1.25. Without social distancing, earlier estimates had αT ≥ 2.5. So to
achieve herd immunity when S(0) = 0.80, one must practice at least enough social
distancing to cut by a factor of 2 the number of new infections produced per infected
person.

Problem 5 (Extra Credit!) This problem has to do with showing (1.6). Assume as in problem
3 that α > 0, δ2 = 0 and I(0) > 0. Use (1.1) to show

I(0) ≤ I(t) ≤ I(T ) ≤ I(0)eαT for 0 ≤ t ≤ T.

Deduce from this that

(1.11) 0 ≥ dS

dt
(t) ≥ −αSI(0)eαT for 0 ≤ t ≤ T.

and then that

(1.12) S(0) ≥ S(t) ≥ S(T ) ≥ S(0)e−TαI(0)e
αT

for 0 ≤ t ≤ T.

Suppose ε > 0 is an arbitrary small positive constant. Show that there is a suffi-
ciently small positive constant δ, depending on ε, such that if S(0) ≥ 1 − δ then
0 < I(0) ≤ δ and

(1.13) 1 ≥ (1− δ) · e−TαI(0)eαT ≥ 1− ε.

Then use (1.12) and (1.13) to show (1.6).

2. Equilibria for a model in which removed individuals can become
susceptible again

In this section we’ll work out the linear stabilitiy analysis for the equilibria associated
to a variation on the model in the notes. The variation has the following diagram:
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In this model, people who have become removed, e.g. by recovering from an infection,
return to being susceptible at a certain rate δ4. This model is important to consider, since
there is some evidence that people who have recovered from covid-19 and acquired some
immunity as a result can lose that immunity over time. We will assume that α, δ2 and δ4
are all positive.

The differential equations are

(2.14)
dS

dt
= −αSI + δ4R

(2.15)
dI

dt
= αSI − δ2I

(2.16)
dR

dt
= δ2I − δ4R

Problem 6 Show that S + I + R does not vary with time. We will normalize this sum so
S(t) + I(t) + R(t) = 1, corresponding as before to these functions representing the
proportion of the total population which is susceptible, infected and removed.

Problem 7 To simplify the calculations, recall from problem #2 that δ2 can be interpreted as
1/T when T is the expected time it takes for an infected person to become removed.
Let’s choose our unit of time so that T = 1, leading to δ2 = 1. Use Problem #6 to
show that S(t) and I(t) now satisfy the system of differential equations

(2.17)
dS

dt
= −αSI + δ4(1− S − I) = G1(S, I)

(2.18)
dI

dt
= αSI − I = G2(S, I)

Find all values for (S(0), I(0)) which are physically meaningful equilibria of this
system. Recall that we are assuming α > 0 and δ4 > 0. The equilibria should be
physically meaningful in the sense that S(0), I(0) and R(0) = 1−S(0)− I(0) all lie
in the interval [0, 1] because they represent non-negative proportions of the entire
population.
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Problem 7 Calculate the value of the Jacobian matrix

(2.19) Jac(G) =

 ∂G1
∂S

∂G1
∂I

∂G2
∂S

∂G2
∂I


at each of the equilibria you found in Problem # 6.

Problem 8 Use problem #7 to determine for each of the equilibria you found in Problem #
6, which values of α and δ4 indicate that the equilibrium is linearly stable. You
can use the fact that a two-by-two matrix with real entries has eigenvalues with
negative real parts if and only if it has a positive determinant and a negative trace.
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