
MATH 620: HOMEWORK #2

1. An example of Abhyankhar

This problem is about the example of Shreeram Abhyankhar which Rachel Preis discussed in the
Galois theory seminar on September 16, 2009. Let k be a field of characteristic p > 0. Let x be
an indeterminate, and define A = k[x] and F = k(x) = Frac(k[x]). Suppose s and t are positive
integers such that 2 ≤ t < p. Define the polynomial T (Y ) ∈ F [Y ] by

T (Y ) = Y p+t − xsY t + 1.

1. Show that T (Y ) is separable.

2. Show that to prove T (Y ) is irreducible in F [Y ], it is enough to prove it is irreducible in
k[x, Y ]. Then show is it enough to prove that T (Y ) is irreducible in k(Y )[x].

3. Let k be an algebraic closure of k and let L = k(Y ). Consider the monic polynomial

H(x) = −Y −tT (Y ) = xs − (Y p + Y −t)

in L[x]. Write s = pms′ for some integer s′ prime to p and some m ≥ 0. Let x0 be a root
of H(x) = 0 in algebraic closure L of L. Show that field L(x0) is an inseparable degree pm

extension of L(x1) when x1 = xpm

0 . Here x1 is a root of the polynomial

xs′

1 − (Y p + Y −t).

Show that the roots of this polynomial have the form ζx1 for some ζ ∈ k such that ζs′
= 1.

Prove that L(x1)/L is a Galois extension, and that there is an injective homomorphism of
finite cyclic groups Gal(L(x1)/L) → µs′(k) defined by σ → σ(x1)/x1, where µs′(k) is the
cyclic group of roots of unity of order dividing s′ in k. (This is an instance of Kummer
theory.)

4. Deduce from problem #3 that if d = [L(x1) : L] = #Gal(L(x1)/L) then xd
1 ∈ L and d|s′.

Show that then (Y p + Y −t) lies in (L∗)s′/d, i.e. that Y p + Y −t is a (s′/d)th power of an
element of L = k(Y ). Show this implies Y p+ms′

+ Y ms′−t is then the (s′/d)th power of an
element in k[Y ] if m ∈ Z is sufficiently large. Show that this and g.c.d.(p, s′) = 1 implies
d = s′. Conclude that in fact, H(x) is irreducible in L[x].

5. Show using problems # 1 - # 4 that T (Y ) = Y p+t − xsY t + 1 is irreducible in k(x)[Y ].

6. Let y0 be a root of T (Y ) = 0 in an algebraic closure F of F = k(x) = Frac(k[x]). Let A′

be the integral closure of A = k[x] in the field N = F (y0). Consider the basis {ωi}p+t−1
i=0 =

{yi
0}

p+t−1
i=0 for N over F and the associated dual basis {ω∗j }

p+t−1
j=0 with respect to the trace

TrN/F . Show that these bases generate the same A-submodule of N . Conclude that A′ is
the ring A[y0] and that the trace gives a symmetric non-degenerate pairing

(1.1) 〈 , 〉 : A′ ×A′ → A defined by 〈α, β〉 = TrN/F (αβ)

which is perfect, in the sense that if gives rise to an isomorphism of A-modules A′ →
HomA(A′, A) via α→ {β → 〈α, β〉}.

7. Once we discuss discriminants, show that the discriminant ideal dA′/A ⊂ A of A′ over A is
A itself. This is equivalent to (1.1) being a perfect pairing.
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Interpretation in algebraic geometry: The spectrum Spec(A) = Spec(k[x]) is an affine
line A1

k. It is the complement of one point∞ in the projective line P1
k, and P1

k is the smooth
projective curve associated to k(x) = F . There is a smooth projective curve C over k with
function field N , and the inclusion F ⊂ N corresponds to a morphism π : C → P1

k. The
affine curve Spec(A′) ⊂ C is the inverse image of Spec(A) = A1

k under π. The statement
that dA′/A = A is equivalent to saying that Spec(A′) → Spec(A) is étale since N/F is
separable. Another way to say this is that π : C → P1

k is unramified outside of ∞, which is
what Rachel said in her talk.

2. Isometry classes of trace forms

Suppose V is a finite dimensional vector space over a field and that

〈 , 〉 : V × V → F

is a non-degenerate symmetric pairing. Let d = dimF (V ).

8. Show that there is a basis {wi}di=1 for V over F such that 〈 , 〉 is diagonal with respect
to this basis, in the sense that 〈wi, wj〉 = 0 if i 6= j. (This is a standard result, but it’s
good to know the proof. Induct on dimension using the orthogonal complement of the space
spanned by one non-zero element of V .)

9. Two pairs (V, 〈 , 〉) and (V ′, 〈 , 〉′) as above are isometric if there is an F -isomorphism
ψ : V → V ′ of vector spaces which carries 〈 , 〉 to 〈 , 〉′, in the sense that

〈ψ(m), ψ(m0)〉′ = 〈m,m0〉

for all m,m0 ∈ V . Let

d(V, {w1, . . . , wd}, 〈 , 〉) = det({〈wi, wj〉}1≤i,j≤d)

be the discriminant of the pairing 〈 , 〉 on V relative to a basis {w1, . . . , wd} of V over F .
Show that the class h1(V, 〈 , 〉) of d(V, {w1, . . . , wd}, 〈 , 〉) in the quotient group F ∗/(F ∗)2

does not depend on the choice of {w1, . . . , wd}, and is an invariant of the isometry class of
(V, 〈 , 〉).

10. Suppose F is any field of characteristic not equal to 2. Let L be a quadratic extension field of
F , considered as an F -vector space. Let TrL/F : L×L→ F be the trace pairing. Show that
the isometry class of (L,TrL/F ) as a two-dimensional vector space with a quadratic form
determines the quadratic extension L/F , in the following sense. If L′ is another quadratic
extension of F and (L,TrL/F ) is F -isometric to (L′,TrL′/F ) then there is an isomorphism
of fields L→ L′ which is the identity on F .

11. Suppose F is a field of characteristic 2. Is the conclusion of problem #10 true for separable
quadratic extensions L of F?

Comments: The class h1(V, 〈 , 〉) is called the first Hasse-Witt invariant of (V, 〈 , 〉). There
is a higher Hasse Witt invariant hi(V, 〈 , 〉) for each integer i ≥ 2. The study of these when
(V, 〈, 〉) = (L,TrL/Q) for a number field L is an active research area. An excellent book
about this is “Cohomological invariants, Witt invariants, and trace forms,” by Jean-Pierre
Serre, Notes by Skip Garibaldi, Univ. Lecture Ser., 28, Cohomological invariants in Galois
cohomology, 1–100, Amer. Math. Soc., Providence, RI, 2003.



MATH 620: HOMEWORK #2 3

3. A counterexample to finiteness of integral closures

The following example is due to Kaplansky. Suppose k is a field of characteristic 2. Let u be
an element of the formal power series k[[x]] which is transcendental over k(x). (One can construct
u using Liouville’s Theorem, as in the first homework assignment! If k is countable, a cheaper
but non-explicit construction is to use the fact that k[[x]] is uncountable.) Let F be the subfield
k(x, u2) of k((x)) = Frac(k[[x]]) generated over k by x and u2. Since u2 is transcendental over k(x),
this F is identified with the field of rational functions in the two indeterminates x and u2. Define
L = k(x, u) ⊂ k((x)). Let A = F ∩ k[[x]] and B = L ∩ k[[x]].

12. Show L is a quadratic extension of F , and that if α ∈ L then α2 ∈ F .

13. Show that k[[x]] is integrally closed in its fraction field k((x)) = Frac(k[[x]]). Here k((x)) is
the field of all formal Laurent series of the form

∑∞
n=N anx

n for some N ∈ Z and an ∈ k.

14. Show that B is the integral closure of A in L.

15. Suppose that B is finitely generated as an A-module by elements {qi}ni=1. Show that each
qi can be written as ai + biu for a unique pair of elements ai, bi ∈ F . Using the fact that
k(x) ⊂ k((x)), show that there is an integer m ≥ 0 such that xmai and xmbi lie in k[[x]] for
all i = 1, . . . , n. Conclude that xmB ⊂ A+Au.

16. Suppose
u = a0 + a1x+ a2x

2 + . . .

is the power series expansion of u ∈ k[[x]]. With m as in Problem # 15, define

v = (u− (a0 + a1x+ . . .+ amx
m))x−(m+1).

Show that v ∈ k[[x]] and v ∈ L, so v ∈ B.

17. Deduce from problems #15 and #16 that xmv ∈ A+Au. Write

xmv = x−1(u− (a0 + a1x+ . . . amx
m)) = x−1u− x−1(a0 + . . .+ amx

m)

Show this is a contradiction.


