## MATH 620: HOMEWORK \#1

## 1. Review of some algebra

There problems review some ideas from first year graduate algebra.

1. Suppose $R$ is a commutative ring. Show that the polynomial ring $R[X]$ is a principal ideal domain if and only if $R$ is a field.
2. If $R$ is a Noetherian ring, is every subring of $R$ Noetherian? Prove this, or give a counterexample.
3. Suppose $R$ is a Noetherian integral domain with fraction field $K$. A fractional ideal of $R$ is defined to be a non-zero finitely generated $R$-submodule of $K$. The generic rank of an $R$-module $M$ is defined to be the dimension over $K$ of the $K$ vector space $K \otimes_{R} M$. The torsion of $M$ is the kernel of the homomorphism $M \rightarrow K \otimes_{R} M$ defined by $\alpha \rightarrow 1 \otimes \alpha$.
3a. Show that the fractional ideals of $R$ have the form $x^{-1} I$ for some $x \in R-\{0\}$ and some non-zero ideal $I \subset R$.
3b. Show that a finitely generated $R$-module $M$ has torsion $\{0\}$ and rank 1 if and only if $M$ is isomorphic to a fractional ideal. Is this true if we drop the condition that $M$ be finitely generated as an $R$-module?

## 2. Integral elements

4. Suppose $R$ is a possibly non-commutative ring. Suppose $A$ is a subring of the center of $R$, so that every element of $A$ commutes with every element of $R$. One can then say that $x \in R$ is integral over $A$ if there is an integer $n \geq 1$ and $a_{i} \in A$ such that

$$
x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}=0
$$

4a. Show that if $R$ is finitely generated as an $A$-module, every $x \in R$ is integral over $A$. (Hint: Review the proof when $R$ is commutative.)
4b. Show that if $x \in R$ is integral over $A$, then $u x u^{-1}$ is also integral for all units $u \in R^{*}$.
4c. Must it be the case that the set $R^{\prime}$ of $x \in R$ which are integral over $A$ forms a subring of $R$ ? Prove this or give a counterexample.
5. Suppose $A$ is an integral domain which is integrally closed in its fraction field $K$ in the sense that $A$ is its own integral closure in $K$. Suppose $q \in A$ is not a square in $K$, so that $L=K(\sqrt{q})=K+K \sqrt{q}$ is a quadratic extension of $K$. Describe the conditions on $r, s \in K$ which are necessary and sufficient for $\alpha=r+s \sqrt{q} \in L$ to be in the integral closure $A^{\prime}$ of $A$ in $L$. Check that this gives the description discussed in class of the ring $A^{\prime}=O_{L}$ of integers of $L=\mathbb{Q}(\sqrt{q})$ when $A=\mathbb{Z}$.

## 3. Transcendence

This problem has to do with a counterpart for Laurent series of Liouville's Theorem. Recall that the classical version of Liouville's theorem is:

Theorem 3.1. Suppose $\alpha \in \mathbb{R}$ is an algebraic number of degree $\leq n$, in the sense that

$$
\begin{equation*}
\alpha^{n}+a_{n-1} \alpha^{n-1}+\cdots+a_{0}=0 \tag{3.1}
\end{equation*}
$$

for some integer $n \geq 1$ and some rationals $a_{i} \in \mathbb{Q}$. Then for all constants $c, \epsilon>0$, there are only finitely many rationals $\frac{p}{q}$ with $p, q \in \mathbb{Z}$ and $q \neq 0$ such that

$$
\begin{equation*}
\left|\alpha-\frac{p}{q}\right|<\frac{c}{q^{n+\epsilon}} \tag{3.2}
\end{equation*}
$$

The proof of this Theorem proceeds by first clearing the denominators of the $a_{i}$ in (3.1) to produce a polynomial

$$
\begin{equation*}
F(x)=b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{0} \tag{3.3}
\end{equation*}
$$

with integer coefficients $b_{i}$ such that $b_{n} \neq 0$ and $F(\alpha)=0$. If $\frac{p}{q}$ is a rational number which is not one of the (finitely many) roots of $F(x)$, we get the estimate

$$
\begin{equation*}
\left|F\left(\frac{p}{q}\right)\right|=\left|b_{n}\left(\frac{p}{q}\right)^{n}+\cdots b_{0}\right|=\frac{\left|b_{n} p^{n}+b_{n-1} p^{n-1} q+\cdots+b_{0} q^{n}\right|}{q^{n}} \geq \frac{1}{q^{n}} \tag{3.4}
\end{equation*}
$$

since $b_{n} p^{n}+b_{n-1} p^{n-1} q+\cdots+b_{0} q^{n}$ is a non-zero integer. On the other hand, if $\left|\frac{p}{q}-\alpha\right| \leq c$, we have from the Mean Value Theorem that there is a number $\lambda$ between $\alpha$ and $\frac{p}{q}$ such that

$$
\begin{equation*}
\left|F\left(\frac{p}{q}\right)\right|=\left|F\left(\frac{p}{q}\right)-F(\alpha)\right|=\left|F^{\prime}(\lambda)\right| \cdot\left|\frac{p}{q}-\alpha\right| \leq M\left|\frac{p}{q}-\alpha\right| \tag{3.5}
\end{equation*}
$$

where

$$
M=\sup \left\{\left|F^{\prime}(\lambda)\right|: \alpha-c \leq \lambda \leq \alpha+c\right\}
$$

Combining (3.4) and (3.5) gives

$$
\left|\frac{p}{q}-\alpha\right| \geq \frac{1}{M \cdot q^{n}} \quad \text { if } \quad\left|\frac{p}{q}-\alpha\right| \leq c
$$

and this leads to the conclusion of Liouville's Theorem, since $M$ depends only on $F(x), \alpha$ and $c$.
We now develop a counterpart of Liouville's Theorem for the field $k((x))$ of formal Laurent series in one variable over a field $k$. Recall that $k((x))$ is the field of all formal series

$$
\begin{equation*}
f(x)=\sum_{n=N}^{\infty} a_{n} x^{n} \tag{3.6}
\end{equation*}
$$

in which $N$ is a (possibly negative) integer, the $a_{n}$ are in $k$, and addition and multiplication are done formally. The set all such $f(x)$ for which $N \geq 0$ forms the power series ring $k[[x]]$. (You should think through why $k((x))$ is a field which contains the field $k(x)$ of all rational functions in $x$ over k.)
6. Suppose $r$ is a real number and $0<r<1$. Define a function $\|: k((x)) \rightarrow \mathbb{R}$ by setting $|0|=0$ and by letting

$$
|f(x)|=r^{N}
$$

when $f(x)$ is as in (3.6) and $a_{N} \neq 0$. Show this is a non-archimedean norm, in the sense that for all $f(x), g(x) \in k((x))$,
6a. $|f(x) \cdot g(x)|=|f(x)| \cdot|g(x)|$
6b. $|f(x)+g(x)| \leq \max (|f(x)|,|g(x)|)$
7. Observe that $k(x)$ is the same as the field $k\left(x^{-1}\right)$ of rational functions in $x^{-1}$. In the arguments in later parts of this problem, the ring $k\left[x^{-1}\right]$ plays the same role relative to the field $k((x))$ as $\mathbb{Z}$ does relative to $\mathbb{R}$ in the classical version of Liouville's Theorem. To begin with, show that if $0 \neq f(x) \in k\left[x^{-1}\right]$ then $|f(x)| \geq 1$.
8. The counterpart of Liouville's Theorem we will prove is the following. Suppose that $u=$ $u(x) \in k((x))$ is algebraic over $k(x)$ of degree $\leq N$, in the sense that it satisfies an equation

$$
u^{N}+a_{N-1} u^{N-1}+\cdots+a_{0}=0
$$

for some integer $N \geq 1$ and some rational functions $a_{i}=a_{i}(x) \in k(x) \subset k((x))$.

Theorem 3.2. For all constants $c, \epsilon>0$ there is a constant $\delta=\delta(c, \epsilon, u)>0$ depending on $c, \epsilon$ and $u$ for which the following is true. If $p, q \in k\left[x^{-1}\right], q \neq 0$ and

$$
\left|u-\frac{p}{q}\right| \leq \frac{c}{|q|^{N+\epsilon}}
$$

then $|q| \leq \delta$.
Assuming this result for the moment, use it to prove that $u(x)=\sum_{n=0}^{\infty} x^{n!}$ is an element of $k((x))$ which is transcendental over $k(x)=k\left(x^{-1}\right)$. Can one say strengthen the Theorem to say that there are only finitely many $\frac{p}{q}$ for which (3.8) holds?
9. As a first step toward proving Theorem 3.2, write each $a_{i}=a_{i}(x)$ as a ratio of $s_{i} / r_{i}$ of elements $s_{i}, r_{i} \in k\left[x^{-1}\right]$. Show that $u$ is a root of a polynomial

$$
F(X)=b_{N} X^{N}+\cdots+b_{0}
$$

in which the $b_{i}$ are in $k\left[x^{-1}\right]$ and $b_{N} \neq 0$. Now adjust the classical proof of Liouville's theorem using the properties of $|\mid$ shown in problem $\# 6$. The key step is to prove that there is a real number $M$ which depends only on $|u|, c, N$ and on the $b_{i}$ such that

$$
\left|F\left(\frac{p}{q}\right)\right|=\left|F\left(\frac{p}{q}\right)-F(u)\right| \leq M \cdot\left|\frac{p}{q}-u\right|
$$

if $\left|\frac{p}{q}-u\right| \leq c$ and $p, q \in k\left[x^{-1}\right]$. To prove this bound, expand

$$
F\left(\frac{p}{q}\right)-F(u)=\sum_{i=0}^{N} b_{i}\left(\left(\frac{p}{q}\right)^{i}-u^{i}\right)
$$

using the binomial theorem and apply problem $\# 6$.

