
MATH 620: HOMEWORK #4

1. Decomposition of primes in cyclotomic extensions of Q.

Let N > 1 be an integer. This problem has to do with determining how all rational primes q
decompose in the integers OF of the cyclotomic field F = Q(ζN ) when ζN is a root of unity of
order exactly N in an algebraic closure Q of Q. Lang discusses this in the first section of chapter 4
of this book, but he does not give the complete answer. So this problem has to do with deducing
this factorization from scratch as a way of illustrating what we have discussed in class. Write
N =

∏s
i=1 p

ai
i for some distinct primes p1, . . . , ps and some integers ai ≥ 1.

1. Show that ζN =
∏s

i=1 ζpai
i

for some roots of unity ζpai
i

of order exactly pai
i , each of which

is a power of ζN . Conclude that F = Q(ζN ) is the compositum of the fields Fi = Q(ζpai
i

)
inside Q.

2. Fix i and let p = pi and a = ai. In class we gave an argument which shows L = Q(ζpa)
has ring of integers OL = Z[ζpa ] and degree φ(pa) = #(Z/pa)∗ = (p− 1)pa−1 over Q. Show
that the fractional ideal pOL equals P [L:Q] when P = (1 − ζpa)OL, so that pOL is totally
ramified in OL. Show that the discriminant ideal dL/Q is a power of pZ. (With some book
keeping, one can find this power.)

3. With the notations of problem # 2, suppose q is a prime different from p. Let

Φ(x) = 1 + xpa−1
+ x2pa−1

+ · · ·+ x(p−1)pa−1
=

xpa − 1
xpa−1 − 1

be the pa-th cyclotomic polynomial in Z[X]. Let Φ(x) be the image of Φ(x) in (Z/q)[x].
Show that xpa − 1 and Φ(x) are separable in (Z/q)[x]. Let γ be a root of unity of order pa

in an algebraic closure Z/q of Z/q. Show that the extension (Z/q)(γ) generated by such a
γ over Z/q is a finite field Fqf of order qf when qf is the smallest power of q such that pa

divides qf − 1. Use this to prove that Φ(x) factors in (Z/q)[x] as

(1.1) Φ(x) =
r∏

j=1

hj(x)

in which the hj(x) are distinct separable monic irreducible polynomials of degree f and
fr = deg(Φ(x)) = φ(pa). Use this and a result proved in class to show that in the integers
OL = Z[ζpa ] of L = Q[ζpa ], the ideal qOL factors as

(1.2) qOL =
r∏

j=1

Qj

where the Qj are distinct primes of residue degree f over Z/q.
4. Use the previous results and induction on the number of distinct prime factors of N =∏s

i=1 p
ai
i to prove the following statements.

a. The fields Q(ζpi) and Q(ζN/pi) are disjoint Galois extensions of Q, and Q(ζN ) is their
compositum. The ring of integers ON equals Z[ζN ], and the rational primes q which
divide the disciminant of ON over Z are the odd prime divisors of N together with
q = 2 if 4 divides N . (You can use without further comment the results of homework
set 3 in proving this. That homework set suggests considering the ramification of p
in intersection Q(ζpi) ∩Q(ζN/pi) as well as the disjointness of the discriminants of the
rings of integers of the fields Q(ζN/pi) and Q(ζpi). )
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b. Having shown in part (a) that ON = Z[ζN ], now redo the arguments in problem # 3
to show that every prime q which does not divide N ramifies in the following way in
ON :

(1.3) qON =
r∏

j=1

Qj

where the Qj are distinct prime ideals of degree f over Z/q, fr = [N : Q] and qf is
the smallest power of q such that N divides qf − 1.

c. Suppose now that q is a prime divisor of N . Let qa be the highest power of q dividing
N . Show that the factorization of q in ON is determined by the factorization of q in
the integers of Q(ζN/qa), which is specified in problem 4(b), together with the fact that
every prime over q in the integers of Q(ζN/qa) is totally ramified in Q(ζN ). (Notice
that if qa = 2, then ζN = −ζN/qa , so in fact, Q(ζN ) = Q(ζN/qa) in this case.)

d. Show that the prime factorization of every rational prime q in OF when F = Q(ζN )
can be summarized in the following way. One has

(1.4) qOF = (Q1 · · · Qr)e

where each Qj has residue field degree f , and one determines e, f and r as follows. Let
qa be the largest power of q dividing N . Then e = φ(qa), where we define φ(1) = 1.
The integer f is the smallest integer such that N/qa divides qf − 1. Finally

efr = [N : Q] = φ(N).

2. Some Dedekind and non-Dedekind rings.

5. Suppose p is a rational prime. Let L = Q(µp∞) be subfield of an algebraic closure Q of Q
which is generated over Q by all p-power roots of unity. Show that the integral closure OL

of Z inside L is not Noetherian, and is thus not a Dedekind ring.
6. With the notations of problem # 5, show that the ring OL[1/p] which is the localization of
OL at the multiplicitive set S = {(1/p)n : n ∈ Z} of all powers of 1/p is a Dedekind ring.
You can use the results of exercises # 1 - # 4 to analyze how primes q 6= p decompose
in the rings of integers of the fields Q(ζpa) as a varies. You may find it useful to consider
the degrees over Z/q of the fields (Z/p)(γpa) when γpa is a root of unity of order pa in an
algebraic closure of Z/q. You can use without proof the fact that every finite extension k
of Z/q is Galois over Z/q with cyclic Galois group.

3. Teichmuller lifts

Let L be a p-adic local field. Thus L is the completion of a number field F with respect to the
normalized non-archimedean absolute value | |P associated to a non-zero prime ideal P of the ring
of integers OF of F . Let OL be the valuation ring of L, so that

OL = {α ∈ L : |α|P ≤ 1} = lim
←
n

OF /Pn.

The maximal ideal of OL is
mL = {α ∈ L : |α|P < 1}

and the natural homomorphism OF → OL gives rise to an isomorphism of finite fields

OF /P = OL/mL.

Let q be the order of OL/mL = k(OL). The multiplicative group k(OL)∗ is then a cyclic group
of order q − 1, since finite multiplicative subgroups of fields are cyclic. This exercise constructs a
unique homomorphism of multiplicative groups

(3.5) µ : k(OL)∗ → O∗L
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which is called the Teichmuller lifting from the multiplicative group of k(OL) to the group µq(OL)
of roots of unity of order dividing q in O∗L.

7. Let β ∈ k(OL) be the residue class of β ∈ OL. Show that βq−1 = 1. Then use this and the
binomial theorem to show that {βqn}∞n=1 forms a Cauchy sequence in OL with respect to
| |P . Since OL is complete, we can therefore define

µ(β) = lim
→
n

βqn

.

8. Show that µ(β) depends only on β and not on the choice of β. We can thus define µ(β) =
µ(β) for any choice of β with residue class β.

9. Show that µ(0) = 0, and that the map β → µ(β) gives an injective group homomorphism
from k(OL)∗ to O∗L.

10. Conclude from problem # 9 that µ defines an isomorphism between k(OL)∗ and the group
µq(OL) of roots of unity of order dividing q in OL. Show that µ gives canonical representa-
tives in OL for residue classes in k(OL) = OL/mL in the following sense. The representative
of a given residue class is uniquely determined by the requirement that it be a root of unity
in OL of the same multiplicative order as the residue class and that it reduce to the residue
class mod mL.

4. Some completions of fields

Suppose A is the ring Z[t], so that A is a U.F.D. with fraction field F = Q(t). Let

v : F − {0} → Z

be the discrete valuation associated to the irreducible element p of A. Thus for all 0 6= β ∈ A, v(β)
is the power to which p appears when one writes β as a product of a unit of A and an integral
powers of non-associate irreducible elements of A. One then extends v to all of F = Frac(A) by
v(β/α) = v(β) − v(α). Fix a real number r with 0 < r < 1. We then have a non-archimedean
absolute value

| | : F → R

defined by |0| = 0 and |x| = rv(x) when 0 6= x ∈ F . Let L = F| | be the completion of F with
respect to this absolute value.

11. Show that L contains the field Qp of p-adic numbers.
12. Define Qp{{t}} to be the set of all formal power series of the form

(4.6)
∞∑

n=−∞
ant

n

in which the an are in Qp, limn→−∞ an = 0 in Qp, and the usual p-adic absolute value
|an|p of an is bounded independently of n. Show that Qp{{t}} has a natural field structure
extending the ring structure on the ring Zp[[t]] of formal power series with coeffcients in Zp.
Find a series of the form (4.6) for the inverse

1
p− t

=
1
t
· 1

(pt−1 − 1)

of p− t. Explain why the series

1
p− t

=
1
p
· 1

(1− (t/p))
=

1
p

∞∑
n=0

(t/p)n

does not converge in L{{t}}.
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13. Suppose g(t) = gmt
m + gm−1g

m−1 + · · · + g0 is an element of Z[t] such that not all of the
gi are divisible by p. Show that v(g(t)) = 0 when v is the valuation in problem described
at the beginning of this section, so that |g(t)| = 1. Describe how to find an inverse for g(t)
in Q{{t}}, generalizing the example in problem # 12. Deduce from this that there is an
embedding of the valuation ring Rv of v in F = Q(t) into Q{{t}}. Then show that the
completion L = F| | of F with respect to | | embeds into Q{{t}}.

14. Show that p is a uniformizer in the discrete valuation ring Rv of problem # 13, and that
Rv/pRv is isomorphic to the field (Z/p)(t) of rational functions in one variable over Z/p.
Show that v extends to a discrete valuation on Q{{t}} by letting

(4.7) v(
∞∑

n=−∞
ant

n) = min{v(an) : n ∈ Z}

provided that not all of the an are 0. Let Ov be the valuation ring in Q{{t}} of this
extension of v. Show that p is also a uniformizer in Ov, and that Ov/pOv is isomorphic to
the formal Laurent series field (Z/p)((t)). Thus while Rv ⊂ Ov, these rings are not equal.
Explain why this implies L = F| | is strictly smaller than Q{{t}}.

15. Show that the ideal m of A = Z[t] generated by p and t is a maximal ideal. Show that the
completion of A at m defined by

B = lim
←

n≥1

A/mn

is isomorphic to the formal power series ring Zp[[t]]. Prove that pB is a prime ideal of B.
Let C be the localization (B − pB)−1B of B at this prime ideal. Show that C embeds into
the valuation ring Ov of problem # 14, and that Ov is the completion of C with respect to
the restriction of v to C.

16. The following an open problem - I do not know the answer! Suppose we take an arbitrary
element

(4.8) α =
∞∑

n=−∞
ant

n

of Qp{{t}} and we want to determine is this element lies in the completion L = F| | of
F = Q(t). Let µ : (Z/p)∗ → Z∗p be the Teichmuller lift homomorphism described in
problems # 7 - #9. Thus µ((Z/p)∗) is the group µp(Zp) of roots of unity of order dividing
p− 1 in Z∗p, and the set {0} ∪ µ((Z/p)∗) is a canonical set of representatives for the residue
classes in Zp modulo pZp. It follows that each element an of Qp can be written as

an =
∑

j>>−∞
an,jp

j

for a unique set of elements an,j in {0} ∪ µ((Z/p)∗). It is not too hard to show that for all
j, the series

bj =
∑
j∈Z

an,jt
n

is a formal Laurent series (so that it involves only finitely many negative powers of t), and
bj is completely determined by its image bj in (Z/p)((t)). Is it true that α in (4.8) lies in L
if and only if each bj lies in the subfield (Z/q)(t) of rational functions inside (Z/p)((t))?


