MATH 702: HOMEWORK #3

DUE FRIDAY, OCT. 26

1. DECOMPOSITION OF PRIMES IN CYCLOTOMIC EXTENSIONS OF Q

Let N > 1 be an integer. This problem has to do with determining how all rational primes ¢
decompose in the integers O of the cyclotomic field F' = Q({x) when (y is a root of unity of
order exactly N in an algebraic closure Q of Q. Lang discusses this in the first section of chapter 4
of this book, but he does not give the complete answer. So this problem has to do with deducing
this factorization from scratch as a way of illustrating what we have discussed in class. Write
N = Hle pi* for some distinct primes py,...,ps and some integers a; > 1.

1. Show that ¢y =[]} 16 ai for some roots of unity ¢, @i of order exactly pj’, each of which

is a power of (. Conclude that F = Q(¢w) is the compomtum of the ﬁeldb F; = Q(C i)
inside Q.

. Fix ¢ and let p = p; and a = a,. In class we gave an argument which shows L = Q((pe)

has ring of integers Of, = Z[(pe] and degree ¢(p?) = #(Z/p*)* = (p— 1)p®~* over Q. Show
that the fractional ideal pOy, equals PI“*@ when P = (1 — Cpa)OL, so that pOy, is totally
ramified in Or. Show that the discriminant ideal dy g is a power of pZ. (With some book
keeping, one can find this power.)

. With the notations of problem # 2, suppose ¢ is a prime different from p. Let

Pt — 1
B |
be the p®-th cyclotomic polynomial in Z[X]. Let ®(z) be the image of ®(x) in (Z/q)[z].
Show that zP* — 1 and ®(z) are separable in (Z/q)[x]. Let v be a root of unity of order p®
in an algebraic closure Z/q of Z/q. Show that the extension (Z/q)(y) generated by such a
v over Z/q is a finite field F,; of order gf when ¢7 is the smallest power of ¢ such that p®
divides ¢/ — 1. Use this to prove that ®(x) factors in (Z/q)[x] as

B(a) = [[ hya)

in which the hj(z) are distinct separable monic irreducible polynomials of degree f and
fr = deg(®(x)) = ¢(p®). Use this and a result proved in class to show that in the integers
O, = Z[(pe] of L = Q[(pe], the ideal ¢Oy, factors as

O(z) =1+ P + 22 +oee 4 2P=1p" T

qOr = HQ]’

j=1

where the Q; are distinct primes of residue degree f over Z/q.

. Use the previous results and induction on the number of distinct prime factors of N =

[1;_, p{* to prove the following statements.

a. The fields Q((pi) and Q((n/pi) are disjoint Galois extensions of Q, and Q((y) is their
compositum. The ring of integers On equals Z[(x], and the rational primes ¢ which
divide the disciminant of Oy over Z are the odd prime divisors of N together with
g = 2 if 4 divides N. (You can use without further comment the results of homework
set 2 in proving this. That homework set suggests considering the ramification of p
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in intersection Q(Cpi) N Q(¢nypi) as well as the disjointness of the discriminants of the
rings of integers of the fields Q((nypi) and Q((p:). )

b. Having shown in part (a) that Oy = Z[(n], now redo the arguments in problem # 3
to show that every prime ¢ which does not divide N ramifies in the following way in

ONZ

(1.3) oOn =] 2

Jj=1

where the Q; are distinct prime ideals of degree f over Z/q, fr = [N : Q] and ¢/ is
the smallest power of ¢ such that N divides ¢ — 1.

c. Suppose now that ¢ is a prime divisor of N. Let ¢® be the highest power of ¢ dividing
N. Show that the factorization of ¢ in Oy is determined by the factorization of ¢ in
the integers of Q(Cn/q=), which is specified in problem 4(b), together with the fact that
every prime over ¢ in the integers of Q((n/qa) is totally ramified in Q({x). (Notice
that if ¢* = 2, then (y = —(n/qe, so in fact, Q((n) = Q({n/q¢) in this case.)

d. Show that the prime factorization of every rational prime ¢ in Op when F' = Q({y)
can be summarized in the following way. One has

(1.4) qO0F = (Q1 -+ Q,)°

where each Q; has residue field degree f, and one determines e, f and r as follows. Let
q” be the largest power of ¢ dividing N. Then e = ¢(¢%), where we define ¢(1) = 1.
The integer f is the smallest integer such that N/q® divides ¢/ — 1. Finally

efr=I[N:Q] =¢(N).

2. SOME DEDEKIND AND NON-DEDEKIND RINGS.

Suppose p is a rational prime. Let L = Q(up) be subfield of an algebraic closure Q of Q which
is generated over QQ by all p-power roots of unity. In class we talked about why the integral closure
Oy, of Z inside L is not Noetherian, and is thus not a Dedekind ring.

5. Show that the ring Op[1/p] which is the localization of Oy, at the multiplicitive set S =
{(1/p)™ : n € Z} of all powers of 1/p is a Dedekind ring. You can use the results of exercises
# 1 - # 4 to analyze how primes ¢ # p decompose in the rings of integers of the fields
Q(¢pe) as a varies. You may find it useful to consider the degrees over Z/q of the fields
(Z/p)(7ypa) when 7pe is a root of unity of order p® in an algebraic closure of Z/q. You can
use without proof the fact that every finite extension k of Z/q is Galois over Z/q with cyclic
Galois group.

3. TEICHMULLER LIFTS

Let L be a p-adic local field. Thus L is the completion of a number field F' with respect to the
normalized non-archimedean absolute value | |p associated to a non-zero prime ideal P of the ring
of integers Op of F'. Let Of, be the valuation ring of L, so that

Or = {Oé eL: |Oz‘7:v < 1} = hinOF//Pn
The maximal ideal of Oy, is
mL:{aeL:\a|p<1}
and the natural homomorphism Op — Op, gives rise to an isomorphism of finite fields

OF/P = OL/mL.
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Let ¢ be the order of Op/my = k(Or). The multiplicative group k(Or)* is then a cyclic group
of order g — 1, since finite multiplicative subgroups of fields are cyclic. This exercise constructs a
unique homomorphism of multiplicative groups

(3.5)

i k(0L)" — O

which is called the Teichmuller lifting from the multiplicative group of k(Op) to the group py(OL)
of roots of unity of order dividing ¢ in O7.

6.

10.

Let 8 € k(Opr) be the residue class of 3 € Or. Show that 37-1 = 1. Then use this and the
binomial theorem to show that {3%7"}22; forms a Cauchy sequence in Oy, with respect to
| |p. Since Op, is complete, we can therefore define

() = lim 57"

Show that (3) depends only on 3 and not on the choice of 3. We can thus define u(3) =
p(B) for any choice of 3 with residue class 3.

Show that x(0) = 0, and that the map 3 — u(3) gives an injective group homomorphism
from k(Or)* to O3.

Conclude from problem #8 that p defines an isomorphism between k(Op)* and the group
1q(Or) of roots of unity of order dividing g in Or. Show that p gives canonical representa-
tives in Op, for residue classes in k(Op) = Or/my in the following sense. The representative
of a given residue class is uniquely determined by the requirement that it be a root of unity
in Oy, of the same multiplicative order as the residue class and that it reduce to the residue
class mod my,.



