
MATH 620: HOMEWORK #1

1. Review of some algebra

There problems review some ideas from first year graduate algebra.

1. Suppose R is a commutative ring. Show that the polynomial ring R[X] is a principal ideal
domain if and only if R is a field.

2. If R is a Noetherian ring, is every subring of R Noetherian? Prove this, or give a counterex-
ample.

3. Suppose R is a Noetherian integral domain with fraction field K. A fractional ideal of R
is defined to be a non-zero finitely generated R-submodule of K. The generic rank of an
R-module M is defined to be the dimension over K of the K vector space K ⊗R M . The
torsion of M is the kernel of the homomorphism M → K ⊗RM defined by α→ 1⊗ α.
3a. Show that the fractional ideals of R have the form x−1I for some x ∈ R − {0} and

some non-zero ideal I ⊂ R.
3b. Show that a finitely generated R-module M has torsion {0} and rank 1 if and only if

M is isomorphic to a fractional ideal. Is this true if we drop the condition that M be
finitely generated as an R-module?

2. Integral elements

4. Suppose R is a possibly non-commutative ring. Suppose A is a subring of the center of R,
so that every element of A commutes with every element of R. One can then say that x ∈ R
is integral over A if there is an integer n ≥ 1 and ai ∈ A such that

xn + an−1x
n−1 + . . .+ a0 = 0.

4a. Show that if R is finitely generated as an A-module, every x ∈ R is integral over A.
(Hint: Review the proof when R is commutative.)

4b. Show that if x ∈ R is integral over A, then uxu−1 is also integral for all units u ∈ R∗.
4c. Must it be the case that the set R′ of x ∈ R which are integral over A forms a subring

of R? Prove this or give a counterexample.

5. Suppose A is an integral domain which is integrally closed in its fraction field K in the
sense that A is its own integral closure in K. Suppose q ∈ A is not a square in K, so that
L = K(

√
q) = K +K

√
q is a quadratic extension of K. Describe the conditions on r, s ∈ K

which are necessary and sufficient for α = r+ s
√
q ∈ L to be in the integral closure A′ of A

in L. Check that this gives the description discussed in class of the ring A′ = OL of integers
of L = Q(

√
q) when A = Z.

3. Transcendence

This problem has to do with a counterpart for Laurent series of Liouville’s Theorem. Recall that
the classical version of Liouville’s theorem is:

Theorem 3.1. Suppose α ∈ R is an algebraic number of degree ≤ n, in the sense that

(3.1) αn + an−1α
n−1 + · · ·+ a0 = 0
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for some integer n ≥ 1 and some rationals ai ∈ Q. Then for all constants c, ε > 0, there are only
finitely many rationals p

q with p, q ∈ Z and q 6= 0 such that

(3.2) |α− p

q
| < c

qn+ε

The proof of this Theorem proceeds by first clearing the denominators of the ai in (3.1) to
produce a polynomial

(3.3) F (x) = bnx
n + bn−1x

n−1 + · · ·+ b0

with integer coefficients bi such that bn 6= 0 and F (α) = 0. If p
q is a rational number which is not

one of the (finitely many) roots of F (x), we get the estimate

(3.4) |F (
p

q
)| = |bn(

p

q
)n + · · · b0| =

|bnpn + bn−1p
n−1q + · · ·+ b0q

n|
qn

≥ 1
qn

since bnpn + bn−1p
n−1q + · · · + b0q

n is a non-zero integer. On the other hand, if |pq − α| ≤ c, we
have from the Mean Value Theorem that there is a number λ between α and p

q such that

(3.5) |F (
p

q
)| = |F (

p

q
)− F (α)| = |F ′(λ)| · |p

q
− α| ≤M |p

q
− α|

where
M = sup{|F ′(λ)| : α− c ≤ λ ≤ α+ c}.

Combining (3.4) and (3.5) gives

|p
q
− α| ≥ 1

M · qn
if |p

q
− α| ≤ c

and this leads to the conclusion of Liouville’s Theorem, since M depends only on F (x), α and c.
We now develop a counterpart of Liouville’s Theorem for the field k((x)) of formal Laurent series

in one variable over a field k. Recall that k((x)) is the field of all formal series

(3.6) f(x) =
∞∑
n=N

anx
n

in which N is a (possibly negative) integer, the an are in k, and addition and multiplication are
done formally. The set all such f(x) for which N ≥ 0 forms the power series ring k[[x]]. (You should
think through why k((x)) is a field which contains the field k(x) of all rational functions in x over
k.)

6. Suppose r is a real number and 0 < r < 1. Define a function | | : k((x)) → R by setting
|0| = 0 and by letting

|f(x)| = rN

when f(x) is as in (3.6) and aN 6= 0. Show this is a non-archimedean norm, in the sense
that for all f(x), g(x) ∈ k((x)),
6a. |f(x) · g(x)| = |f(x)| · |g(x)|
6b. |f(x) + g(x)| ≤ max(|f(x)|, |g(x)|)

7. Observe that k(x) is the same as the field k(x−1) of rational functions in x−1. In the
arguments in later parts of this problem, the ring k[x−1] plays the same role relative to the
field k((x)) as Z does relative to R in the classical version of Liouville’s Theorem. To begin
with, show that if 0 6= f(x) ∈ k[x−1] then |f(x)| ≥ 1.

8. The counterpart of Liouville’s Theorem we will prove is the following. Suppose that u =
u(x) ∈ k((x)) is algebraic over k(x) of degree ≤ N , in the sense that it satisfies an equation

(3.7) uN + aN−1u
N−1 + · · ·+ a0 = 0

for some integer N ≥ 1 and some rational functions ai = ai(x) ∈ k(x) ⊂ k((x)).
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Theorem 3.2. For all constants c, ε > 0 there is a constant δ = δ(c, ε, u) > 0 depending
on c, ε and u for which the following is true. If p, q ∈ k[x−1], q 6= 0 and

(3.8) |u− p

q
| ≤ c

|q|N+ε

then |q| ≤ δ.

Assuming this result for the moment, use it to prove that u(x) =
∑∞
n=0 x

n! is an element
of k((x)) which is transcendental over k(x) = k(x−1). Can one say strengthen the Theorem
to say that there are only finitely many p

q for which (3.8) holds?

9. As a first step toward proving Theorem 3.2, write each ai = ai(x) as a ratio of si/ri of
elements si, ri ∈ k[x−1]. Show that u is a root of a polynomial

F (X) = bNX
N + · · ·+ b0

in which the bi are in k[x−1] and bN 6= 0. Now adjust the classical proof of Liouville’s
theorem using the properties of | | shown in problem # 6. The key step is to prove that
there is a real number M which depends only on |u|, c, N and on the bi such that

(3.9) |F (
p

q
)| = |F (

p

q
)− F (u)| ≤M · |p

q
− u|

if |pq − u| ≤ c and p, q ∈ k[x−1]. To prove this bound, expand

F (
p

q
)− F (u) =

N∑
i=0

bi((
p

q
)i − ui)

using the binomial theorem and apply problem # 6.


