MATH 620: HOMEWORK #1

1. REVIEW OF SOME ALGEBRA

There problems review some ideas from first year graduate algebra.

1.

Suppose R is a commutative ring. Show that the polynomial ring R[X] is a principal ideal
domain if and only if R is a field.

. If R is a Noetherian ring, is every subring of R Noetherian? Prove this, or give a counterex-

ample.

Suppose R is a Noetherian integral domain with fraction field K. A fractional ideal of R

is defined to be a non-zero finitely generated R-submodule of K. The generic rank of an

R-module M is defined to be the dimension over K of the K vector space K ®p M. The

torsion of M is the kernel of the homomorphism M — K ® g M defined by a — 1 ® a.

3a. Show that the fractional ideals of R have the form z~'I for some z € R — {0} and
some non-zero ideal I C R.

3b. Show that a finitely generated R-module M has torsion {0} and rank 1 if and only if
M 1is isomorphic to a fractional ideal. Is this true if we drop the condition that M be
finitely generated as an R-module?

2. INTEGRAL ELEMENTS

. Suppose R is a possibly non-commutative ring. Suppose A is a subring of the center of R,

so that every element of A commutes with every element of R. One can then say that z € R
is integral over A if there is an integer n > 1 and a; € A such that

"+ ap 12" 4. +ag=0.

4a. Show that if R is finitely generated as an A-module, every x € R is integral over A.
(Hint: Review the proof when R is commutative.)

4b. Show that if 2 € R is integral over A, then uzu~! is also integral for all units u € R*.

4c. Must it be the case that the set R’ of € R which are integral over A forms a subring
of R? Prove this or give a counterexample.

Suppose A is an integral domain which is integrally closed in its fraction field K in the
sense that A is its own integral closure in K. Suppose ¢ € A is not a square in K, so that
L = K(\/q) = K+ K,/q is a quadratic extension of K. Describe the conditions on r,s € K
which are necessary and sufficient for a = r +s,/q € L to be in the integral closure A" of A
in L. Check that this gives the description discussed in class of the ring A’ = O, of integers
of L = Q(,/q) when A = Z.

3. TRANSCENDENCE

This problem has to do with a counterpart for Laurent series of Liouville’s Theorem. Recall that
the classical version of Liouville’s theorem is:

Theorem 3.1. Suppose o € R is an algebraic number of degree < n, in the sense that

(3.1)

an,+an_1an,—1+_._+a020
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for some integer n > 1 and some rationals a; € Q. Then for all constants c,e > 0, there are only
finitely many rationals % with p,q € Z and q # 0 such that

(3.2)

C

p
lov — 5| < e

The proof of this Theorem proceeds by first clearing the denominators of the a; in (3.1) to
produce a polynomial

(3.3)

F(x) = bpa"™ + by 12" L 4+ b

with integer coefficients b; such that b, # 0 and F(a) = 0. If £ is a rational number which is not

one of the (finitely many) roots of F(z), we get the estimate

(3.4)

P P |bnp™ + by—1p" rqg+ -+ bog™| 1
[F'(=)] = [bn(=)" + -+ bo| = - > —
q q q q

since b,p™ + bp_1p" " 'q + .- + bog™ is a non-zero integer. On the other hand, if |§ —a] < ¢, we
have from the Mean Value Theorem that there is a number A between o and g such that

(3.5)

where

Py 5Py — () = 1] 12 — ol < MIP —
IF(a)I—IF(q) Fla)| = [F'(M)] Iq \SMlq |

M =sup{|F'(N)] : a—c< A< a+c}.

Combining (3.4) and (3.5) gives

2 _q> if |2-al<e
q q

M - g

and this leads to the conclusion of Liouville’s Theorem, since M depends only on F(x), a and c.
We now develop a counterpart of Liouville’s Theorem for the field k((x)) of formal Laurent series
in one variable over a field k. Recall that k((x)) is the field of all formal series

(3.6)

flz) = Z anx”
n=N

in which N is a (possibly negative) integer, the a,, are in k, and addition and multiplication are
done formally. The set all such f(x) for which N > 0 forms the power series ring k[[z]]. (You should
think through why k((z)) is a field which contains the field k(z) of all rational functions in = over

k.)

6. Suppose r is a real number and 0 < r < 1. Define a function | | : k((x)) — R by setting

(3.7)

|0] = 0 and by letting
|f()| ="
when f(z) is as in (3.6) and ay # 0. Show this is a non-archimedean norm, in the sense
that for all f(z),g(z) € k((z)),
6a. |f(z)-g(x)| = [f(2)] - [g(x)]
6b. [f(z) + g(z)| < max(|f(z)],|g(=)])

Observe that k(z) is the same as the field k(z~!) of rational functions in 7. In the
arguments in later parts of this problem, the ring k[z~!] plays the same role relative to the
field k((z)) as Z does relative to R in the classical version of Liouville’s Theorem. To begin
with, show that if 0 # f(z) € k[x~!] then |f(z)| > 1.

. The counterpart of Liouville’s Theorem we will prove is the following. Suppose that v =

u(z) € k((z)) is algebraic over k(x) of degree < N, in the sense that it satisfies an equation
uN+aN_1uN*1+~~~+a0:0

for some integer N > 1 and some rational functions a; = a;(z) € k(z) C k((z)).
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Theorem 3.2. For all constants c,e > 0 there is a constant § = 6(c,e,u) > 0 depending
on c,e and u for which the following is true. If p,q € k[z™], ¢ # 0 and

c
|q|N+e

u—2| <
q

then |q| < 6.

Assuming this result for the moment, use it to prove that u(z) = 377 2™ is an element
of k((z)) which is transcendental over k(z) = k(z~1). Can one say strengthen the Theorem
to say that there are only finitely many % for which (3.8) holds?

. As a first step toward proving Theorem 3.2, write each a; = a;(z) as a ratio of s;/r; of

elements s;,r; € k[z71]. Show that u is a root of a polynomial
F(X)=byXN 4. 4

in which the b; are in k[z~!] and by # 0. Now adjust the classical proof of Liouville’s
theorem using the properties of | | shown in problem # 6. The key step is to prove that
there is a real number M which depends only on |u|, ¢, N and on the b; such that

p p p
F=5)|=|F(=)—Fu)|<M-|-—-u
| (q)| | (q) (u)] < |q |

if |§ —u| < cand p,q € klx~]. To prove this bound, expand

N
F<§> — F(u) = Zbi«g)i —u)
1=0

using the binomial theorem and apply problem # 6.



