MATH 620: HOMEWORK #4

1. DECOMPOSITION OF PRIMES IN CYCLOTOMIC EXTENSIONS OF Q

Let N > 1 be an integer. This problem has to do with determining how all rational primes ¢
decompose in the integers O of the cyclotomic field F' = Q({x) when (n is a root of unity of
order exactly N in an algebraic closure Q of Q. Lang discusses this in the first section of chapter 4
of this book, but he does not give the complete answer. So this problem has to do with deducing
this factorization from scratch as a way of illustrating what we have discussed in class. Write
N =TI_, p{" for some distinct primes p1,...,ps and some integers a; > 1.

1. Show that ¢(y = []}_, Cp;w for some roots of unity Cp?i, of order exactly pj’, each of which
is a power of (. Conclude that F' = Q((y) is the compositum of the fields F; = Q(Cp?i)
inside Q.

2. Fix i and let p = p; and ¢ = a;. In class we gave an argument which shows L = Q({pe)
has ring of integers O, = Z[(pe] and degree ¢(p?) = #(Z/p*)* = (p— 1)p*~* over Q. Show
that the fractional ideal pOy, equals PI“*@ when P = (1 — Cpa)OL, so that pOy, is totally
ramified in Or. Show that the discriminant ideal dy, g is a power of pZ. (With some book
keeping, one can find this power.)

3. With the notations of problem # 2, suppose ¢ is a prime different from p. Let

P —1

P — 1
be the p%-th cyclotomic polynomial in Z[X]. Let ®(z) be the image of ®(z) in (Z/q)[x].
Show that zP* — 1 and ®(z) are separable in (Z/q)[x]. Let v be a root of unity of order p®

O(x) =1+ xpaA + xQPa71 N 1:(:0*1)11’171 _

in an algebraic closure Z/q of Z/q. Show that the extension (Z/q)(v) generated by such a
7 over Z/q is a finite field F s of order ¢/ when ¢/ is the smallest power of ¢ such that p®
divides ¢f — 1. Use this to prove that ®(z) factors in (Z/q)[x] as

(L1) (@)= [[ (@)

in which the h;(x) are distinct separable monic irreducible polynomials of degree f and
fr = deg(®(x)) = ¢(p®). Use this and a result proved in class to show that in the integers
O, = Z[(pe] of L = Q[(pe], the ideal ¢Oy, factors as

T
(1.2) q0r =[] 9
j=1
where the Q; are distinct primes of residue degree f over Z/q.
4. Use the previous results and induction on the number of distinct prime factors of N =
[1;_, p{* to prove the following statements.

a. The fields Q((pi) and Q((nyp) are disjoint Galois extensions of Q, and Q((y) is their
compositum. The ring of integers Oy equals Z[({y], and the rational primes ¢ which
divide the disciminant of Oy over Z are the odd prime divisors of N together with
g =2 if 4 divides N. (You can use without further comment the results of homework
set 3 in proving this. That homework set suggests considering the ramification of p
in intersection Q((pi) N Q(¢nypi) as well as the disjointness of the discriminants of the
rings of integers of the fields Q(¢n/pi) and Q((p:). )
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. Having shown in part (a) that Oy = Z[(x], now redo the arguments in problem # 3

to show that every prime ¢ which does not divide N ramifies in the following way in
ON:

qOn = H Qj

Jj=1

where the Q; are distinct prime ideals of degree f over Z/q, fr = [N : Q] and ¢ is
the smallest power of ¢ such that N divides ¢/ — 1.

. Suppose now that ¢ is a prime divisor of N. Let ¢* be the highest power of ¢ dividing

N. Show that the factorization of ¢ in Oy is determined by the factorization of ¢ in
the integers of Q(Cn/q=), which is specified in problem 4(b), together with the fact that
every prime over ¢ in the integers of Q((n/qa) is totally ramified in Q((x). (Notice
that if ¢* = 2, then (y = —(n/qe, so in fact, Q((n) = Q({n/q¢) in this case.)

. Show that the prime factorization of every rational prime ¢ in Or when F = Q({y)

can be summarized in the following way. One has
qOF = (Q1 e Qr)e

where each Q; has residue field degree f, and one determines e, f and r as follows. Let
q” be the largest power of ¢ dividing N. Then e = ¢(¢%), where we define ¢(1) = 1.
The integer f is the smallest integer such that N/q® divides ¢f — 1. Finally

efr =[N :Q] = 6(N).

2. SOME DEDEKIND AND NON-DEDEKIND RINGS.

5. Suppose p is a rational prime. Let L = Q(p~) be subfield of an algebraic closure Q of Q
which is generated over Q by all p-power roots of unity. Show that the integral closure Op,
of Z inside L is not Noetherian, and is thus not a Dedekind ring.

. With the notations of problem # 5, show that the ring Of[1/p] which is the localization of
Op, at the multiplicitive set S = {(1/p)™ : n € Z} of all powers of 1/p is a Dedekind ring.
You can use the results of exercises # 1 - # 4 to analyze how primes ¢ # p decompose
in the rings of integers of the fields Q({pe) as a varies. You may find it useful to consider
the degrees over Z/q of the fields (Z/p)(7ype) when 7« is a root of unity of order p® in an
algebraic closure of Z/q. You can use without proof the fact that every finite extension k
of Z/q is Galois over Z/q with cyclic Galois group.

3. TEICHMULLER LIFTS

Let L be a p-adic local field. Thus L is the completion of a number field F' with respect to the
normalized non-archimedean absolute value | |p associated to a non-zero prime ideal P of the ring
of integers Op of F. Let Of be the valuation ring of L, so that

O = {a eL: |Oz‘73 < 1} = llanF/'Pn

n

The maximal ideal of Oy, is

mL:{OéELZ‘Oé|7D<1}

and the natural homomorphism Op — Of gives rise to an isomorphism of finite fields

OF/P = OL/mL.

Let g be the order of Oy /m;, = k(O). The multiplicative group k(Op)* is then a cyclic group
of order g — 1, since finite multiplicative subgroups of fields are cyclic. This exercise constructs a
unique homomorphism of multiplicative groups

(3.5)

i k(0L)" — O}
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which is called the Teichmuller lifting from the multiplicative group of k(Op) to the group pq(OL)
of roots of unity of order dividing ¢ in O7.

7. Let B € k(Or) be the residue class of 3 € Or. Show that 32-! = 1. Then use this and the
binomial theorem to show that {#9"}22, forms a Cauchy sequence in O, with respect to
| |p. Since Oy, is complete, we can therefore define

u(B) = lim 47"
8. Show that u(3) depends only on 3 and not on the choice of 3. We can thus define u(3) =
p(B) for any choice of 3 with residue class 3.
9. Show that p(0) = 0, and that the map 3 — u(B) gives an injective group homomorphism
from k(Or)* to O3.

10. Conclude from problem # 9 that p defines an isomorphism between k(Op)* and the group
1q(Or) of roots of unity of order dividing g in Or. Show that p gives canonical representa-
tives in Op, for residue classes in k(Op) = Or/my, in the following sense. The representative
of a given residue class is uniquely determined by the requirement that it be a root of unity
in Oy, of the same multiplicative order as the residue class and that it reduce to the residue
class mod my,.

*

4. SOME COMPLETIONS OF FIELDS
Suppose A is the ring Z[t], so that A is a U.F.D. with fraction field F = Q(t). Let
v:F—-{0} - Z

be the discrete valuation associated to the irreducible element p of A. Thus for all 0 #£ 5 € A, v(5)
is the power to which p appears when one writes $ as a product of a unit of A and an integral
powers of non-associate irreducible elements of A. One then extends v to all of F' = Frac(A) by
v(B/a) = v(B) — v(a). Fix a real number r with 0 < r < 1. We then have a non-archimedean
absolute value

||:F—R

defined by 0] = 0 and |z| = 7*(®) when 0 # z € F. Let L = F} | be the completion of F with
respect to this absolute value.

11. Show that L contains the field Q, of p-adic numbers.
12. Define Q,{{t}} to be the set of all formal power series of the form

(4.6) i ant™

n=—oo

in which the a, are in Q,, lim,—._o a, = 0 in Q,, and the usual p-adic absolute value
|an|p of a,, is bounded independently of n. Show that Q,{{t}} has a natural field structure
extending the ring structure on the ring Z,[[t]] of formal power series with coeffcients in Z,,.
Find a series of the form (4.6) for the inverse

1 1 1

p—t t (pt1-1)
of p —t. Explain why the series

oo

1 L= 1Sy

1
p—t p (I=(t/p) p=

does not converge in L{{t}}.
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Suppose g(t) = gmt™ + gm-19™ "1 + -+ + go is an element of Z[t] such that not all of the
g; are divisible by p. Show that v(g(¢)) = 0 when v is the valuation in problem described
at the beginning of this section, so that |g(¢)| = 1. Describe how to find an inverse for g(t)
in Q{{t}}, generalizing the example in problem # 12. Deduce from this that there is an
embedding of the valuation ring R, of v in F' = Q(¢) into Q{{¢}}. Then show that the
completion L = F | of F with respect to | | embeds into Q{{#}}.
Show that p is a uniformizer in the discrete valuation ring R, of problem # 13, and that
R,/pR, is isomorphic to the field (Z/p)(t) of rational functions in one variable over Z/p.
Show that v extends to a discrete valuation on Q{{t}} by letting
v( Z ant™) = min{v(a,) : n € Z}
provided that not all of the a, are 0. Let O, be the valuation ring in Q{{t}} of this
extension of v. Show that p is also a uniformizer in O,, and that O, /pQO,, is isomorphic to
the formal Laurent series field (Z/p)((t)). Thus while R, C O,, these rings are not equal.
Explain why this implies L = F} | is strictly smaller than Q{{¢}}.
Show that the ideal m of A = Z[t] generated by p and ¢ is a maximal ideal. Show that the
completion of A at m defined by
B = lim A/m"
n>1
is isomorphic to the formal power series ring Z,[[t]]. Prove that pB is a prime ideal of B.
Let C be the localization (B — pB)~!B of B at this prime ideal. Show that C' embeds into
the valuation ring O, of problem # 14, and that O, is the completion of C' with respect to
the restriction of v to C.

. The following an open problem - I do not know the answer! Suppose we take an arbitrary

element

oo
o= Z ant”™

n=—oo
of Qu{{t}} and we want to determine is this element lies in the completion L = F} | of
F = Q(t). Let p: (Z/p)* — Z; be the Teichmuller lift homomorphism described in
problems # 7 - #9. Thus p((Z/p)*) is the group p,(Zy) of roots of unity of order dividing
p—1in Z;, and the set {0} U u((Z/p)*) is a canonical set of representatives for the residue
classes in Z, modulo pZ,. It follows that each element a,, of @, can be written as

ap = Z an,jpj
j>>—00

for a unique set of elements a,, ; in {0} U u((Z/p)*). It is not too hard to show that for all

j, the series
bj = Z amjt"
JEZ
is a formal Laurent series (so that it involves only finitely many negative powers of t), and
b; is completely determined by its image b; in (Z/p)((t)). Is it true that « in (4.8) lies in L
if and only if each b; lies in the subfield (Z/q)(t) of rational functions inside (Z/p)((t))?



