MATH 620: HOMEWORK \#2

1. An example of Abhyankhar

This problem is about the example of Shreeram Abhyankhar which Rachel Preis discussed in the Galois theory seminar on September 16, 2009. Let k be a field of characteristic $p>0$. Let x be an indeterminate, and define $A=k[x]$ and $F=k(x)=\operatorname{Frac}(k[x])$. Suppose s and t are positive integers such that $2 \leq t<p$. Define the polynomial $T(Y) \in F[Y]$ by

$$
T(Y)=Y^{p+t}-x^{s} Y^{t}+1
$$

1. Show that $T(Y)$ is separable.
2. Show that to prove $T(Y)$ is irreducible in $F[Y]$, it is enough to prove it is irreducible in $k[x, Y]$. Then show is it enough to prove that $T(Y)$ is irreducible in $k(Y)[x]$.
3. Let \bar{k} be an algebraic closure of k and let $L=\bar{k}(Y)$. Consider the monic polynomial

$$
H(x)=-Y^{-t} T(Y)=x^{s}-\left(Y^{p}+Y^{-t}\right)
$$

in $L[x]$. Write $s=p^{m} s^{\prime}$ for some integer s^{\prime} prime to p and some $m \geq 0$. Let x_{0} be a root of $H(x)=0$ in algebraic closure \bar{L} of L. Show that field $L\left(x_{0}\right)$ is an inseparable degree p^{m} extension of $L\left(x_{1}\right)$ when $x_{1}=x_{0}^{p^{m}}$. Here x_{1} is a root of the polynomial

$$
x_{1}^{s^{\prime}}-\left(Y^{p}+Y^{-t}\right)
$$

Show that the roots of this polynomial have the form ζx_{1} for some $\zeta \in \bar{k}$ such that $\zeta^{s^{\prime}}=1$. Prove that $L\left(x_{1}\right) / L$ is a Galois extension, and that there is an injective homomorphism of finite cyclic groups $\operatorname{Gal}\left(L\left(x_{1}\right) / L\right) \rightarrow \mu_{s^{\prime}}(\bar{k})$ defined by $\sigma \rightarrow \sigma\left(x_{1}\right) / x_{1}$, where $\mu_{s^{\prime}}(\bar{k})$ is the cyclic group of roots of unity of order dividing s^{\prime} in \bar{k}. (This is an instance of Kummer theory.)
4. Deduce from problem $\# 3$ that if $d=\left[L\left(x_{1}\right): L\right]=\# \operatorname{Gal}\left(L\left(x_{1}\right) / L\right)$ then $x_{1}^{d} \in L$ and $d \mid s^{\prime}$. Show that then $\left(Y^{p}+Y^{-t}\right)$ lies in $\left(L^{*}\right)^{s^{\prime} / d}$, i.e. that $Y^{p}+Y^{-t}$ is a $\left(s^{\prime} / d\right)^{t h}$ power of an element of $L=\bar{k}(Y)$. Show this implies $Y^{p+m s^{\prime}}+Y^{m s^{\prime}-t}$ is then the $\left(s^{\prime} / d\right)^{t h}$ power of an element in $\bar{k}[Y]$ if $m \in \mathbb{Z}$ is sufficiently large. Show that this and g.c.d. $\left(p, s^{\prime}\right)=1$ implies $d=s^{\prime}$. Conclude that in fact, $H(x)$ is irreducible in $L[x]$.
5. Show using problems \# 1-\#4 that $T(Y)=Y^{p+t}-x^{s} Y^{t}+1$ is irreducible in $k(x)[Y]$.
6. Let y_{0} be a root of $T(Y)=0$ in an algebraic closure \bar{F} of $F=k(x)=\operatorname{Frac}(k[x])$. Let A^{\prime} be the integral closure of $A=k[x]$ in the field $N=F\left(y_{0}\right)$. Consider the basis $\left\{\omega_{i}\right\}_{i=0}^{p+t-1}=$ $\left\{y_{0}^{i}\right\}_{i=0}^{p+t-1}$ for N over F and the associated dual basis $\left\{\omega_{j}^{*}\right\}_{j=0}^{p+t-1}$ with respect to the trace $\operatorname{Tr}_{N / F}$. Show that these bases generate the same A-submodule of N. Conclude that A^{\prime} is the ring $A\left[y_{0}\right]$ and that the trace gives a symmetric non-degenerate pairing

$$
\langle,\rangle: A^{\prime} \times A^{\prime} \rightarrow A \quad \text { defined by } \quad\langle\alpha, \beta\rangle=\operatorname{Tr}_{N / F}(\alpha \beta)
$$

which is perfect, in the sense that if gives rise to an isomorphism of A-modules $A^{\prime} \rightarrow$ $\operatorname{Hom}_{A}\left(A^{\prime}, A\right)$ via $\alpha \rightarrow\{\beta \rightarrow\langle\alpha, \beta\rangle\}$.
7. Once we discuss discriminants, show that the discriminant ideal $d_{A^{\prime} / A} \subset A$ of A^{\prime} over A is A itself. This is equivalent to (1.1) being a perfect pairing.

Interpretation in algebraic geometry: The spectrum $\operatorname{Spec}(A)=\operatorname{Spec}(k[x])$ is an affine line \mathbb{A}_{k}^{1}. It is the complement of one point ∞ in the projective line \mathbb{P}_{k}^{1}, and \mathbb{P}_{k}^{1} is the smooth projective curve associated to $k(x)=F$. There is a smooth projective curve C over k with function field N, and the inclusion $F \subset N$ corresponds to a morphism $\pi: C \rightarrow \mathbb{P}_{k}^{1}$. The affine curve $\operatorname{Spec}\left(A^{\prime}\right) \subset C$ is the inverse image of $\operatorname{Spec}(A)=\mathbb{A}_{k}^{1}$ under π. The statement that $d_{A^{\prime} / A}=A$ is equivalent to saying that $\operatorname{Spec}\left(A^{\prime}\right) \rightarrow \operatorname{Spec}(A)$ is étale since N / F is separable. Another way to say this is that $\pi: C \rightarrow \mathbb{P}_{k}^{1}$ is unramified outside of ∞, which is what Rachel said in her talk.

2. IsOmetry classes of trace forms

Suppose V is a finite dimensional vector space over a field and that

$$
\langle,\rangle: V \times V \rightarrow F
$$

is a non-degenerate symmetric pairing. Let $d=\operatorname{dim}_{F}(V)$.
8. Show that there is a basis $\left\{w_{i}\right\}_{i=1}^{d}$ for V over F such that \langle,$\rangle is diagonal with respect$ to this basis, in the sense that $\left\langle w_{i}, w_{j}\right\rangle=0$ if $i \neq j$. (This is a standard result, but it's good to know the proof. Induct on dimension using the orthogonal complement of the space spanned by one non-zero element of V.)
9. Two pairs $(V,\langle\rangle$,$) and \left(V^{\prime},\langle,\rangle^{\prime}\right)$ as above are isometric if there is an F-isomorphism $\psi: V \rightarrow V^{\prime}$ of vector spaces which carries \langle,$\rangle to \langle,\rangle^{\prime}$, in the sense that

$$
\left\langle\psi(m), \psi\left(m_{0}\right)\right\rangle^{\prime}=\left\langle m, m_{0}\right\rangle
$$

for all $m, m_{0} \in V$. Let

$$
d\left(V,\left\{w_{1}, \ldots, w_{d}\right\},\langle,\rangle\right)=\operatorname{det}\left(\left\{\left\langle w_{i}, w_{j}\right\rangle\right\}_{1 \leq i, j \leq d}\right)
$$

be the discriminant of the pairing \langle,$\rangle on V$ relative to a basis $\left\{w_{1}, \ldots, w_{d}\right\}$ of V over F. Show that the class $h_{1}(V,\langle\rangle$,$) of d\left(V,\left\{w_{1}, \ldots, w_{d}\right\},\langle\rangle,\right)$ in the quotient group $F^{*} /\left(F^{*}\right)^{2}$ does not depend on the choice of $\left\{w_{1}, \ldots, w_{d}\right\}$, and is an invariant of the isometry class of $(V,\langle\rangle$,$) .$
10. Suppose F is any field of characteristic not equal to 2 . Let L be a quadratic extension field of F, considered as an F-vector space. Let $\operatorname{Tr}_{L / F}: L \times L \rightarrow F$ be the trace pairing. Show that the isometry class of $\left(L, \operatorname{Tr}_{L / F}\right)$ as a two-dimensional vector space with a quadratic form determines the quadratic extension L / F, in the following sense. If L^{\prime} is another quadratic extension of F and $\left(L, \operatorname{Tr}_{L / F}\right)$ is F-isometric to $\left(L^{\prime}, \operatorname{Tr}_{L^{\prime} / F}\right)$ then there is an isomorphism of fields $L \rightarrow L^{\prime}$ which is the identity on F.
11. Suppose F is a field of characteristic 2 . Is the conclusion of problem $\# 10$ true for separable quadratic extensions L of F ?

Comments: The class $h_{1}(V,\langle\rangle$,$) is called the first Hasse-Witt invariant of (V,\langle\rangle$,$) . There$ is a higher Hasse Witt invariant $h_{i}(V,\langle\rangle$,$) for each integer i \geq 2$. The study of these when $(V,\langle\rangle)=,\left(L, \operatorname{Tr}_{L / \mathbb{Q}}\right)$ for a number field L is an active research area. An excellent book about this is "Cohomological invariants, Witt invariants, and trace forms," by Jean-Pierre Serre, Notes by Skip Garibaldi, Univ. Lecture Ser., 28, Cohomological invariants in Galois cohomology, 1-100, Amer. Math. Soc., Providence, RI, 2003.

3. A COUNTEREXAMPLE TO FINITENESS OF INTEGRAL CLOSURES

The following example is due to Kaplansky. Suppose k is a field of characteristic 2. Let u be an element of the formal power series $k[[x]]$ which is transcendental over $k(x)$. (One can construct u using Liouville's Theorem, as in the first homework assignment! If k is countable, a cheaper but non-explicit construction is to use the fact that $k[[x]]$ is uncountable.) Let F be the subfield $k\left(x, u^{2}\right)$ of $k((x))=\operatorname{Frac}(k[[x]])$ generated over k by x and u^{2}. Since u^{2} is transcendental over $k(x)$, this F is identified with the field of rational functions in the two indeterminates x and u^{2}. Define $L=k(x, u) \subset k((x))$. Let $A=F \cap k[[x]]$ and $B=L \cap k[[x]]$.
12. Show L is a quadratic extension of F, and that if $\alpha \in L$ then $\alpha^{2} \in F$.
13. Show that $k[[x]]$ is integrally closed in its fraction field $k((x))=\operatorname{Frac}(k[[x]])$. Here $k((x))$ is the field of all formal Laurent series of the form $\sum_{n=N}^{\infty} a_{n} x^{n}$ for some $N \in \mathbb{Z}$ and $a_{n} \in k$.
14. Show that B is the integral closure of A in L.
15. Suppose that B is finitely generated as an A-module by elements $\left\{q_{i}\right\}_{i=1}^{n}$. Show that each q_{i} can be written as $a_{i}+b_{i} u$ for a unique pair of elements $a_{i}, b_{i} \in F$. Using the fact that $k(x) \subset k((x))$, show that there is an integer $m \geq 0$ such that $x^{m} a_{i}$ and $x^{m} b_{i}$ lie in $k[[x]]$ for all $i=1, \ldots, n$. Conclude that $x^{m} B \subset A+A u$.
16. Suppose

$$
u=a_{0}+a_{1} x+a_{2} x^{2}+\ldots
$$

is the power series expansion of $u \in k[[x]]$. With m as in Problem \# 15, define

$$
v=\left(u-\left(a_{0}+a_{1} x+\ldots+a_{m} x^{m}\right)\right) x^{-(m+1)} .
$$

Show that $v \in k[[x]]$ and $v \in L$, so $v \in B$.
17. Deduce from problems \#15 and \#16 that $x^{m} v \in A+A u$. Write

$$
x^{m} v=x^{-1}\left(u-\left(a_{0}+a_{1} x+\ldots a_{m} x^{m}\right)\right)=x^{-1} u-x^{-1}\left(a_{0}+\ldots+a_{m} x^{m}\right)
$$

Show this is a contradiction.

