
PULLBACK MODULI SPACES

FRAUKE M. BLEHER AND TED CHINBURG

Abstract. Geometric invariant theory can be used to construct moduli spaces
associated to representations of finite dimensional algebras. One difficulty which
occurs in various natural cases is that non-isomorphic modules are sent to the same
point in the moduli spaces which arise. In this paper we study how this collapsing
phenomenon can sometimes be reduced by considering pullbacks of modules for an
auxiliary algebra. One application is a geometric proof that the twisting action of
an algebra automorphism induces an algebraic isomorphism between moduli spaces.

1. Introduction

To construct a well-defined moduli space associated to algebraic objects of various
kinds, one must introduce an equivalence relation on these objects and classify the
resulting equivalence classes. These equivalence classes may be much larger than one
would like, so that many isomorphism classes of objects are collapsed to a point in
the moduli space. A standard approach to dealing with this problem is to incorporate
more structure into the moduli problem. In this paper we consider moduli spaces
constructed by King in a now classical paper [10] for representations of finite dimen-
sional algebras Λ over an algebraically closed field. Our approach to adding more
structure is to introduce an algebra homomorphism Λ → Λ′ and to consider families
of Λ-modules which are pullbacks of families of Λ′-modules. The main problem then
is to control the loss of information resulting from restricting families of Λ′-modules
to families of Λ-modules. For certain Λ′, we will produce sufficient conditions on
Λ → Λ′ for no information to be lost in the pullback process. This leads in various
cases to non-trivial moduli spaces when the moduli spaces which result from apply-
ing King’s methods directly to Λ-modules alone collapse to points (see Example 2.4
and §3). A different approach to these moduli problems has recently been developed
by Huisgen-Zimmermann in [8, 9]. She uses closed subvarieties of Grassmannians to
describe the degenerations of a particular Λ-module. Under certain conditions she
obtains moduli spaces for all isomorphism classes of Λ-modules with a given top and
dimension.

We now introduce the notation needed to state our results. Let K be an alge-
braically closed field, and suppose Λ = KQ/J is a finite dimensional basic algebra
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over K, i.e. Q is a finite quiver and J is an admissible ideal in the path algebra
KQ. For each such Λ and dimension vector d, there is a representation variety
VΛ(d), whose points correspond to representations of Λ with this dimension vector
(see, for example, [10, 12, 15] and their references). The isomorphism classes of these
Λ-modules correspond to orbits of the variety VΛ(d) under the action of a reductive
algebraic group, called GL(d). Let Λ′ be another basic finite dimensional K-algebra
and let f : Λ → Λ′ be a K-algebra homomorphism.

King’s work in [10] can be applied to construct a fine moduli space Ms
Λ′(d′, θ′)

for families of Λ′-modules of dimension vector d′ which are stable with respect to an
additive function θ′ : K0(Λ

′) → Z. We will consider the functor which associates to
a variety X over K the set of equivalence classes of families of Λ-modules which are
pullbacks via f of families of θ′-stable Λ′-modules (see Definition 2.5). The notion of
equivalence used here is fiberwise isomorphism. Our first main result, Theorem 2.7,
is that this functor has a fine moduli space Ms

f,d′,θ′ , provided the pullbacks via f of
non-isomorphic θ′-stable Λ′-modules are non-isomorphic Λ-modules. One application
is to show in Theorem 2.10 that under the hypotheses of Theorem 2.7, the twisting
action of an algebra automorphism σ of Λ induces an algebraic isomorphism between
Ms

f,d′,θ′ and Ms
f◦σ,d′,θ′ .

We will analyze two types of Λ′ and then present some examples suggesting further
generalizations.

In §3 we specialize to the case in which Λ′ is the path algebra KQ′ of a circular
quiver Q′. We call the Λ-modules which arise from this choice circular modules.
Many authors have used circular quivers to construct indecomposable Λ-modules
(see, for example, [7, 14, 6, 18, 5]). We show in §3.1 how circular modules generalize
some of these results. In Theorem 3.8, we find sufficient conditions on the algebra
homomorphism f : Λ → Λ′ for the fine moduli spaces Ms

f,d′,θ′ of Theorem 2.7 to be
well-defined. We then specialize further in §3.2 to the case in which Λ is a special
biserial algebra, for which the indecomposable Λ-modules are well-known. In this
case the circular modules are band modules (see [5] or [11] for the definition of band
modules). By specializing Theorem 2.10 to this case we obtain an algebro-geometric
proof of a result proved earlier by one of us [3, 4] that twisting band modules by
automorphisms of special biserial algebras gives rise to algebraic automorphisms of
the parameter spaces of these modules. In §3.3, we discuss some other algebras for
which not all circular modules are band modules.

In §4 we define multi-strand modules, which arise from quivers associated to canon-
ical algebras. When Λ′ is an algebra giving rise to such modules, we analyze in The-
orem 4.7 some sufficient conditions on f : Λ → Λ′ for the fine moduli spaces Ms

f,d′,θ′

of Theorem 2.7 to be well-defined. When Ms
f,d′,θ′ is well-defined we show that it is a

projective space whose dimension may be larger than 1.
In a final section we will give an example in which the moduli space Ms

f,d′,θ′ is
Pr × Ps, King’s moduli space for the associated Λ-modules is Ps, and the natural
map from Ms

f,d′,θ′ to King’s moduli space Ps collapses the first factor Pr of Ms
f,d′,θ′ .

There are many other examples of algebras Λ for which there are known families of
indecomposable Λ-modules parameterized by particular algebraic varieties, e.g. by
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projective spaces. One natural question at this point is to consider when such families
arise from the moduli spaces constructed in this paper for well chosen algebras Λ′

and algebra homomorphisms Λ → Λ′.
Throughout this article, K denotes an algebraically closed field and K∗ denotes

the set of non-zero elements of K. All algebras are finite dimensional K-algebras, all
modules are finitely generated left modules. Λ-mod denotes the category of finitely
generated Λ-modules. For precise definitions of quivers, relations and path algebras
see e.g. [1].

2. Moduli spaces

In this section we describe a variation of the moduli spaces defined by King in [10].
We first recall a few of the definitions from [10].

Suppose Λ = KQ/J is an arbitrary basic algebra, and C is the category of con-
nected varieties (over K) in the sense of King [10], Newstead [13] and Serre [17].

Definition 2.1. Let θ : K0(Λ) → Z be an additive function, where K0(Λ) denotes
the Grothendieck group which has as Z -basis the isomorphism classes of simple Λ-
modules.

(i) A Λ-module M is called θ-semistable (resp. θ-stable), if θ([M ]) = 0 and every
proper non-zero submodule M ′ of M satisfies θ([M ′]) ≥ 0 (resp. θ([M ′]) > 0).

(ii) Let Λ-modθ,ss be the full subcategory of θ-semistable modules in Λ-mod. The
simple objects in this subcategory are the θ-stable modules. Since Λ-modθ,ss

is both artinian and noetherian, every θ-semistable module M has a filtration

0 = M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mn = M

such that Mi/Mi−1 is a θ-stable module for all i. Define

gr(M) =
n⊕

i=1

(Mi/Mi−1).

By [16, Theorem 2.1], gr(M) does not depend on the filtration of M .
(iii) Two θ-semistable Λ-modules M and M ′ are called S-equivalent, if gr(M) is

isomorphic to gr(M ′). In particular, two θ-stable modules are S-equivalent if
and only if they are isomorphic.

For the moduli spaces we also need the definition of families of Λ-modules.

Definition 2.2. A family of Λ-modules over a variety X in C is a locally free sheaf
F of OX-modules together with a K-algebra homomorphism αF : Λ → EndOX

(F).
A family F over X is called a family of θ-semistable (resp. θ-stable) Λ-modules, if
for every point x ∈ X the fiber Fx is a θ-semistable (resp. θ-stable) Λ-module. The
notion of S-equivalence can be extended to families. We say that two families F and
F ′ of θ-semistable Λ-modules over X are S-equivalent if for all x ∈ X the fibers Fx

and F ′
x are S-equivalent. This extension of equivalence to families arises in [13, Prop.

1.8].

Let now d be a dimension vector, i.e. d ∈ K0(Λ) with non-negative coefficients.
Then we have the following result due to King [10].
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Theorem 2.3. (King)

(i) There exists a coarse moduli space MΛ(d, θ) for families of θ-semistable Λ-
modules of dimension vector d, up to S-equivalence. Moreover, MΛ(d, θ) is
a projective variety.

(ii) The moduli space MΛ(d, θ) contains an open set Ms
Λ(d, θ) whose points cor-

respond to isomorphism classes of θ-stable Λ-modules of dimension vector d.
In particular, Ms

Λ(d, θ) is a quasi-projective variety. If d is an indivisible vec-
tor, then Ms

Λ(d, θ) is a fine moduli space for families of θ-stable Λ-modules
of dimension vector d, up to isomorphism.

Theorem 2.3 means the following. For part (i) (resp. part (ii)) consider the con-
travariant functor

F : C → Sets

which sends each object X in C to the set F (X) of all S-equivalence classes of families
of θ-semistable (resp. θ-stable) Λ-modules overX of dimension vector d. A morphism
φ : X ′ → X in C is sent to F (φ) : F (X) → F (X ′) with F (φ)([F ]) = [φ∗(F)].

In case M = Ms
Λ(d, θ) is a fine moduli space, F is represented by M; more

precisely, F is isomorphic to the functor HomC(−,M). In particular, there exists a
universal family U over M which corresponds to the identity morphism idM such
that for every family F over X, there exists a unique morphism µ : X → M with
[F ] = [µ∗(U)].

In case M = MΛ(d, θ) is a coarse moduli space, there is a natural transformation
Φ : F → HomC(−,M) such that Φ(pt) is bijective and Φ satisfies the natural uni-
versal property with respect to natural transformations Ψ : F → HomC(−, N) for
arbitrary varieties N in C.

The points of MΛ(d, θ) (resp. Ms
Λ(d, θ)) are in bijection with the S-equivalence

classes of θ-semistable (resp. θ-stable) Λ-modules of dimension vector d.

The following example illustrates how non-isomorphic indecomposable modules
can correspond to the same point of the moduli spaces of Theorem 2.3, even though
these modules correspond bijectively to the points of an algebraic variety over K.

Example 2.4. Let Λ be the algebra Λ = K〈α, β〉/(α2, β2, αβ − βα), which is special
biserial. Since Λ has a unique simple module T up to isomorphism, the only possible
additive functions θ : K0(Λ) → Z are given by θ([T ]) = a, a ∈ Z. If a 6= 0, the zero
module is the only θ-semistable Λ-module. Suppose now a = 0. Then all Λ-modules
are θ-semistable and T is the only θ-stable module, up to isomorphism. Consider
the band modules M(βα−1, λ, 1) defined for λ ∈ K ∪ {∞} in the following way (see
[5, §3]). Define M(βα−1, λ, 1) to be the two dimensional vector space on which α

acts as the matrix

(
0 1
0 0

)
and β acts as

(
0 λ
0 0

)
if λ 6= ∞. In case λ = ∞,

α acts as the zero matrix and β acts as

(
0 1
0 0

)
. These band modules are not

isomorphic for any two values of λ that define different points on the projective line
P1 over K. Nonetheless, they are all S-equivalent. Hence they are not distinguished
by King’s moduli space MΛ(d, θ) for d = 2. However, the methods we will now
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describe together with the results in §3 will enable us to define a fine moduli space
for these band modules, up to isomorphism (see Theorem 3.8 and Proposition 3.11).

We now describe a variation of King’s construction. We need the following defini-
tion.

Definition 2.5. Suppose Λ′ is a basic finite dimensional K-algebra and that there is
an algebra homomorphism f : Λ → Λ′. Let θ′ : K0(Λ

′) → Z be an additive function,
and let d′ be a dimension vector in K0(Λ

′). Suppose X is a variety in C, and G (resp.
F) is a family of Λ-modules (resp. Λ′-modules) over X.

(i) We call G the pullback via f of F , written G = f ∗F , if G = F as locally
free sheaves of OX-modules and αG = αF ◦ f , where αF : Λ′ → EndOX

(F)
(resp. αG : Λ → EndOX

(G)) is the K-algebra homomorphism which defines
the Λ′-action on F (resp. the Λ-action on G), as described in Definition 2.2.

If all the Λ′-modules in the family F have the same dimension vector d′,
then all the Λ-modules in the pullback family G = f ∗F have the same di-
mension vector in K0(Λ) which we will denote by d′f .

(ii) We call G a family of θ′f -semistable (resp. θ′f -stable) Λ-modules, if there
exists a family F of θ′-semistable (resp. θ′-stable) Λ′-modules such that G is
fiberwise isomorphic to f ∗F , where f ∗F is the pullback of F as defined in
part (i).

(iii) Suppose G and G ′ are two families of θ′f -semistable (resp. θ′f -stable) Λ-
modules as defined in part (ii). We call G and G ′ Sf -equivalent if there are
two S-equivalent families F and F ′ over X of θ′-semistable (resp. θ′-stable)
Λ′-modules such that G is fiberwise isomorphic to f ∗F and G ′ is fiberwise
isomorphic to f ∗F ′.

(iv) We say f is θ′-semistably separated (resp. θ′-stably separated) with respect
to d′, if whenever N and N0 are θ′-semistable (resp. θ′-stable) Λ′-modules
of dimension vector d′ with f ∗N ∼= f ∗N0 as Λ-modules then N and N0 are
S-equivalent.

(v) Let MΛ′(d′, θ′) (resp. Ms
Λ′(d′, θ′)) be the moduli space from Theorem 2.3

for families of θ′-semistable (resp. θ′-stable) Λ′-modules of dimension vector
d′, up to S-equivalence. In case f is θ′-semistably separated (resp. θ′-stably
separated) with respect to d′, we define Mf,d′,θ′ (resp. Ms

f,d′,θ′) to be the
projective variety MΛ′(d′, θ′) (resp. the quasi-projective variety Ms

Λ′(d′, θ′)).

Remark 2.6. (i) We will regard single Λ-modules (resp. Λ′-modules) as families
of modules over a point. In particular, parts (i), (ii) and (iii) of Definition 2.5
pertain to a single Λ-module G (resp. a single Λ′-module F).

(ii) In Definition 2.5 we have not chosen an additive function θ : K0(Λ) → Z.
One would first have to choose such a θ to be able to consider the θ-stability,
θ-semistability and S-equivalence classes of Λ-modules. It is a natural prob-
lem to find when one can choose a θ so that if G and G ′ as in part (iii)
of Definition 2.5 are families of θ′f -semistable (resp. θ′f -stable) Λ-modules
and Sf -equivalent, then they are families of θ-semistable (resp. θ-stable) Λ-
modules and S-equivalent. We address in Remark 2.8 the question of when
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there is a morphism from the varieties in part (v) of Definition 2.5 to King’s
moduli spaces associated with a choice of θ.

(iii) As in Definition 2.1(iii), two θ′-stable Λ′-modules are S-equivalent if and
only if they are isomorphic. This is not necessarily true for θ′-semistable
Λ′-modules. Thus in Definition 2.5(iv), even if f is θ′-semistably separated,
Sf -equivalent families G and G ′ as in Definition 2.5(iii) need not be fiberwise
isomorphic. However, if f is θ′-semistably separated and F and F ′ are families
of θ′-semistable Λ′-modules which are not S-equivalent, then their pullbacks
f ∗F and f ∗F ′ are families of θ′f -semistable Λ-modules which are not Sf -
equivalent (see the proof of Theorem 2.7 below). In particular, if f is θ′-
stably separated and F and F ′ are families of θ′-stable Λ′-modules which are
not fiberwise isomorphic, then their pullbacks f ∗F and f ∗F ′ are families
of θ′f -stable Λ-modules which are not fiberwise isomorphic. Thus to reduce
collapsing different isomorphism classes of Λ-modules to a point, one should
work with θ′-stably separated f and families of θ′f -stable Λ-modules.

The following result is our main tool for reducing the collapsing phenomenon de-
scribed in Example 2.4.

Theorem 2.7. Let Λ′, θ′, d′, f , θ′f , d
′
f be as in Definition 2.5. Suppose that f is

θ′-semistably separated (resp. θ′-stably separated) with respect to d′, so that Mf,d′,θ′

(resp. Ms
f,d′,θ′) is defined. Then Mf,d′,θ′ (resp. Ms

f,d′,θ′ if d′ is indivisible) is a coarse
(resp. fine) moduli space for families of θ′f -semistable (resp. θ′f -stable) Λ-modules of
dimension vector d′f , up to Sf -equivalence.

Proof. We consider the functors

F ′, G : C → Sets

(resp. F ′s, Gs : C → Sets)

which are defined as follows. The functor F ′ (resp. F ′s) sends each variety X in
C to the set F ′(X) (resp. F ′s(X)) of S-equivalence classes of families over X of θ′-
semistable (resp. θ′-stable) Λ′-modules of dimension vector d′. The functor G (resp.
Gs) is the functor which sends each variety X in C to the set G(X) (resp.Gs(X))
of Sf -equivalence classes of families over X of θ′f -semistable (resp. θ′f -stable) Λ-
modules of dimension vector d′f . We have to show that Mf,d′,θ′ (resp. Ms

f,d′,θ′ if d′ is
indivisible) satisfies the properties of a coarse (resp. fine) moduli space with respect
to the functor G (resp. Gs). There are two natural transformations

Ξ : F ′ → G ,

Ξs : F ′s → Gs

defined in the following way. For each X in C define Ξ(X) : F ′(X) → G(X) by
Ξ(X)([F ]) = [f ∗F ], where [F ] denotes the S-equivalence class of F and [f ∗F ]
denotes the Sf -equivalence class of f ∗F . Let Ξs be the restriction of Ξ to F ′s. We
claim that there is a unique natural transformation

Ψ : G→ F ′
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with Ψ(X)([f ∗F ]) = [F ] for every family F over X of θ′-semistable Λ′-modules of
dimension vector d′. To show Ψ is well-defined, suppose F and F ′ are two families
over X of θ′-semistable Λ′-modules of dimension vector d′ such that G = f ∗F and
G ′ = f ∗F ′ are Sf -equivalent. This means that there are two S-equivalent families
F0 and F ′

0 over X of θ′-semistable Λ′-modules of dimension vector d′ such that G
(resp. G ′) is fiberwise isomorphic to f ∗F0 (resp. f ∗F ′

0). We need to show that F
and F ′ are S-equivalent. Considering the fibers, we have Gx = (f ∗F)x

∼= (f ∗F0)x

(resp. G ′x = (f ∗F ′)x
∼= (f ∗F ′

0)x) as Λ-modules for all x ∈ X. Since f is θ′-semistably
separated with respect to d′, it follows that Fx and (F0)x (resp. F ′

x and (F ′
0)x) are

S-equivalent for all x ∈ X. This implies that F and F0 (resp. F ′ and F ′
0) are S-

equivalent. Thus F and F ′ are S-equivalent, which implies that Ψ is well-defined. It
is clear that Ψ is unique, since every element of G(X) has the form [f ∗F ] for some
family F over X of θ′-semistable Λ′-modules of dimension vector d′. In a similar way
we can define a natural transformation

Ψs : Gs → F ′s.

Since (Ψ ◦ Ξ)(X) and (Ξ ◦Ψ)(X) are each the identity map, Ξ is an isomorphism of
functors. Similarly, it follows that Ξs is an isomorphism of functors. Hence Theorem
2.7 follows from Theorem 2.3. �

Remark 2.8. Let Λ′, θ′, d′, f , θ′f , d
′
f be as in Theorem 2.7, and suppose that f

is θ′-semistably separated (resp. θ′-stably separated) with respect to d′. Suppose
there is an additive function θ : K0(Λ) → Z such that if G and G ′ are families of
θ′f -semistable (resp. θ′f -stable) Λ-modules of dimension vector d′f and Sf -equivalent,
then they are families of θ-semistable (resp. θ-stable) Λ-modules of dimension vector
d′f and S-equivalent.

We consider the functors

F,G : C → Sets

(resp. F s, Gs : C → Sets)

which are defined as follows. The functor F (resp. F s) sends each variety X in
C to the set F (X) (resp. F s(X)) of S-equivalence classes of families over X of θ-
semistable (resp. θ-stable) Λ-modules of dimension vector d′f . The functor G (resp.
Gs) is the functor which sends each variety X in C to the set G(X) (resp.Gs(X)) of
Sf -equivalence classes of families over X of θ′f -semistable (resp. θ′f -stable) Λ-modules
of dimension vector d′f .

By the above assumptions, there is a natural transformation of functors G → F
(resp. Gs → F s). Consider King’s moduli space MΛ(d′f , θ) (resp. Ms

Λ(d′f , θ))
associated to F (resp. F s) from Theorem 2.3, and the moduli space Mf,d′,θ′ (resp.
Ms

f,d′,θ′) associated to G (resp. Gs) from Theorem 2.7. Then the definition of coarse
moduli space implies that there is a homomorphism Mf,d′,θ′ → MΛ(d′f , θ) (resp.
Ms

f,d′,θ′ →Ms
Λ(d′f , θ)) in C.

In the next theorem we discuss the action on the fine moduli spaces Ms
f,d′,θ′ which

are induced by algebra automorphisms of Λ. We first need the following definition.
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Definition 2.9. Let σ be a K-algebra automorphism of Λ, and let X be a variety in
C. Then σ acts on families of Λ-modules over X by “twisting” as follows. Let G be
a family of Λ-modules over X. Then σ(G) is the family H over X such that H = G
as locally free sheaves of OX-modules and αH = αG ◦ σ.

Theorem 2.10. Let Λ′, θ′, d′, f be as in Theorem 2.7. Suppose that d′ is indivisible
and that f is θ′-stably separated with respect to d′. Let σ be an algebra automorphism
of Λ and define f ′ = f ◦ σ. Let Uf (resp. Uf ′) be the universal family over Ms

f,d′,θ′

(resp. Ms
f ′,d′,θ′). Then there exists an isomorphism τf,f ′ : Ms

f,d′,θ′ → Ms
f ′,d′,θ′ in C

such that [σ(h∗(Uf ))] = [(τf,f ′ ◦ h)∗(Uf ′)] for every morphism h : X →Ms
f,d′,θ′ in C.

Proof. We consider the following two functors Ff , Ff ′ : C → Sets. For a variety X in
C, let Ff (X) (resp. Ff ′(X)) be the set of all Sf -equivalence (resp. Sf ′-equivalence)
classes of families of θ′f -stable (resp. θ′f ′-stable) Λ-modules of dimension vector d′f
(resp. d′f ′). Twisting families by σ induces an isomorphism of functors

Tσ : Ff → Ff ′ .

Hence Tσ(Ms
f,d′,θ′) : Ff (Ms

f,d′,θ′) → Ff ′(Ms
f,d′,θ′) is bijective. Since Ff (resp. Ff ′) is

represented by Ms
f,d′,θ′ (resp. Ms

f ′,d′,θ′), Tσ induces a bijective map

Tσ(Ms
f,d′,θ′) : HomC(Ms

f,d′,θ′ ,Ms
f,d′,θ′) → HomC(Ms

f,d′,θ′ ,Ms
f ′,d′,θ′).

Define τf,f ′ to be the image of idMs
f,d′,θ′

under Tσ(Ms
f,d′,θ′). Then [τ ∗f,f ′(Uf ′)] = [σ(Uf )].

Suppose now that X is an arbitrary variety in C and that h ∈ HomC(X,Ms
f,d′,θ′).

Then h corresponds to the family h∗(Uf ), and Tσ(X)(h) corresponds to the family
σ(h∗(Uf )). Since σ(h∗(Uf )) = h∗(σ(Uf )), we get

[σ(h∗(Uf ))] = [h∗(τ ∗f,f ′(Uf ′))] = [(τf,f ′ ◦ h)∗(Uf ′)].

Therefore, Tσ(X)(h) = τf,f ′ ◦ h. This means that

Tσ : Ff = HomC(−,Ms
f,d′,θ′) −→ HomC(−,Ms

f ′,d′,θ′) = Ff ′

is the isomorphism of functors which corresponds to the composition of morphisms
with the morphism τf,f ′ : Ms

f,d′,θ′ →Ms
f ′,d′,θ′ . In particular, it follows that τf,f ′ is an

isomorphism in C. �

3. Circular modules

Circular quivers have been used by many authors to construct indecomposable
modules for algebras (see, for example, [7, 14, 6, 18, 5]). In this section we will show
how the methods of the previous section lead to a generalization of some of these
results. The modules we construct will be called circular. Our main concern is to find
sufficient conditions on the algebra homomorphism f : Λ → Λ′ so that the hypotheses
of Theorem 2.7 are satisfied. This will ensure that the fine moduli spaces Ms

f,d′,θ′ of
Theorem 2.7 are well-defined. We then apply these results to special biserial algebras
Λ, in which case the circular modules are precisely the band modules. We also provide
some examples of circular modules for other algebras Λ which are not band modules.
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3.1. Moduli spaces. As in the previous section, let Λ = KQ/J be an arbitrary basic
algebra. We first define Λ′ and the indecomposable Λ′-modules whose pullbacks will
define the circular modules.

Definition 3.1. (i) Let n ≥ 2, and let Q′ be a circular quiver with n vertices
v1, v2, . . . , vn and n arrows β1, β2, . . . , βn such that Q′ contains at least one
sink, where we may assume without loss of generality that β1 points counter-
clockwise.

Q′ =

v1βn

oooooo

vn v2

β1ggOOOOOO

β2

v3

Define Λ′ to be the path algebra Λ′ = KQ′.
(ii) We define the word z′ corresponding to Q′ to be z′ = z1z2 · · · zn where

zj =

{
βj , βj points counter-clockwise
β−1

j , βj points clockwise

Let Vm(λ) be the indecomposable K[x, x−1]-module of K-dimension m such
that x acts as the indecomposable Jordan matrix Jm(λ), λ ∈ K∗. Let
M(z′, λ,m) be the Λ′-module which, as representation of Q′, assigns to each
vertex the vector space Km, to the arrow β1 the map Jm(λ), and to all other
arrows the identity map. This module is called a band module for Λ′ of type
z′ and is indecomposable (see [5, §3]). There are two cases in which the pa-
rameter set K∗ of these band modules has to be extended. In case Q′ has
exactly one sink and z′ has the form z′ = β1β

−1
2 · · · β−1

n , it makes sense to
include λ = 0 in the parameter set, since M(z′, 0,m) behaves like a band

module for Λ′ (see [4, (2.6)]). In case n = 2, Q′ has the form Q′ = · ·
β2

oo
β1oo

and it makes sense to include both λ = 0 and λ = ∞ in the parameter set,
where we define M(z′,∞,m) = M(β1β

−1
2 ,∞,m) to be M(β2β

−1
1 , 0,m). Then

M(z′, 0,m) and M(z′,∞,m) behave like band modules for Λ′ (see [4, (2.6)]).
Thus the parameter set Kz′ corresponding to the band modules for Λ′ of type
z′ is either K∗, K, or K ∪ {∞}. In all cases Kz′ is an open subset of the
projective line P1 over K, and thus defines a quasi-projective variety over K.

(iii) Let f : Λ → Λ′ be an algebra homomorphism. Then for each λ ∈ Kz′ and
each m ∈ Z+, the pullback f ∗M(z′, λ,m) is called a circular Λ-module.

Remark 3.2. Note that Λ′ = KQ′ is a string algebra. Hence all its indecomposable
modules are given as string and band modules, as described e.g. in [5, §3].

We now give a sufficient criterion when the pullbacks of two non-isomorphic band
modules for Λ′ define two non-isomorphic circular modules for Λ. This will later be
used to show that f : Λ → Λ′ is θ′-stably separated for a certain d′ and θ′.
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Proposition 3.3. Suppose Q′, Λ′, z′, and f are as in Definition 3.1. Assume further
there exists an algebra automorphism ω of Λ′ and a partition A1 ∪ A2 ∪ · · · ∪ Ar of
the arrows of Q′ such that the following conditions are satisfied:
Define Σi =

∑
ξ∈Ai

ξ ∈ Λ′ for 1 ≤ i ≤ r.

(i) The preimage f−1(ω(Σi)) is non-empty for all 1 ≤ i ≤ r.
(ii) If for some 1 ≤ j ≤ n, zjzj+1 is equal to βjβ

−1
j+1 or to β−1

j βj+1, then βj

and βj+1 do not belong to the same set Ai. Here we use the convention that
zn+1 = z1.

(iii) If ρ is a nontrivial quiver automorphism of Q′, then there exists at least one
1 ≤ i ≤ r with ρ(Ai) 6= Ai.

Then the circular module f ∗M(z′, λ,m) is an indecomposable Λ-module for λ ∈ Kz′

and m ∈ Z+. Moreover, f ∗M(z′, λ,m) and f ∗M(z′, µ, l) are isomorphic Λ-modules
if and only if λ = µ and m = l.

Proof. It follows e.g. from [5, p. 161] that M(z′, λ,m) is an indecomposable Λ′-
module for λ ∈ Kz′ and m ∈ Z+, and that M(z′, λ,m) and M(z′, µ, l) are isomorphic
Λ′-modules if and only if λ = µ and m = l.

The idea of the proof of Proposition 3.3 is to define a subalgebra Λ0 of Λ′ such
that Λ0 ⊆ f(Λ) and such that M(z′, λ,m)

∣∣
Λ0

is an indecomposable Λ0-module for

λ ∈ Kz′ and m ∈ Z+, and such that M(z′, λ,m)
∣∣
Λ0

and M(z′, µ, l)
∣∣
Λ0

are isomorphic

Λ0-modules if and only if λ = µ and m = l. To construct Λ0 we use results from
[11]. Define Q′′ to be the quiver with one vertex u and r loop arrows ξ1, ξ2, . . . , ξr,
and define the quiver homomorphism F : Q′ → Q′′ by F (vj) = u and F (βj) = ξi
if βj ∈ Ai. Define I ′′ to be the ideal in KQ′′ generated by all paths of length at
least n. Then Λ′′ = KQ′′/I ′′ is a finite dimensional algebra. Moreover, F satisfies
the conditions (W1), (W2) and (W3) of [11]. We define an algebra homomorphism
g : KQ′′ → KQ′ by g(ξi) = ω(Σi). Then g(I ′′) = 0, since any path in KQ′ has
length at most n − 1. Hence g defines an algebra homomorphism g : Λ′′ → Λ′. We
define Λ0 = g(Λ′′). Then Λ0 is the subalgebra of Λ′ generated by {ω(Σi)}i=1,...,r, and
therefore Λ0 ⊆ f(Λ). It follows as in [11, Remark (1) on p. 188] that g∗M(z′, λ,m)
is an indecomposable Λ′′-module for λ ∈ Kz′ and m ∈ Z+. It also follows from the
analysis of the maps between tree and band modules in [11] that g∗M(z′, λ,m) and
g∗M(z′, µ, l) are isomorphic Λ′′-modules if and only if λ = µ and m = l. Since
g(Λ′′) = Λ0, we obtain the desired results for the modules M(z′, λ,m)

∣∣
Λ0

, λ ∈ Kz′

and m ∈ Z+. This proves Proposition 3.3. �

Remark 3.4. Circular modules are more general than the band modules for arbitrary
basic algebras Λ = KQ/J as described, for example, in [11]. The algebra homo-
morphisms f : Λ → KQ′ which correspond to such band modules always satisfy
conditions (i), (ii) and (iii) of Proposition 3.3. Moreover, for each 1 ≤ i ≤ r there
exists a unique arrow αi in Q with f−1(Σi) = {αi + J}. In §3.3, we will discuss
examples of circular modules which are not band modules.

We now define an additive function θ′ : K0(Λ
′) → Z which is preserved by every

quiver automorphism of the quiver Q′.
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Definition 3.5. For all vertices vi in Q′, let Si be a simple Λ′-module associated to
vi. We define θ′([Si]) = 1− bi,l − bi,r where bi,l and bi,r are defined as follows.

In case vi is a source in Q′, let bi,l be the number of arrows from vi to the next
sink when walking counter-clockwise around Q′, and let bi,r be the number of arrows
from vi to the next sink when walking clockwise.

Suppose now that vi is not a source in Q′. We have to distinguish between two
cases:

(i) The quiver Q′ has exactly one source vi0 . Then Q′ has exactly one sink vi1 .
For vi = vi1 , we let bi,l = −1 if vi−1 6= vi0 and bi,l = 0 otherwise, and let
bi,r = −1 if vi+1 6= vi0 and bi,r = 0 otherwise. In case vi 6= vi1 , let bi,l = 1 if
vi−1 = vi1 and bi,l = 0 otherwise, and let bi,r = 1 if vi+1 = vi1 and bi,r = 0
otherwise. Note that we set vn+1 = v1 and v0 = vn.

(ii) The quiver Q′ has at least two sources. Then we let bi,l = 0 = bi,r.

Example 3.6. In the following we give a few examples of circular quivers Q′ where
we label each vertex vi by θ′([Si]).

(i) We first look at the case when Q′ has exactly one source and one sink.

Q′ =

3 0
β1oo

0

β4

OO

−3
β3

oo

β2

OO

Q′ =

2 −4
β1oo

β2

  A
AA

AA
AA

A

0

β5

@@�������
1

β3
wwnnnnnnnnnnnnnnn

1
β4

ggNNNNNNNNNNNNNN

(ii) Now we consider a circular quiver Q′ which has 2 sources.

Q′ =

1

−3

β6

>>}}}}}}}}

β5

��

−1

β1

``AAAAAAAA

β2

��
1

β4   A
AA

AA
AA

A 1

1
β3

>>}}}}}}}}

Note that in caseQ′ has at least 2 sources, we get the following result. Suppose
vi and vj are two sinks when we walk clockwise from vi to vj and that there
are no other sinks in between vi and vj. In this case we will say that vj is
the next clockwise sink from vj. Let Cij be the string zizi+1 · · · zj−1, and let
M(Cij) be the corresponding string module for Λ′ (for the definition of string
modules, see e.g. [5, §3]). Then θ′([M(Cij)]) = 1. In the above example, we
get θ′([M(β1β

−1
2 )]) = 1 and θ′([M(β3β4β5β

−1
6 )]) = 1.

Proposition 3.7. (i) The additive function θ′ : K0(Λ
′) → Z defined in Defini-

tion 3.5 is preserved by every quiver automorphism of Q′.
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(ii) The isomorphism classes of θ′-stable Λ′-modules of dimension vector d′ =
(1, 1, . . . , 1) are in bijection with the isomorphism classes of the Λ′-band mod-
ules M(z′, λ, 1) for λ ∈ Kz′.

Proof. Part (i) is clear from the fact that a quiver automorphism of Q′ takes sources
to sources, sinks to sinks and preserves minimal distances from arbitrary vertices to
sinks.

For part (ii) we have to show that all M(z′, λ, 1), λ ∈ Kz′ , are θ′-stable, and that
there are no other θ′-stable Λ′-modules of dimension vector d′ = (1, 1, . . . , 1), up to
isomorphism. Let λ ∈ Kz′ . By the definition of θ′ it follows that θ′([M(z′, λ, 1)]) = 0.
Let now N be a proper indecomposable Λ′-submodule of M(z′, λ, 1). Then it follows
that the dimension vector of N has at least one zero entry. Since Λ′ is a string
algebra, it follows from [5, §3] that N is a string module. Hence N = M(C ′) for
some string C ′ for Λ′. Since N is a submodule of M(z′, λ, 1), it follows that C ′ has
one of the following forms. The first case is that C ′ = 1vi

such that vi is a sink.
Then M(C ′) ∼= Si and θ′([M(C ′)]) = θ′([Si]) > 0. The second case is that C ′ has
length m ≥ 1 and C ′ = zizi+1 . . . zi+m−1 such that zi+m is an arrow in Q′ and zi−1

is a formal inverse. Here we set zn+1 = z1 and z0 = zn. From Definition 3.5, we
have that θ′([Sj]) ≥ 0 for all vj which are not sources. Then C ′ contains a vertex
which is a sink. If Q′ has exactly one source, C ′ cannot contain the source because
C ′ is a proper substring of z′. It follows that θ′([M(C ′)]) > 0. Suppose Q′ has
more than one source. It follows from Definition 3.5(ii) and Example 3.6(ii) that
θ′([Sj])+θ′([Sj+1])+ · · ·+θ′([Sk]) = 1 for all pairs of sinks vj 6= vk such that vk is the
next clockwise sink from vj. Therefore it follows that θ′([M(C ′)]) > 0, which means
that M(z′, λ, 1) is θ′-stable.

Let now M be an arbitrary Λ′-module of dimension vector d′ = (1, 1, . . . , 1). Then
θ′([M ]) = 0. Suppose first that M is decomposable. Then M = M1⊕M2, and either
θ′([M1]) = 0 = θ′([M2]) which means M is not θ′-stable, or one of θ′([M1]) or θ′([M2])
is negative and M is not even θ′-semistable. Suppose now that M is indecomposable
of dimension vector d′ and not isomorphic to any of M(z′, λ, 1), λ ∈ Kz′ . Then it
follows from [5, §3] that M is a string module M = M(Ci) for a string of the form
Ci = zi+1zi+2 · · · zi−1, i ∈ {1, . . . , n}, where we set zn+1 = z1 and z0 = zn. We need to
show that M(Ci) is not θ′-stable. In case Q′ has exactly one source and exactly one
sink, θ′ is given as in Definition 3.5(i). Without loss of generality the sink is v1 and
the source is vl+1 for l ∈ {1, . . . , n−1}. Let k = n− l. We may assume that k ≥ l. If
k = l = 1, the only possible Ci are C1 = β−1

2 and C2 = β1. But M(C1) ∼= M(z′, 0, 1)
and M(C2) ∼= M(z′,∞, 1) are both band modules, so there are no M to consider in
this case. If k > l = 1, then θ′([S1]) = 2, θ′([S2]) = −k = −(n − 1), θ′([Si]) = 1,
3 ≤ i ≤ n− 1, and θ′([Sn]) = 0. In this case, M(C1) ∼= M(z′, 0, 1) is a band module,
so we do not need to consider it. Since Sn is a proper submodule of M(Cn), M(Cn)
is not θ′-stable. For 2 ≤ i ≤ n − 1, Li = M(β1β

−1
2 · · · β−1

i−1) is a proper submodule
of M(Ci) with θ′([Li]) = 2 − k + (i − 2) = −(n − 1) + i ≤ 0. So M(Ci) is not θ′-
stable. If k ≥ l > 1, then θ′([S1]) = 3, θ′([S2]) = 0 = θ′([Sn]), θ′([Sl+1]) = −(n− 1),
and for all other j, θ′([Sj]) = 1. In this case, S2 is a proper submodule of M(C1),
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and Sn is a proper submodule of M(Cn). So M(C1) and M(Cn) are both not θ′-
stable. For 2 ≤ i ≤ l, Li = M(βi+1 · · · βlβ

−1
l+1 · · · β

−1
n−1 · · · β−1

n ) is a proper submodule
of M(Ci), and θ′([Li]) = (l − i) − (n − 1) + (k − 2) + 3 = 2 − i ≤ 0. So M(Ci) is
not θ′-stable. Similarly, it follows that M(Cj) is not θ′-stable for l + 1 ≤ j ≤ n− 1.
We now consider M(Ci) in case Q′ has at least two sources. Then θ′ is given as in
Definition 3.5(ii). Let vh be the next sink when walking counter-clockwise from vi

around Q′, and let vj be the next sink when walking clockwise from vi+1 around Q′.
Suppose one of the vertices between vh and vi, including vi, is a source, and vi is
not a sink. Then Ni = M(zhzh+1 · · · zi−1) is a proper submodule of M(Ci), since Q′

has at least two sources, and θ′([Ni]) ≤ 0 (see Example 3.6(ii)). Suppose now one of
the vertices between vi+1 and vj, including vi+1, is a source, and vi+1 is not a sink.
Then Ni = M(zi+1zi+2 · · · zj−1) is a proper submodule of M(Ci) and θ′([Ni]) ≤ 0 (see
Example 3.6(ii)). Since one of these two cases has to occur, it follows that M(Ci) is
not θ′-stable. �

The following result establishes a fine moduli space whose points correspond to
isomorphism classes of certain circular modules. This theorem is a direct consequence
of Theorem 2.7, and Propositions 3.3 and 3.7.

Theorem 3.8. Suppose Q′, Λ′, z′, and f satisfy the conditions (i), (ii) and (iii) of
Proposition 3.3. Suppose further that θ′ is as in Definition 3.5 and d′ = (1, 1, . . . , 1).
Then f is θ′-stably separated with respect to d′, and Ms

f,d′,θ′, as defined in Definition
2.5, is a fine moduli space for families of θ′f -stable Λ-modules of dimension vector d′f ,
up to isomorphism. Moreover, the points of Ms

f,d′,θ′ are in one-one correspondence
with the circular modules f ∗M(z′, λ, 1), λ ∈ Kz′.

3.2. Applications to special biserial algebras. In this subsection, we describe
how Theorems 3.8 and 2.10 can be applied to special biserial algebras.

Definition 3.9. A basic algebra Λ = KQ/J is called special biserial, if the following
conditions are satisfied.

(i) Any vertex u ∈ Q is starting point of at most two arrows and end point of at
most two arrows.

(ii) For a given arrow α ∈ Q, there is at most one arrow γ such that γα /∈ J , and
there is at most one arrow δ such that αδ /∈ J .

If additionally J is generated by paths, Λ is called a string algebra.

Remark 3.10. Suppose Λ is a special biserial algebra. Let P be a set of submod-
ules of Λ giving a full set of representatives of projective indecomposable Λ-modules
which are also injective and not uniserial. Then Λ = Λ/(⊕P∈Psoc(P )) is a string al-
gebra. Furthermore, the indecomposable Λ-modules are exactly the indecomposable
Λ-modules which are not isomorphic to any P ∈ P .

For string algebras, the indecomposable modules are fully described as string and
band modules (see e.g. [5, §3] or [11]). Because of this structure of the indecom-
posable modules, it follows that special biserial algebras have either finite or tame
representation type.
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Let Λ = KQ/J be a basic special biserial algebra with corresponding string algebra
Λ = KQ/I. The band modules for Λ are certain circular modules f ∗M(z′, λ,m)
where f : Λ → KQ′ satisfies conditions (i), (ii) and (iii) of Proposition 3.3. More
precisely, f is induced by a quiver homomorphism F : Q′ → Q such that for each
1 ≤ i ≤ r there exists an arrow αi in Q with F (βj) = αi for all βj ∈ Ai. It is also
required that for each path v in Q′, F (v) does not lie in the ideal I for Λ. Then for
each vertex, resp. arrow, a in Q, f(a + J) =

∑
s in Q′,
F (s)=a

s, where an empty sum is set

equal to zero. In particular, for each 1 ≤ i ≤ r, αi is the unique arrow in Q with
f(αi + J) = Σi. The word B = w1w2 · · ·wn in Λ corresponding to z′ = z1z2 · · · zn

and f is defined by

wj =

{
αi , zj = βj and βj ∈ Ai

α−1
i , zj = β−1

j and βj ∈ Ai

and is called a band for Λ. We denote the module f ∗M(z′, λ,m) by M(B, λ,m).
Note that for all λ ∈ K∗, M(B, λ,m) is indeed a band module for Λ and lies in
a 1-tube of the Auslander-Reiten quiver of Λ. But in case the parameter set Kz′

contains 0 (resp. ∞), M(B, 0,m) (resp. M(B,∞,m)) may not behave like a band
module, i.e. it may not lie in a 1-tube of the Auslander-Reiten quiver of Λ. For this
reason, the parameter set KB of those values of λ for which M(B, λ,m) is a band
module for Λ may be properly contained in Kz′ . This happens only if z′ has the
form z′ = β1β

−1
2 · · · β−1

n (see [4, (2.6)] for details on KB). The modules M(B, λ,m),
λ ∈ KB, m ∈ Z+, are called band modules for Λ of type B.

The next result now follows from Theorem 3.8.

Proposition 3.11. Let Λ be a basic special biserial algebra, and let f : Λ → KQ′

define band modules for Λ of type B. Let d ∈ K0(Λ) be the dimension vector of the
Λ-modules M(B, λ, 1), λ ∈ KB. Suppose θ′, d′ and Ms

f,d′,θ′ are as in Theorem 3.8
and define MB to be the open subvariety of Ms

f,d′,θ′ obtained by removing the points
corresponding to parameter values in Kz′ −KB. Then MB is a fine moduli space for
families of band modules for Λ of type B of dimension vector d, up to isomorphism.
The points of MB are in one-one correspondence with the band modules M(B, λ, 1),
λ ∈ KB.

Regarding the action of algebra automorphisms σ of Λ on the moduli spaces MB,
we obtain the following result, which is a consequence of Proposition 3.11 and The-
orem 2.10.

Proposition 3.12. Let σ be an algebra automorphism of Λ such that σ sends band
modules of type B to band modules of type B′. Let UB (resp. UB′) be the universal
family over MB (resp. MB′). Then there exists an isomorphism τB,B′ : MB →MB′

in C such that [σ(h∗(UB))] = [(τB,B′ ◦ h)∗(UB′)] for every morphism h : X →MB in
C. If B = B′, then τB,B is an automorphism of MB. Since MB is isomorphic to
KB, τB,B is the restriction of an automorphism ρB of P1 to KB.

Remark 3.13. Proposition 3.12 essentially reproves [3, Thm. 3.1], and thus [4, Thm.
3.1(ii)], without having to use multi-pushout descriptions for band modules and a
lengthy case-by-case analysis.
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3.3. Circular modules which are not band modules. In this subsection, we
give some examples of circular modules which are not band modules in the sense
of [11]. We obtain fine moduli spaces for these circular modules from Theorem 3.8
when θ′ is as in Definition 3.5 and the dimension vector d′ is (1, 1, . . . , 1).

Let first Λ1 = KQ1/J1 where Q1 is the quiver

Q1 =

u0

α2

qq
α1

--

α3

��
u1

α4

OO

and J1 is generated by all paths in KQ1 of length at least 3. Let Q′ be the circular
quiver

Q′ =

v2

β1

~~||
||

||
||

v1 v3

β2

``BBBBBBBB

β3~~||
||

||
||

v4

β4

``BBBBBBBB

and define f1 : KQ1 → KQ′ by f1(u0) = v1 + v2 + v3, f1(u1) = v4, f1(α1) = f1(α2) =
β1 + β2, f1(α3) = β3, and f1(α4) = β4. Then f1 induces an algebra homomorphism
which satisfies f1(J1) = 0. It follows that f1 defines an algebra homomorphism f1 :
Λ1 → KQ′. Moreover, f1 satisfies the conditions (i), (ii) and (iii) of Proposition 3.3.
For z′ = β1β2β

−1
3 β−1

4 , the circular Λ1-modules Mλ,m = f ∗1 M(z′, λ,m), λ ∈ Kz′ = K∗

and m ∈ Z, are not band modules for Λ1, which can be seen as follows. The definition
of band modules as given in [11] implies that for every band module T for Λ1 any
two different arrows in Q1 which do not act as zero on T have to act differently on
T . Because f1(α1) = f1(α2) 6= 0, the action of α1 and α2 is non-zero and identical
on Mλ,m for each λ ∈ K∗ and m ∈ Z+. Therefore, the modules Mλ,m, λ ∈ K∗ and
m ∈ Z+, give an example of circular modules for Λ1 which are not band modules.

Let now Λ2 = KQ2 where Q2 is the quiver

Q2 =

u2

α1

}}||
||

||
||

u1 u3

α2

aaBBBBBBBB

α3}}||
||

||
||

α5oo

u4

α4

aaBBBBBBBB

Let Q′ be the same circular quiver as in the first example, and define f2 : KQ2 → KQ′

by f2(ui) = vi for 1 ≤ i ≤ 4, f2(αi) = βi for 1 ≤ i ≤ 4, and f2(α5) = β1β2. Then
f2 defines an algebra homomorphism which satisfies conditions (i), (ii) and (iii) of
Proposition 3.3. For z′ = β1β2β

−1
3 β−1

4 , the circular Λ2-modules Nλ = f ∗2 M(z′, λ, 1),
λ ∈ Kz′ = K∗, are not band modules for Λ2, which can be seen in the following way.
Since the K-dimension of Nλ is 4, any circular quiver S with a winding F : S → Q2
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satisfying (W1), (W2) and (W3) of [11] and giving rise to a band module of K-
dimension 4 has at most 4 vertices, hence at most 4 arrows. This means that for any
band module for Λ2 of dimension 4, there is at least one arrow in Q2 which acts as
zero on this module. But no arrow acts as zero on Nλ, λ ∈ K∗. Hence the modules
Nλ, λ ∈ K∗, give another example of circular modules which are not band modules.
Note that if λ 6= 1, the element α1α2−α4α3 acts nontrivially on Nλ. Thus Nλ is not
a module for the quotient KQ2/〈α1α2−α4α3〉; modules for this algebra are discussed
in [5].

4. Multi-strand modules

In this section we will consider certain representations of quivers which are obtained
from the disjoint union of linearly ordered quivers of type An for various n, by
identifying all sinks to a single vertex and all sources to a single vertex. In other
words, these are the same quivers which appear as the Ext quivers of the canonical
algebras. However, we will not assume the usual canonical relations for the canonical
algebras, but consider instead the path algebras of these quivers.

As in section 2, let Λ = KQ/J be an arbitrary basic algebra. We first define Λ′ and
the indecomposable Λ′-modules whose pullbacks define the multi-strand modules.

Definition 4.1. (i) Let r ≥ 2 and let t1, t2, . . . , tr be positive integers. Let
Q′ = Q′(t1, t2, . . . , tr) be the following quiver with vertices v0, vr+1, vi,j and
arrows αi,j where 1 ≤ i ≤ r, 1 ≤ j ≤ ti:

Q′ =

v0

α1,1

ttiiiiiiiiiiiiiiiiiiiii

α2,1zzuuuuuuuuu
αr,1

))SSSSSSSSSSSSSSSSSS

v1,1

α1,2

��

v1,2

α2,2

��

· · · · · · vr,1

αr,2

��
v1,2 v2,2 vr,2

...
...

...

v1,t1−1

α1,t1−1

��

v2,t2−1

α2,t2−1

��

· · · · · · vr,tr−1

αr,tr−1

��
v1,t1

α1,t1 **TTTTTTTTTTTTTTTTTTT v2,t2

α2,t2

$$I
IIIIIIII · · · · · · vr,tr

αr,truukkkkkkkkkkkkkkkk

vr+1

Define Λ′ to be the path algebra Λ′ = KQ′.
(ii) Let (`1, `2, . . . , `r) ∈ Kr − {(0, 0, . . . , 0)}. Define M(`1, `2, . . . , `r) to be the

Λ′-module given by the following representation

M(`1, `2, . . . , `r) = (X0, Xi,j, Xr+1, ϕi,j)
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of Q′. It assigns to v0 the vector space X0 = K, to vi,j the vector space
Xi,j = K for 1 ≤ i ≤ r, 1 ≤ j ≤ ti, and to vr+1 the vector space Xr+1 =
Kr/K · (`1, `2, . . . , `r) ∼= Kr−1. For 1 ≤ i ≤ r, 1 ≤ j ≤ ti − 1, it assigns
to αi,j the identity linear transformation ϕi,j, and to αi,ti the K-linear map
ϕi,ti which sends 1 ∈ Xi,ti = K to the coset ei +K · (`1, `2, . . . , `r) in Xr+1 =
Kr/K · (`1, `2, . . . , `r), where ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Kr has precisely
one non-zero entry at the i-th position. We denote the dimension vector of
M(`1, `2, . . . , `r) by (1, 1, . . . , 1, r − 1).

(iii) Let f : Λ → Λ′ be an algebra homomorphism. Then for each (`1, `2, . . . , `r) ∈
Kr − {(0, 0, . . . , 0)}, the pullback f ∗M(`1, `2, . . . , `r) is called a multi-strand
Λ-module.

Lemma 4.2. Let Q′ = Q′(t1, t2, . . . , tr) and Λ′ = KQ′ as in Definition 4.1. Sup-
pose (`1, `2, . . . , `r), (`

′
1, `

′
2, . . . , `

′
r) ∈ Kr − {(0, . . . , 0)}. Then M(`1, `2, . . . , `r) is an

indecomposable Λ′-module, and M(`1, `2, . . . , `r) ∼= M(`′1, `
′
2, . . . , `

′
r) if and only if the

following two one-dimensional subspaces of Kr are the same:

K · (`1, `2, . . . , `r) = K · (`′1, `′2, . . . , `′r).
In other words, M(`1, `2, . . . , `r) ∼= M(`′1, `

′
2, . . . , `

′
r) if and only if

(`1 : `2 : . . . : `r) = (`′1 : `′2 : . . . : `′r)

in projective (r − 1)-space Pr−1 over K.

Proof. Since M(`1, `2, . . . , `r)/rad(M(`1, `2, . . . , `r)) is a simple Λ′-module, it follows
that M(`1, `2, . . . , `r) is an indecomposable Λ′-module.

Now suppose that the representations of Q′ corresponding to the Λ′-modules
M(`1, `2, . . . , `r) and M(`′1, `

′
2, . . . , `

′
r), as described in Definition 4.1(ii), are iso-

morphic. For each vertex v in Q′, denote the K-linear isomorphism between the
vector spaces associated to v by τv. Then without loss of generality we can as-
sume that τv0 is the identity map, which implies that τvi,j

is the identity map for
1 ≤ i ≤ r, 1 ≤ j ≤ ti − 1. Moreover, τvr+1 has to send ei + K · (`1, `2, . . . , `r) to
ei +K · (`′1, `′2, . . . , `′r) for all 1 ≤ i ≤ r. This implies that

K · (`1, `2, . . . , `r) = K · (`′1, `′2, . . . , `′r)
which proves Lemma 4.2. �

Remark 4.3. Because of Lemma 4.2, the parameter set corresponding to the iso-
morphism classes of the Λ′-modules M(`1, . . . , `r) can be identified with projective
(r − 1)-space Pr−1.

We now give a sufficient criterion when the pullbacks of two non-isomorphic Λ′-
modules of the formM(`1, . . . , `r) andM(`′1, . . . , `

′
r) define two non-isomorphic multi-

strand modules for Λ.

Proposition 4.4. Suppose Q′, Λ′, and f are as in Definition 4.1. Define Σi =∑ti
j=1 αi,j ∈ Λ′ for 1 ≤ i ≤ r. Suppose that the following condition is satisfied:

(∗) The preimage f−1(Σi) is non-empty for all 1 ≤ i ≤ r.
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Then the multi-strand module f ∗M(`1, `2, . . . , `r) is an indecomposable Λ-module for
(`1, `2, . . . , `r) ∈ Kr − {(0, . . . , 0)}. Moreover, two pullbacks f ∗M(`1, `2, . . . , `r) and
f ∗M(`′1, `

′
2, . . . , `

′
r) are isomorphic Λ-modules if and only if

(`1 : `2 : . . . : `r) = (`′1 : `′2 : . . . : `′r) in Pr−1.

Proof. As in the proof of Proposition 3.3, we will define a subalgebra Λ0 of Λ′ such
that Λ0 ⊆ f(Λ) and such that M(`1, . . . , `r)

∣∣
Λ0

is an indecomposable Λ0-module for

(`1, . . . , `r) ∈ Kr − {(0, . . . , 0)}, and such that M(`1, . . . , `r)
∣∣
Λ0

and M(`′1, . . . , `
′
r)

∣∣
Λ0

are isomorphic Λ0-modules if and only if K · (`1, . . . , `r) = K · (`′1, . . . , `′r).
Let Λ0 be the subalgebra of Λ′ generated by the identity 1 and by {Σi}i=1,...,r.

Hence it follows from (*) that Λ0 ⊆ f(Λ). Moreover, the Σi satisfy the following
relations:

Σi · Σj = 0 for i 6= j,

(Σi)
ti = αi,ti · · · · · αi,2 · αi,1,

(Σi)
ti+1 = 0.

Consider the representation M(`1, `2, . . . , `r) = (X0, Xi,j, Xr+1, ϕi,j) of Q′ corre-
sponding to the Λ′-module M(`1, `2, . . . , `r), as described in Definition 4.1(ii). Let
1 ≤ i ≤ r, and let Xi,0 = X0. Then for 0 ≤ j ≤ ti, Σi acts on Xi,j as the linear trans-
formation ϕi,j. This implies that M(`1, . . . , `r)

∣∣
Λ0
/rad(M(`1, . . . , `r)

∣∣
Λ0

) is a simple

Λ0-module, and hence M(`1, . . . , `r)
∣∣
Λ0

is an indecomposable Λ0-module. Moreover,

there is a basis element b0 of X0 = Xi,0 = K such that

(4.1) (Σi)
ti(b0) = (ϕi,ti · · · · · ϕi,2 · ϕi,1) (b0) = ei +K · (`1, `2, . . . , `r) ∈ Xr+1,

and hence (
`1(Σ1)

t1 + · · ·+ `r(Σr)
tr
)
(b0) = 0.

Since (Σi)
ti acts as the zero linear transformation on Xi,j for 1 ≤ i ≤ r, 1 ≤ j ≤ ti,

and (Σi)
ti also sends ei +K · (`1, `2, . . . , `r) to zero for 1 ≤ i ≤ r, this implies that

(4.2) `1(Σ1)
t1 + · · ·+ `r(Σr)

tr = 0.

Viewing the (Σi)
ti , 1 ≤ i ≤ r, as linear transformations of the K-vector space

spanned by basis elements of X0 and of Xi,j for 1 ≤ i ≤ r, 1 ≤ j ≤ ti, and by
ei + K · (`1, `2, . . . , `r) ∈ Xr+1 for 1 ≤ i ≤ r, we obtain the following: By (4.2)
(Σ1)

t1 , . . . , (Σr)
tr are K-linearly dependent satisfying the particular equation (4.2),

and by (4.1) there are (r − 1) of them which are linearly independent over K. This
implies that M(`1, . . . , `r)

∣∣
Λ0

and M(`′1, . . . , `
′
r)

∣∣
Λ0

are isomorphic Λ0-modules if and

only if we have K · (`1, . . . , `r) = K · (`′1, . . . , `′r). �

We now define an additive function θ′ : K0(Λ
′) → Z such that the θ′-stable Λ′-

modules of dimension vector (1, 1, . . . , 1, r−1) are precisely the modulesM(`1, . . . , `r)
from Definition 4.1(ii).

Definition 4.5. Let Q′ = Q′(t1, t2, . . . , tr) and Λ′ = KQ′ as in Definition 4.1. We
denote by S0 (resp. Si,j for 1 ≤ i ≤ r, 1 ≤ j ≤ ti, resp. Sr+1) a simple Λ′-module
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corresponding to the vertex v0 (resp. vi,j for 1 ≤ i ≤ r, 1 ≤ j ≤ ti, resp. vr+1). We
define an additive function θ′ : K0(Λ

′) → Z by

θ′([S0]) = −(r − 1) · (t1 + · · ·+ tr + 1), θ′([Si,j]) = (r − 1), θ′([Sr+1]) = 1

for 1 ≤ i ≤ r, 1 ≤ j ≤ ti.
It is obvious that θ′ is preserved by every quiver automorphism of Q′.

Proposition 4.6. Let θ′ : K0(Λ
′) → Z be the additive function from Definition

4.5. The isomorphism classes of θ′-stable Λ′-modules of dimension vector d′ =
(1, 1, . . . , 1, r − 1) are in bijection with the isomorphism classes of the Λ′-modules
M(`1, . . . , `r), as defined in Definition 4.1, for (`1 : . . . : `r) ∈ Pr−1.

Proof. We have to show that all M(`1, . . . , `r), (`1, . . . , `r) ∈ Kr − {(0, . . . , 0)}, are
θ′-stable, and that there are no other θ′-stable Λ′-modules of dimension vector d′ =
(1, 1, . . . , 1, r − 1), up to isomorphism. Let (`1, . . . , `r) ∈ Kr − {(0, . . . , 0)}. By the
definition of θ′ it follows that θ′([M(`1, . . . , `r)]) = 0. Let now N be a proper Λ′-
submodule of M(`1, . . . , `r). Then it follows that N ⊆ rad(M(`1, . . . , `r)). Since
M(`1, . . . , `r)/rad(M(`1, . . . , `r)) corresponds to the vertex v0 in Q′, it follows that
θ′([N ]) > 0.

Let now M be an arbitrary Λ′-module of dimension vector d′ = (1, 1, . . . , 1, r− 1).
Then θ′([M ]) = 0. Suppose first that M is decomposable. Then M = M1 ⊕M2, and
either θ′([M1]) = 0 = θ′([M2]) which means M is not θ′-stable, or one of θ′([M1])
or θ′([M2]) is negative and M is not even θ′-semistable. Suppose now that M is
indecomposable of dimension vector d′ and denote its corresponding representation
of Q′ by

M = (Y0, Yi,j, Yr+1, µi,j)

where Y0, Yi,j (1 ≤ i ≤ r, 1 ≤ j ≤ ti) and Yr+1 are the vector spaces of dimension
1, 1 and r − 1, respectively, corresponding to the respective vertices in Q′, and µi,j

(1 ≤ i ≤ r, 1 ≤ j ≤ ti) is the linear transformation corresponding to the arrow αi,j

in Q′.
Suppose first that there exist 1 ≤ i0 ≤ r, 1 ≤ j0 ≤ ti − 1 with µi0,j0 = 0.

Then we obtain a submodule N of M whose corresponding representation N =
(Z0, Zi,j, Zr+1, νi,j) of Q′ is obtained from M by setting Z0 = Y0, Zr+1 = Yr+1,
Zi0,l = 0 and νi0,l = 0 for j0 < l ≤ ti0 , and by setting Zi,j = Yi,j and νi,j = µi,j for
all other 1 ≤ i ≤ r, 1 ≤ j ≤ ti. Moreover, θ′([N ]) = −(r − 1) · (ti0 − j0) < 0, which
means that M is not θ′-stable.

Suppose now that µi,j 6= 0 for all 1 ≤ i ≤ r, 1 ≤ j ≤ ti − 1. Since M is in-
decomposable, it follows that the images of µi,ti , 1 ≤ i ≤ r, have to generate all of
Yr+1

∼= Kr−1. But this means that there is an element (`1, . . . , `r) ∈ Kr−{(0, . . . , 0)}
such that M is isomorphic to the representation of Q′ obtained from M by replac-
ing Yr+1 by Kr/K · (`1, . . . , `r) and µi,ti by the linear transformation which sends
1 ∈ Yi,ti = K to ei + K · (`1, . . . , `r) ∈ Kr/K · (`1, . . . , `r). Since all the µi,j,
1 ≤ i ≤ r, 1 ≤ j ≤ ti − 1, are given by non-zero scalars, it then follows that M is
isomorphic to M

(
(µ−1

1,1 · · ·µ−1
1,t1−1) · `1, . . . , (µ−1

r,1 · · ·µ−1
r,tr−1) · `r

)
. �
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The following result establishes a fine moduli space whose points correspond to
isomorphism classes of certain multi-strand modules. This theorem is a direct con-
sequence of Theorem 2.7, and Propositions 4.4 and 4.6.

Theorem 4.7. Suppose Q′, Λ′, and f satisfy the condition (∗) of Proposition 4.4.
Suppose further that θ′ is as in Definition 4.5 and d′ = (1, 1, . . . , 1, r − 1). Then f
is θ′-stably separated with respect to d′, and Ms

f,d′,θ′, as defined in Definition 2.5, is
a fine moduli space for families of θ′f -stable Λ-modules of dimension vector d′f , up to
isomorphism. Moreover, the points of Ms

f,d′,θ′ are in one-one correspondence with

the multi-strand modules f ∗M(`1, . . . , `r) for (`1 : . . . : `r) ∈ Pr−1.

5. Example

In this section we will give an example of Λ, Λ′, f : Λ → Λ′, d′ and θ′ in which the
moduli space Ms

f,d′,θ′ is isomorphic to Pr × Ps. For an appropriate additive function
θ : K0(Λ) → Z and dimension vector d = d′f ∈ K0(Λ), we will obtain a morphism
Ms

f,d′,θ′ →MΛ(d, θ) in C where MΛ(d, θ) is King’s moduli space and is isomorphic
to Ps. This morphism collapses the first factor Pr of Ms

f,d′,θ′ .
Assume r, s are positive integers. Let Λ = KQ/J where Q is the quiver

Q =

...
u0

ω1zz

ω2

��

ωr+1

MM
ξ

##F
FF

FF
FF

FF
F

u1

γs+1

��

γ2

��

γ1

$$

· · ·

u2

and J = 〈ωiωj, ξωj, ω
2
i | i 6= j, 1 ≤ i, j ≤ r+ 1〉. Let Λ′ = KQ′ where Q′ is the quiver

Q′ =

v01

αr+1

��

α2

��

α1

##

ρ

**TTTTTTTTTTTTTTTTTTT

· · · v1

βs+1

��

β2

��

β1

##

v02 · · ·

v2

and define f : Λ → Λ′ by f(u0) = v01 + v02, f(u1) = v1, f(u2) = v2, f(ωi) = αi,
1 ≤ i ≤ r + 1, f(ξ) = ρ, and f(γj) = βj, 1 ≤ j ≤ s + 1. Let d′ be the dimension
vector d′ = (d′00, d

′
01, d

′
1, d

′
2) = (1, r, 1, s) for Λ′, and let θ′ : K0(Λ

′) → Z be the additive
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function with θ′([S00]) = −(r+s+1), θ′([S01]) = 1, and θ′([S1]) = 1 = θ′([S2]), where
S∗ denotes a simple Λ′-module associated to the vertex v∗ for ∗ ∈ {01, 02, 1, 2}.

The θ′-stable Λ′-modules of dimension vector d′ = (1, r, 1, s) can be described as
follows.

Let (k, `) = (k1, . . . , kr+1, `1, . . . , `s+1) ∈ Kr+1 × Ks+1 − {(0, 0)}. Define M(k, `)
to be the Λ′-module given by the following representation

M(k, `) = (X01, X02, X1, X2, ϕi, ψj)

of Q′. It assigns to v01 the vector space X01 = K, to v02 the vector space X02 =
Kr+1/K · (k1, . . . , kr+1) ∼= Kr, to v1 the vector space X1 = K, and to v2 the vector
space X2 = Ks+1/K · (`1, . . . , `s+1) ∼= Ks. For 1 ≤ i ≤ r + 1, it assigns to αi the
K-linear map ϕi which sends 1 ∈ X01 = K to the coset εi + K · (k1, . . . , kr+1) in
X02 = Kr+1/K · (k1, . . . , kr+1), where εi = (0, . . . , 0, 1, 0, . . . , 0) ∈ Kr+1 has precisely
one non-zero entry at the i-th position. For 1 ≤ j ≤ s + 1, it assigns to βj the
K-linear map ψj which sends 1 ∈ X1 = K to the coset ηj + K · (`1, . . . , `s+1) in
X2 = Ks+1/K · (`1, . . . , `s+1), where ηj = (0, . . . , 0, 1, 0, . . . , 0) ∈ Ks+1 has precisely
one non-zero entry at the j-th position. Hence the dimension vector of M(k, `) is
d′ = (1, r, 1, s).

Similarly to the proof of Lemma 4.2, one can show that M(k, `) ∼= M(k′, `′) if and
only if (k1 : . . . : kr+1) = (k′1 : . . . : k′r+1) in Pr and (`1 : . . . : `s+1) = (`′1 : . . . : `′s+1) in
Ps. Moreover, it follows similarly to the proof of Proposition 4.6 that the isomorphism
classes of θ′-stable Λ′-modules of dimension vector d′ = (1, r, 1, s) are in bijection with
the isomorphism classes of the Λ′-modules M(k, `) for (k, `) ∈ Pr × Ps.

An argument similar to the proof of Proposition 4.4 shows that the above K-
algebra homomorphism f : Λ → Λ′ is θ′-stably separated with respect to d′. Hence it
follows from Theorem 2.7 that Ms

f,d′,θ′ , as defined in Definition 2.5, is a fine moduli
space for families of θ′f -stable Λ-modules of dimension vector d′f , up to isomorphism.
Moreover, the points of Ms

f,d′,θ′ are in one-one correspondence with the modules
f ∗M(k, `) for (k, `) ∈ Pr × Ps.

We now determine which additive functions θ : K0(Λ) → Z can be chosen so that
the modules f ∗M(k, `) for (k, `) ∈ Pr ×Ps are among the θ-semistable Λ-modules of
dimension vector d = d′f . Note that d′f = (d0, d1, d2) = (r + 1, 1, s). For i = 0, 1, 2,
let Ti be a simple Λ-module corresponding to the vertex ui in Q. We claim that
the modules f ∗M(k, `) for (k, `) ∈ Pr × Ps are among the θ-semistable Λ-modules
of dimension vector d = d′f only if θ([T0]) = 0. This can be seen as follows. Each
module f ∗M(k, `) has a direct sum of r copies of T0 as a submodule of its socle. Hence
θ([T0]) must be non-negative. If θ([T0]) is strictly positive, say θ([T0]) = a > 0, then
θ([T1]) + s · θ([T2]) = −(r + 1) · a < 0. But since f ∗M(k, `) always has a submodule
of dimension vector [T1] + s · [T2], this is impossible.

This implies that there are basically two possibilities for θ so that the modules
f ∗M(k, `) for (k, `) ∈ Pr × Ps are among the θ-semistable Λ-modules of dimension
vector d = d′f = (r + 1, 1, s). Namely, either θ is identically zero, or θ([T0]) = 0,
θ([T1]) = −b · s and θ([T2]) = b for some 0 < b ∈ Z, in which case we can choose
without loss of generality b = 1.
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In case θ is identically zero, all Λ-modules are θ-semistable, the only θ-stable Λ-
modules are the simple Λ-modules, and all Λ-modules of a given dimension vector
are S-equivalent. Hence King’s moduli space MΛ(d, θ) is a point.

In case θ([T0]) = 0, θ([T1]) = −s and θ([T2]) = 1, we claim that a Λ-module N of
dimension vector d = d′f = (r+1, 1, s) is θ-semistable if and only if the corresponding
representation N of the quiver Q assigns to each arrow γj, 1 ≤ j ≤ s+ 1, a K-linear
transformation Γj : K → Ks such that the images of Γj, 1 ≤ j ≤ s + 1, generate
all of Ks. If this were not true, one could write N as a direct sum N1 ⊕ N2 in
which N1 is a complement in Ks to the span of the images of the Γj and θ([N2]) <
0, contradicting θ-semistability. In particular, every θ-semistable N of dimension
vector d has a θ-stable proper submodule UN which results from changing N by
assigning to u0 the zero vector space and to ξ and ωi, 1 ≤ i ≤ r + 1, the zero linear
transformations. By Definition 2.1(ii), this implies that two θ-semistable Λ-modules
N and N ′ of dimension vector d = d′f = (r + 1, 1, s) are S-equivalent if and only if
the corresponding submodules UN and UN ′ are isomorphic. Hence we can describe
the S-equivalence classes of θ-semistable Λ-modules of dimension vector d as follows.
For every fixed choice of the first parameter k0 ∈ Kr+1 involved in defining the Λ′-
modules M(k0, `), the S-equivalence classes of θ-semistable Λ-modules of dimension
vector d are in one-one correspondence with the Λ-modules f ∗M(k0, `) for ` ∈ Ps.
This means that for this θ, King’s moduli space MΛ(d, θ) is isomorphic to Ps. By
considering functors as in Remark 2.8, we obtain a morphism

Ms
f,d′,θ′

∼= Pr × Ps →MΛ(d, θ) ∼= Ps

in C which collapses the first factor Pr of Ms
f,d′,θ′ .
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