
MATH 702: HOMEWORK #5

DUE WEDNESDAY, DEC. 19, 2012.

Please send to ted@math.upenn.edu either a .pdf file of your solutions, either by writing them
up in tex or by using the department’s scanner to scan handwritten homeworks. Janet Burns in
the math department office can help with scanning homeworks.

1. Dedekind subrings of global function fields.

Suppose F is a global function field, i.e. a finite separable extension of k(t) for some finite field k.
The abstract curve CF associated to F is the set of discrete valuations v : F ∗ → Z which are trivial
on k, the latter condition holding automatically in this case because k∗ is a finite group. Suppose
S is a non-empty subset of CF . In class we defined the S-integers of F to be the ring

R(F, S) = {0} ∪ {α ∈ F ∗ : v(α) ≥ 0 for v 6∈ S}.

If f ∈ F ∗, v ∈ CF and v(f) < 0 we will say v is a pole of f ; if v(f) > 0 then v is a zero of f . In
class we used the Riemann Roch theorem to show that R(F, S) has fraction field F . (That involved
showing that for every function f ∈ F there is a function 0 6= g ∈ F which has its only poles in S
and a high order zero at every pole of f ; then g, fg ∈ R(F, S).) Finish the proof that R(F, S) is a
Dedekind ring by the following steps.

1. Check that R(F, S) is integrally closed in F .
2. The remaining issue is to show that every non-zero prime ideal P of R(F, S) is maximal.

Supppose 0 6= f ∈ P . Show that it will suffice to show that if J is the principal R(F, S)-ideal
R(F, S) · f , then R(F, S)/J is a finite dimensional vector space over the finite field k.

3. Let f be as in problem # 2. In class we checked that the principal divisor div(f) =∑
v∈CF

v(f)v is well defined, i.e. that v(f) = 0 for almost all v. Define T (f) =
∑

v∈CF ,v 6∈S v(f)v,
where v(f) ≥ 0 for v 6∈ S by the definition of f ∈ R(F, S). Let 0 be the trivial divisor, and
suppose T is a divisor such that 0 ≤ T ≤ T (f). Define

R(F, S, T ) = {0} ∪ {α ∈ R(F, S) :
∑

v∈C,v 6∈S

v(α)v ≥ T}.

Show that R(F, S, 0) = R(F, S) and R(F, S, T (f)) ⊂ R(F, S)f . Conclude using problem #2
that it will suffice to show R(F, S)/R(F, S, T (f)) is finite dimensional over k.

4. Show that if T is a divisor as in problem # 3 and v ∈ CF − S, then R(F, S, T + v) ⊂
R(F, S, T ). Then use a uniformizing parameter at v to show that there is a k-linear injection
from R(F, S, T )/R(F, S, T + v) into the residue field k(v) of v. Use this and problems #2
and #3 to finish the proof that R(F, S) is Dedekind.

2. The Minkowski bound and computations of units

5. In class we showed that the field K = Q(θ) generated by a root θ of x3 − x − 1 = 0 has
ring of integers Z[θ]. This was done by computing the discriminant of Z[θ] over Z and by
noting that the this must be the square of an integer times the disciminant of OK over Z.
Show that K has class number 1.

6. The Dirichlet unit theorem says that if L is a number field with ring of integers OL, then
the rank of the unit group O∗L is r1(L) + r2(L) − 1. For K as in problem # 5, show that
the unit group of OK is {±θn}∞n=1. (Hint: If θ = um for some u ∈ O∗K and m > 1, consider
the norm to Q of u− 1. )
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7. Show that K = Q(
√

30) has class number two and unit group O∗K = {±(11 + 2
√

30)n}n∈Z.
(Hint: Compute some norms to produce relations between ideal classes of small prime
ideals.)

3. The Minkowski bound over function fields.

Suppose q is a prime power, and let Fq be a finite field of order q. Let L = Fq(t) be the rational
function field in one variable t over Fq. Define v∞ to be the discrete valuation on L such that
v∞(g(t)) = −deg(g(t)) for 0 6= g(t) ∈ Fq[t]. Suppose F is a finite separable extension of L. Define
n = [F : L]. For simplicity, we will assume that v∞ splits completely in F , in the sense that
there are n distinct discrete valuations w1, . . . , wn on F which extend v∞. Such F are analogs of
finite totally real extensions of Q. This problem is about a variation on the Minkowski method for
bounding the class number of the integral closure A of Fq[t] in F .

8. Let Ov∞ ⊂ L be the valuation ring of v∞. The valuations w1, . . . , wn correspond to distinct
prime ideals of the integral closure of Ov∞ in F . Show that the inclusion L ⊂ F gives rise to
an isomorphism of completions Lv∞ → Fwi for all i = 1, . . . , n. This identifies Fwi with the
formal power series field Lv∞ = Fq((t−1)). The valuation ring Owi of Fwi is thus identified
with Fq[[t−1]].

9. Define a Haar measure µ∞ on Lv∞ = Fq((t−1)) by the requirement that µ∞(Fq[[t−1]]) = 1.
Thus µ(a+ t−bFq[[t−1]]) = q−b for a ∈ Lv∞ and b ∈ Z, since µ is invariant under translation
and additive over unions of disjoint open subsets. Define µ to be the Haar measure on∏n

i=1 Fwi which is the product of µ∞ on each factor Lwi ≡ Fq((t−1)). Suppose C = (ci,j)
is an invertible n× n matrix whose entries ci,j lie in Fq((t−1)). Show that if U =

∏n
i=1Owi

then µ(Owi) = 1. Using the identifications in problem 8, show that the image C · U of U
under left multiplication by C is a compact open subset of

∏n
i=1 Fwi with

µ(C · U) = q−v∞(det(C))

Hints: U and C ·U are finitely generated free modules of rank n for the discrete valuation
ring Fq[[t−1]] = B. By multiplying C by a non-zero scalar which is close to 0 in B show that
it is enough to consider the case in which C has entries in B and C ·U ⊂ U . Show that the
map U → U given by u → Cu induces multiplication by det(C) on the top exterior power
ΛnU of U over B. Then compute det(C)B a different way by applying the fundamental
theorem about finitely generated modules over a P.I.D. to the inclusion of free B-modules
of rank n given by C · U ⊂ U .

10. Identify each Fwi with Fq((t−1)) as in problem 8. Show that with this identification,
X = ⊕n

i=1Fq[t] is a discrete subgroup of Y = ⊕n
i=1Fwi

, in the sense that there is an open
neighborhood of each element of X which contains no other element of X. Show that if U
is as in problem 9, then t−1U = ⊕n

i=1t
−1Owi

is a fundamental domain for X, in the sense
that the inclusion t−1U → Y gives a topological isomorphism t−1U → Y/X. Conclude that
µ(Y/X) = µ(t−1U) = q−n, i.e. X has covolume q−n in Y .

11. Explain why the integral closure A of Fq[t] in F is a finitely generated free Fq[t] module
of rank n. Let a1, . . . , an be generators for this module. Let ψ : F → ⊕n

i=1Fwi
be the

natural homomorphism. Define C to be the n× n matrix (ci,j) such that the jth column is
the vector ψ(aj) considered as a column vector when we identify each Fwi

with Fq((t−1)).
Explain why the elements of ψ(A), considered as column vectors, consists of all Fq[t]-linear
combinations of the columns of C. Thus ψ(A) = C · X when X is as in problem 10.
Show that when t−1U is the open subset as in problem 10, then C · t−1U is a fundamental
domain for ψ(A) in Y = ⊕n

i=1Fwi . Conclude from this and problems 10 and 11 that
µ(Y/ψ(A)) = q−v∞(det(C))−n.

12. For C as in problem 11, show that −v∞(det(C)) = deg(Disc(A/Fq[t]))/2, where the degree
of the disciminant ideal Disc(A/Fq[t]) of Fq[t] is defined to be the degree of a monic generator
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of this ideal. The formula at the end of problem 11 then becomes

µ(Y/ψ(A)) = qdeg(Disc(A/Fq [t]))/2−n.

If you have seen the Hurwitz formula for covers of curves, try checking that the right hand
side of this formula gives

(3.1) µ(Y/ψ(A)) = q(2g(F )−2)/2

when g(F ) is the genus of the smooth projective curve over Fq with function field F . The
constant q2g(F )−2 is the function field counterpart of the absolute value of the disciminant
of the ring of integers of a number field. The equation (3.1) is the counterpart of the
corresponding formula for totally real number fields.

13. Suppose S is an open compact subgroup of Y = ⊕n
i=1Fwi

. Let T be a finitely generated
Fq[t]-submodule of Y which is co-compact. Show that if µ(S) > µ(Y/T ), then there is a
non-zero element s ∈ S ∩T . Thus S is a function field counterpart of the convex symmetric
subsets which come up in the classical theory of geometry of numbers, and there is no power
of 2 needed in the function field case.

14. Use problems 12 and 13 to show the following counterpart of the classical Minkowski bound
for the ideal classgroup of A. Suppose C is a non-zero integral ideal of A. Prove that there
is a non-zero element x ∈ C such that

(3.2) [A : Ax] ≤ q · q(2g(F )−2)/2[A : C]
Here the index [A : C] is the counterpart of the norm of an integral ideal of the ring
of integers of a number field, q(2g(F )−2)/2 is the counterpart of the square root of the
discriminant of the field, and the Minkowski constant in the “totally real” function field
case becomes simply q. Compare this result to what you can prove using Riemann-Roch.
Hints: Let w1 be a fixed choice of a valuation of F over v∞. Try using a compact open
subset of Y = ⊕n

i=1Fwi
of the form

S = (tcOw1)×
n∏

i=2

Owi

for a well chosen integer c.


