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Preface

This book is based on a two-semester course in “The Mathematical
Methods of Physics’ which I have given in the mathematics department
of the University of Illinois in recent years. The audience has consisted
primarily of physicists, engineers, and other natural scientists in their first
or second year of graduate study. Knowledge of the theory of functions
of real and complex variables is assumed.

The subject matter has been shaped by the needs of the students and by
my own experience. In many cases students who do not major in mathe-
matics have room in their schedules for only one or two mathematics
courses. The purpose of this book, therefore, is to provide the student
with some heavy artillery in several fields of mathematics, in confidence
that targets for these weapons will be amply provided by the student’s own
special field of interest. Naturally, in such an attempt, something must be
sacrificed, and I have regarded as most expendable discussions of physical
applications of the material being presented.

Again, in the short space allotted to each subject there is little chance to
develop the theory beyond fundamentals. Thus in each chapter I have
gone straight to (what I regard as) the heart of the matter, developing a
subject just far enough so that applications can easily be made by the
student himself. The exercises at the end of each chapter, along with their
solutions at the back of the book, afford some further opportunities for
using the theoretical apparatus.

The material herein is, for the most part, classical. The bibliographical
references, particularly to journal articles, are given not so much to
provide a jumping-off point for further research as to give the reader a

vi
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feeling for the chronological development of these subjects and for the
names of the men who created them.

Finally, I have, where possible, tried to say something about numerical
methods for computing the solutions of various kinds of problems. These
discussions, while brief, are oriented toward electronic computers and are
intended to help bridge the gap between the “there exists” of a pure
mathematician and the “find it to three decimal places’ of an engineer.

I am indebted to Professor L. A. Rubel for permission to publish
Theorem 7 of Chapter 3 here for the first time and to Professor R. P.
Jerrard for some of the exercises in Chapter 7. To the well-known volume
of Courant and Hilbert I owe the intriguing notion that, even in an age of
specialization, it may be possible for physicists and mathematicians to
understand each other.

HEerBERT S. WILF

Philadelphia, Pennsylvania
March, 1962
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chapter 1

Vector spaces
and matrices

1.1 VECTOR SPACES

A vector space Vis a collection of objects x, y, . . . called vectors, satisfying
the following postulates:

(I) If x and y are vectors, there is a unique vector x + y in ¥ called the
sum of x and y.

(II) If x is a vector and « a complex number, there is a uniquely defined
vector ax in V satisfying

(1) alx+y) =ox+ay @) (2f)x = «(Bx)

3 (¢4 pfx=ax + fx @ 1-x=x

) x+y=y+x © x+y+=x+y +z
(III) There is a vector 0 in V satisfying

0] x+0=0+x=x

forevery x in V, and, further, for every x in ¥V there is a vector —x such that

® X+ (—x)=0.

We will use the notation x — y to mean x + (—y), as might be expected.
(IV) If x and y are vectors in V, there is a uniquely defined complex
number (x, y) called the “inner product” of x and y which satisfies

® ®y=(@F% (10) (ax,y) = a(x,y)
1) xx =0 (12) x+vy,n=(x2 + (2
13) x,y+2 =(,y)+(x,2) (14 (x,x)=0ifand onlyifx =0
1



2 MATHEMATICS FOR THE PHYSICAL SCIENCES §1.1

We state at once that it is not our intention to develop here a purely
axiomatic theory of vector spaces. However, in the remainder of this book
we shall meet several vector spaces of different types, some of which will
" not “look like” vector spaces at all. It is most important to note that the
only qualifications a system needs in order to be a vector spacet are those
just set forth, for only in this way can the true unity of such apparently
diverse topics as finite dimensional matrices, Fourier series, orthogonal
polynomials, integral equations, differential eigenvalue problems, and so
on, be perceived. An enlightening exercise for the reader, for example,
will be found in analyzing various results as they are proved for special
systems, and asking whether or not the properties of the special system
were used, or whether, as will more often happen, we have proved a general
property of vector spaces.

Example 1. The set of ordered n-tuples of complex numbers (o, as, . . . , %)
is a vector space V, (Euclidean n-space) if we define for any vectors

x=(a1""1an)9y=(ﬁ13--"ﬂn):

15) X+y=(y+B8,...,0, + 8
(16) YX = (Yo, Yoy, . .., V)
n
an (x,y) = z &;B;.
i=1
The complex numbers o, ,, . . ., o, are called the components of the vector x,

and postulates (I)-(IV) are easily verified here by direct calculation. For

example, to prove (11),

(18) x,x) =
i

Example 2. The class of functions f(z) of a real variable #, on the interval
[a, b] of the real axis for which

M=

3
ae; = |2 2 0.
1 i=1

b
19 f | f@)|2dx <

forms a vector space, each vector now being a function satisfying (19). Here
the sum of two vectors f(z), g(x) is the vector f(z) + g(), and the inner product
is defined by

b
(20) .8 =f [(@g@) dx

a
for which the postulates can again easily be shown to be satisfied. This is the
space £%(a, b), which is of particular interest, for example, in quantum mechanics.

T Our terminology is not conventional. Actually axioms I-III define a vector space,
whereas, with axiom IV the structure is sometimes called a ‘““unitary space.” We use
the term “‘vector space” for simplicity.
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Example 3. Let w(z) % 0 be a fixed, real-valued, integrable function, defined
and non-negative on the interval [a, b] of the real axis. Consider the set of all
polynomials

21 f@ =ay +ax+ -+ am”

with real coefficients, and of degree < #, for some fixed #. This class forms a
vector space if addition of two vectors (polynomials) is defined in the obvious
way, and if the inner product is given by

b
(22 = f f@)g@w(x) dz.

It is in this vector space that we will develop the theory of orthogonal polynomials
in the next chapter.

1.2 SCHWARZ’S INEQUALITY AND ORTHOGONAL SETS

Theorem 1. (Schwarz’s inequality). Let X, y be vectors in a vector space V.
Then

(23) lx, Y2 = (x, x)(¥, ¥)

the sign of equality holding if and only if there is a complex number o such
that x = ay (i.e., if X and y are proportional).
Proof. Let A be any real number. By (11),

249 (x + Ay, ¥)y, x+ Ay, x)y) = 0.
Hence by (9), (12), and (13),
(25) 0= (x,x)+21|(x, N2+ 2% |(x, NIE (¥, y)

for all real A.
Thus the discriminant of this quadratic polynomial is not positive, that is,

I(x7 y)l4 - (xa x) I(x9 y)l2 (Ys Y) = 0'
If (x, y) # 0, we get
(26) I(x, V)2 = (x, x)y, ¥)

whereas if (x, y) = 0, (26) is obvious. Finally, suppose the sign of equality
holds in (26). Then in (25) we have a quadratic polynomial with zero
discriminant, which therefore is zero for some real value of 1, say A,.
Referring to (14) and (24) we see that

(27 X+ Ay, x)y =0

which is to say that x is proportional to y. Conversely, if x = By, substitu-
tion in (23) shows at once that the sign of equality holds.



4 MATHEMATICS FOR THE PHYSICAL SCIENCES §1.2

Two vectors x and y are said to be orthogonal if

(28) x,y)=0.
The length of a vector x is defined by
(29) lxll = (x, x)*¢

and is always a non-negative real number. In terms of the length, Schwarz’s
inequality (23) reads

(30) I(x, »I = 1] iyl

A finite or infinite sequence of vectors Xy, X,. Xg, . . . is called an orthog-
onal set if

(31) (xz” xj) = 0 (l #I’ l,.] = ls 2, 3, .. ’)
and an orthonormal set if, in addition to (31), we have also
(32 %]l =1 i=1,2..).

The two conditions (31) and (32) are frequently combined in the form

(33) (x;, X;) = 6 Gj=12...)

where d,;, the “Kronecker delta,” is defined by
1 dfi=j
(34) 0y = 0 ifi£j.

A vector x of length unity is said to be normalized.
Now let f be an arbitrary vector in a vector space ¥, and let} x;, X, X3, .. .
be an orthonormal set in ¥. The numbers

(35 Yy = (X,,1) v=12,..)

are called the Fourier coefficients of f with respect to the set x;, Xy, . ...
These coefficients are of considerable importance in applications. As an
example, consider the following approximation problem: let » be a fixed

integer, f a given vector of a vector space ¥, and x,, . . . , X,, an orthonormal
set lying in V. It is required to find numbers «;, o5, . . . , &, for which the
vector

(36) h=ox + -+ X,

is the best possible approximation to f in the sense that ||f — h| is as small
as possible.

T For existence see §1.3.
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To solve this problem, we have

37 If—h|*=(—h,f—h)

= (f_ Xy — " — anxmf_ Xy — = o(nx'n.)
= (f, f) - O(l(fy xl) —_ = a'n.(f’ xn)

- &1(X1, f) . &ﬂ(x'm f) + Imll2 +-+ Ianlz
=@ f) —oyp) — oy — 0 — Py — XV

+logl® 4+ -0 o,
= (£,f) + (ly|> — 2Re &y %) + - -+ + (|o,|* — 2Re ,;7,,)
=ED + oy —ylP+ o, = yalE =l = =yl

Now, remembering thatf, y,, . . ., y, are fixed, and only «;, . . . , a,, are
at our disposal, it is plain that the choice of o, . . . , &, which minimizes the
“least squares error” ||[f — h|2 is

(38) w0, =y, =x.f) @=12...,0n).

Furthermore, if we make this optimal choice of the «, as the Fourier
coefficients of f, (37) shows clearly that

0= (D) — |l — - — ly.l?
or

(39 3 vl @0,

This inequality, known as Bessel’s inequality, is seen to be a property of
the vector f and the set x4, . . ., X,, only, and therefore expresses a general
property of Fourier coefficients.

It may happen that a given orthonormal set x;, X,, X3, . . . has the property
that every vector f in the space ¥ can be approximated arbitrarily closely by
taking 7, the number of vectors used from the set, large enough.

More precisely, let x,, X,, X3, . . . be an orthonormal set with the property
thatif ¢ > O and an arbitrary vector f of ¥ are given, there is an » for which
the vector (36) with (38) implies

If — hl <e.
We then say that X,. X,, . . . is a complete orthonormal set. The following
theorems are now clear:
Theorem 2. Let X;, Xy, . . . be a complete orthonormal set in a vector space

V and let £ be a vector of V. Then

(40) Dl(x,, D)2 = (£, f)  (Parseval’s identity).
v=1
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Theorem 3. (The Riemann-Lebesgue Lemma). If X;, X,, . . . Is an infinite
orthonormal set and £ is any vector of V, then

Y] |(x,, £)] — 0 (v — o0).

Since the series on the left side of (39) obviously converges, its terms must
approach zero.

1.3 LINEAR DEPENDENCE AND INDEPENDENCE

The vectors Xy, Xy, . . . , X,, are said to be linearly dependent if there are
constants oy, . . . , &, not all zero, such that

(42) Xy + 00+ oox, =0.

Otherwise the vectors are linearly independent.

Let x;, Xy, . . . , X,, be linearly independent. We wish to transform the
set Xy, . .., X, into a new sety,, ..., ¥, having the properties: (i) yy,...,¥,is
anorthonormal set, (ii) eachy,is a linear combination of the x;(j=1,..., n).
This may be accomplished by the following procedure, called the Gram-

Schmidt process.
First, take
X
(43) Y=L,
lIx4l
Then, clearly |y;|| = 1. Next, assume
Y, =% — 4y,
and determine the constant 4,, such that (y,’, y;) = 0, i.e., take
A’l = (YD xz)-
Since x,, X, are linearly independent, y,” 7 0, and we set
ye'
Yo = ;
llys"ll
In general, if y,, ¥o, . . . , ¥ have been constructed, write
(44) Yi+1 == Xpi1 — Oy — *° " — OpYy
and determine the constants oy, . . ., o so that
(45) (y/::-l-ls y))=0 (f= 1, 2:"',k)

that is, choose

(46) 67' = (yj" xk+1) (] = 1’ 21 seey k)'
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As before, y; ., #90, andtaking y; , ; = ¥; +1/l¥; 41|, we have constructed
the next vector in the set.

A vector space V is said to be of dimension n if it contains » linearly in-
dependent vectors, butevery z + 1 vectors are linearly dependent. A space
which for every integer » contains » linearly independent vectors is said to
be infinite dimensional. By virtue of the Gram-Schmidt process we see that
the dimension of a vector space is also the length of the longest orthonormal
set contained in the space.

A set of vectors x,, X, . . . , X,, is said to span a vector space V if every
vector of V is a linear combination of x;, X,, . .., X, that is, if f is an
arbitrary vector of V, there exist complex numbers o, oy, . .. such that

47 f=o% + oX, + -+

A set of vectors x;, X, . . . is said to form a basis for a vector space V' if
(i) the set spans the space and (ii) the set is linearly independent.

1.4 LINEAR OPERATORS ON A VECTOR SPACE

A linear operator on a vector space V is a rule which assigns to each
vector f of ¥ a unique vector Tf of ¥, in such a way that

(48) T(of + g) = aTf+ Tg

for every pair of vectors f, g in ¥ and every complex number «.
Example 1. For Euclidean r-space, the operator which associates with
X = (o, 0, - o, %)
the vector
Tx = (ag, 0y + o, 09 F o Fog, o000 Fop + -0 + o)
is a linear operator.

Example 2. 1In%%(a, b) the rule which associates with the vector f(z) the vector
p

Tf(@) =f fdy (a ==z <b)
is a linear operator.

Henceforth the term “operator” will invariably refer to a linear operator
on the space in question.

The identity operator I is the operator which assigns to any vector f the
vector f itself, i.e.,

(49) K=f (alifin V).
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This is clearly linear. Two operators T, U are said to be equal if their effect
on every vector of V' is the same, that is, T'= U means

(50) Tf=Uf (allfin V).
The product TU of two operators T and U is defined by
1)) (TU) = T(Uf).

In general, we do not have TU = UT. If TU = UT, however, we say that
T commutes with U, and, in any case, the commutator [T, U] of two
operators is

(52) [T,U]=TU - UT
so that two operators commute if and only if their commutator is the zero
operator.

Let T be an operator on ¥. There may or may not be an operator U on

V such that
UTr=TU=1.

If there is such a U, we say that U is the inverse of T, and write U = T-L
Hence

(53) Ti7r=TT'=1

The operator T, when it exists, “undoes” the work of T in the sense that
if f is any vector of ¥, we have

(54) T = (T Tf=HK=1.

An operator which has an inverse will be called nonsingular, otherwise the
operator is singular. A simple property of the inverse operator is
Theorem 4.  The inverse of a product is the product of the inverses in reverse
order, i.e.,

(EH)) STy = 71151

if S and T are nonsingular.

Proof.
(STTAS ) = STTHS = SIS 1 =881 =1

(T1SY(ST) = THS)T = T-UT = T3T =]

which was to be shown.

1.5 EIGENVALUES AND HERMITIAN OPERATORS

Let T be an operator on a vector space ¥. Among all the vectors of ¥,
there may be some nonzero vectors which, when operated on by T, do not
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have their “direction” changed, but only their magnitude. More precisely,
there may exist a nonzero vector f and a complex number A such that

(56) Tf = f.

Any such vector f is called an eigenvector (characteristic vector, proper
vector) of the operator T, and for any such f, the number 2 in (56) is called
the eigenvalue (characteristic value, proper value) of T corresponding to the
eigenvector f.

Example 1. Let V be the vector space of all odd trigonometric polynomials

f&) = aysinx + aysin2x + - -+ + a, sinnx
and let

57 Tf(®) = —f"(=).

An eigenvector of this operator, according to (56), is a function f(z) of V for
which
—f"(@) = ().

Hence this operator has infinitely many independent eigenvectors
(58) [o(®) = A, sinnx n=12..)

where the A4, are arbitrary constants, and the eigenvalues of T are the numbers
1,4,9,...,n% ..., theeigenvalue corresponding to the nth eigenvector being n?.

Example 2. The space V being the same as in Example 1, consider the operator
S given by
Sf(x) = 3f ().
Clearly every vector in the space V is an eigenvector of S, yet .S has only one
eigenvalue, 4 = 3.
Let T be a linear operator. The adjoint operator T* is the operator having the
property that

(59) x, Ty) = (T*x,y)

for every pair of vectors x, y in ¥. We are not stating here that every operator
has an adjoint (although this is true in a “‘complete vector space” or Hilbert
space, which is a space satisfying all of our axioms in addition to having the
property that every Cauchy sequence of vectors, ||f, — f,,/| — 0, has a limit
vector fin the space) but merely that if an operator T* satisfying (59) exists, it is
called the adjoint of 7. Clearly, from (59), (T*)* = T, for every operator T.

An operator T is Hermitian, or self-adjoint, if it is its own adjoint, i.e., if
T* = T, or equivalently, if

(60) (x, Ty) = (Tx,y)

for every x, y in V.
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Theorem 5. Let the operators T, U possess adjoints T*, U*, respectively.
Then the adjoint of TU exists and is U*T*,
. Proof. Let x and y be arbitrary vectors of ¥. Then

(z, TUy) = (T*z, Uy) = (U*T*, y).

Theorem 6. Let T be a self-adjoint operator and x an arbitrary vector of V.
Then (x, TX) is a real number.
Proof.

x, Tx) = (T*x, x) = (Tx, x) = (x, TX).

Theorem 7. The eigenvalues of a Hermitian operator are reat.

Proof. If
Ax = Ix .

then (x, Ax) = Ax, x),
whence the result, since (x, 4x) and (x, x) are both real.

Theorem 8. Let x and y be eigenvectors of a Hermitian operator T, belong-
ing to distinct eigenvalues 4y, Ay, respectively. Then X and'y are orthogonal.
Proof. Our hypotheses are:

() Ax = 4x
(i) Ay = Ay
(i) A4, # 4
@iv) 4= 4*

Taking the inner product of (i) with y and of (ii) with x,

(¥, 4%) = Ay, x)

(X, AY) = }2(’(, Y)-
Hence

Ao(x,y) = (X, Ay) = (4*x,y) = (4x, ¥) = (¥, 4%) = 44(y, X) = L(x, ¥)
and by (iii), (%, y) = 0, which was to be shown.

1.6 UNITARY OPERATORS

An operator U is said to be unitary if it possesses an inverse U™, an
adjoint U*, and these are equal:

(61) Ul=U* o UU*=U*U=1L
An operator U is isometric if it preserves all inner products, i.e.,

(62) x,y) = (Ux, Uy) allx,yin V.
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In particular, an isometric operator preserves the length of every vector,

since
|Uz|? = (Uz, Ur) = (=, z) = ||z|>

Thus an isometry may be thought of as a generalized rotation of the vector
space V.

Theorem 9. If U* exists, then U is isometric if and only if it is unitary.
Proof. 1If U is unitary, then

(Ux, Uy) = (x, U*Uy) = (x, Iy) = (x, ¥)

and U is isometric.
Conversely, if U is isometric,

(Ux, Uy) = (x, U*Uy) = (X, y)

for every x, y; hence if we set S = U*U — I, we have (x, Sy) = 0 for
every X, y.
Taking, in particular, x = Sy, we find

Sy, Sy =0

and therefore Sy = 0. Since y was arbitrary, S = 0, which was to be shown.

1.7 PROJECTION OPERATORS
An operator P is a projection operator if (i) Pis Hermitian and (i) P2 = P.

Example 1. In Euclidean n-dimensional space, the operator P which associates
with the vector x = (ay, %, ..., ®,) the vector Px = (2;,0,0,...,0) is a
projection. Condition (ii) is obviously satisfied, and equation (60) can be
verified by a trivial calculation.

Example 2. 1In the space of trigonometric polynomials
f@) =a;sinz + aysin2x + - - - + a, sin nx
with inner product

1 27
.8 =5 . J(@)g(@) dx

the operator which carries f(z) into Pf(x) = a3 sin 3z is a projection.

Theorem 10. Let P be a projection operator and X an arbitrary vector.
Then we can write

X=y+4 1z
where Py =y, Pz = 0.
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Proof. Consider the identity

x=Px+({I—-Px=y+z
then
Py =P(Px)=Px=Px=y
and
Pz=P( — P)x = (P — P)x = (P — P)x = 0. QED

Thus, if P is a given projection operator, consider the two vector spaces:
(a) the set .# of all vectors Px, for x in ¥, and (b) the set.#, of all vectors
(I — P)xforxin V. These two spaces are orthogonal to each other in that
if Xy is in A, x, in A1,

(X1, X3) = (Py;, (I — P)yp) = (y1, (P — P?yy) = (y1,0) = 0

and, by the theorem above, these two spaces span ¥ in the sense that any
vector of ¥ has the formx =y + z, yin A4, zin .#,.

The space .# is the space onto which P projects; .# is the orthogonal
complement of .#. For any vector x, the vector Px is the projection of x
onto the space .#.

1.8 EUCLIDEAN n-SPACE AND MATRICES

Euclidean n-dimensional space is the space of vectors
X = (0, ogy + » . 5 Oy)

of ordered n-tuples of complex numbers «, (v = 1, 2, .., n) (the com-
ponents of x), with addition defined by

X+y=(0’.l,d2,...,O'.n)+(ﬁ1,‘82,...,[3")

=(a1+ﬁ1’a2+ﬁ2"",an+ﬁn)
and the inner product

n

(63) x,y) =2 4&p,

v=1
The symbol (x), will denote the ith component «;, of the vector x.
Now, let T be an operatort which carries E,, into E,, that is, if x is a
vectorin E,,, then Tx is a vector in E,,. Consider the m vectors e;, e,,...,e,,
in E,,, where the ith component of e; is §;;, That is,

e; =(1,0,0,...,0), e=1(0,1,0,...,0),..., e,=(0,0,...,0,1)
and let f;, f,, . . ., f, be the analogous vectors in E,,
£); = 0, Gj=12,...,n).

T Here we broaden the notion of linear operator to allow T to carry one space into
another. The generalized definition of linearity is obvious.
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The vectors ey, . . . , e,, are clearly a basis for E,,, the vectors fj, .. ., f,
a basis for E,. For the given operator T, the vectors

h=Te, (i=12...,m)

are in E,, and therefore are a linear combination of f, f,, . . ., f,, say
(64) h=>7f (=12 ...,m).
i=1
Now let x = (o, o, . . . , ;) be an arbitrary vector of E,,. Since
m
X =>ae,
v=1
we have, by linearity of T,
m
(65) Tx =3 o,Te,
v=1
= > ah,.
v=1

Substituting (64) in (65),
Tx =3 o, 2 75f;

v i=1

z {Z TiV“V}fi'
j=1\v=1

Recalling the definition of the vectors f;, we see that the ith component
of the vector Tx is

(66) (Tx), = Sme,  (=1,2,...,n).
v=1

Thus the action of the operator T is completely known (known on any
vector) if we only know the numbers 7, (i=1,2,...,n; v=1,2,...,m).
If we visualize the numbers 7; as arranged in a rectangular array having n
rows and m columns

(67) Tin Tz Tz "7 Tim
To1 T2 Toz 77 Tam
Tnt Tnz Taz """ Tam

then this array is called an » X m matrix. Since, by (66), this matrix fully
represents, or describes, the operator 7, we use the same letter T to denote
the matrix. We have shown
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Theorem 11.  Every linear operator T carrying E,, into E, is representable,
in the sense (66), by a matrix of n rows and m columns. Conversely, any
n X m matrix is such an operator if used in the manner (66).

The equation
T=(Ti\') (i=1,2,---,n2’V=1,2,...,m)

means that T is the matrix which has the number =, in row i, column ».

1.9 MATRIX ALGEBRA

Let A4, B be two operators, each carrying E,, into E,, and represented by
the matrices a,;, b,;,(( = 1,2,...,n; j=1,2,..., m), respectively. If x
is any vector, X = (&, . . . , ,,), of E,,, we have

[(4 4+ B)x]; = (4x); + (Bx),

a‘[vy'v + z b‘/,'vav
v=1

1

Il
M3z

v

il
Ms

(aiv + biv)av.

1

It

v

Comparing with (66), we see that the sum of two operators 4, B is
represented by the matrix

(68) A+B=(a;+by) (=12....,n j=12...,m.

Our next task is to discover how to multiply two matrices. Some care is
necessary here, however, for if 4 and B are defined as above, the operator
AB is meaningless, since if x is in E,,, Bxis in E,, and 4 is not defined on
the vector Bx.

Therefore, let 4 carry E,, into E,, and B carry E, into E,. The operator
BA (not AB!) is meaningful, and carries E,, into E,. It should be repre-
sentable by a certain matrix B4 of » rows and m columns. We wish to
express the elements of this matrix in terms of the elements of the matrices

4 =(ay) i=12...,p,j=1,...,m)
B = (b (i=12,....,n,j=12,...,p)

representing the operators 4, B, respectively.
To do this, let x = (x;) be a vector of E,,. Then

(Ax)z = z aiixi (l = 17 29 T P)-
i=1 .
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Applying the operator B to the vector 4x (in E,), we find

(B4 =3 bl v,

» m
Z ik Z A2

-5 [$na

Comparing this with the prototype, equation (66), we see that the operator
BA is represented by the matrix

P
(69) BA=(Zbikak,-) (i=1....nj=1,...,m).
k=1
Hence the product of an # X p matrix by a p X m matrix is an n X m

matrix.
Example: (n=3,p =2, m=2).

12 151422 1-442-(=1)
aB=|-1 0 (1 4): (—1) 1402 (—=1)-4+0-(—1)
IRVA . 11412 1-441-(=D)

5 2

-1 -4

3 3

1.10 THE ADJOINT MATRIX

Let A=(a;)(i=12,...,m; j=1,2,...,n) be an m X n matrix.
Consider the n X m matrix B = (b;;), where

(70) by=a; (=11...,nj=1,...,m).

Letx = (otg, ..., %), ¥ = (By, . . ., B,,) be arbitrary vectors, respectively,
in E,, and E,. Then

m

(x, dy) = 3 %(A4y);

n
o 2 ;1B

1 1

i

I
M3z F'Ms Z

k=
n
z z zkﬂk

1%x=1

-
I
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while

(Bx,y) = é:l(B_x)zﬂz = i (kgla_ki“k) B;

=1
= z zlakigkﬂi = (x, 4y).
I=1R=
Hence the matrix B defined by (70) has the property of the operator
adjoint to 4, that is, B = 4*, In symbols,

(M) (A*)i:i = (lT)ji-

The matrix A* is variously referred to as the adjoint matrix, the conjugate
transposed matrix, or the Hermitian conjugate matrix. Unfortunately, the
name “‘adjoint matrix” is also applied sometimes to another matrix which
we shall encounter presently under the name of *““adjugate.”

A square (n X n) matrix, therefore, is Hermitian if

a;=a; (Gj=1,...,n).
The transpose of a matrix 4 is the matrix A7 given by
(A7), = (A)y; (i=1,...,m;j=1,...,n).
We see that
A* = (47).

A square matrix A4 is symmetric if A = A”. For a square matrix with rea/
elements to be Hermitian it is necessary and sufficient that it be symmetric.

Theorem 12. Let A, B be n X n Hermitian matrices. In order that AB be
Hermitian it is necessary and sufficient that A and B commute, [A, B] = 0.
Proof. If AB is Hermitian, then

(AB)* = B*A* = BA = AB.
Conversely, if AB = BA, then
(AB)* = (BA)* = A*B* = AB

which was to be shown.

1.11 THE INVERSE MATRIX

Let A = (a,)(i,j=1,...,n) be a square matrix. We wish to know
under what circumstances 4 has an inverse A=1. For given i, j, the cofactor
of a,; is defined as the determinant of the matrix A after striking out the ith
row and jth column, multiplied by (—1)*+/. Weassume thattheelementary
properties of determinants are known. Denoting the cofactor of the element
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a;; by the symbol a*/, the familiar Laplace expansion of the determinant by
cofactors has the form

n

(72) Zaa = det (A4) (i=12,...,n).

Now let i #£ k, and consider
(73) S a,,a*
i=1

i.e., the sum of products of elements of one row by cofactors of another
row. A moment’s reflection will show that (73) is exactly the expansion (72)
of the determinant of a modified matrix, obtained from the given matrix 4
by deleting the kth row, and substituting for that row, the ith row of 4.
But this last matrix has two identical rows, hence its determinant must
vanish; which is to say that (73) is zero if i % k. Combining this result
with (72), we have found

79 > a0 = 6y, - det (A) (ibk=1,...,n).
j=

If det A # 0, we may define the matrix
JZ

det (4)

(75) ( _1)17 = (19.1 = 11 LR | n)

and reference to (74) shows that
(AA_I)u' = Z aik(A—l)kj

ik

i a
=0,
é det(4) 7

or
(76) Ad! =

where I, the unit matrix, has ones on the diagonal and zeros elsewhere.
A trivial modification of the above argument shows that also

A4 =1

and hence the matrix 47! defined by (75) is indeed the inverse of 4. The
matrix whose elements are a* is the adjugate of A, written adj 4, and (75)
states that

-1 T
A d—(A)( dj A)".
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Hence the calculation of the inverse of a matrix by this method involves
the following steps:

(1) Replace each element of A by its cofactor.
(2) Transpose the resulting matrix.
(3) Divide each element by the determinant of A if this is not zero.
We accept without proof (here) the relation
an det (AB) = (det A)(det B)
valid for square matrices 4, B, and deduce as a consequence.

Theorem 13. I order that the square matrix A be nonsingular, it is necessary
and sufficient that det A # 0. If the inverse exists, it is uniquely given by (75).

We have already shown the sufficiency. If A~! exists, however, and
det A = 0, an absurdity results from using (77) on both sides of (76), which
proves the necessity. As to uniqueness, if 4 has two inverses, say Band C,
then

AB= AC=1,
and multiplying from the left by, say, B, we find B = C.
Theorem 14. Suppose A is nonsingular. Then so is A* and
(78) (4*)7t = (47)*
Proof. A¥ AW = (A D =1*=1
(AD*4* = (A4 H)* = I* =

1.12 EIGENVALUES OF MATRICES

In this and the foilowing sections all matrices, unless otherwise specified,
will be square (7 X n).

Suppose x is an eigenvector of A corresponding to the eigenvalue A.
Then

Ax = Ix
In component form,
ia”x5=2xi i=1,...,n
or equivalently, =
(79) _"l(ai,. — M)z, =0 (i=1,....n).
i=

This is a system of # linear, algebraic, homogeneous equations in » un-
knowns. Such a system invariably admits the solution

x1=1'2="-=xn=0_
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In order to get a nontrivial solution, however, it is necessary for the de-
terminant of the coefficients to vanish, i.e.,

(30) a; — 4 ST te A1n
a9y age — A - Aaon
det(4 — AI) = . . . =0
am (2 T Ay — A

It is clear that (80) is a polynomial equation of degree » in A, the charac-
teristic equation of the matrix 4. The polynomial

(81) d(A) = det (4 — AI)
is the characteristic polynomial of A. If A is any one of the n roots
Ay As, . . ., A, of the characteristic equation of 4, then 4 is an eigenvalue of

A, and conversely. If ,is an eigenvalue of 4, we may take 2 = 1, in (79),
and the resulting equations will be redundant, by virtue of (80). Hence, by
choosing one of the components of the vector x arbitrarily, the remaining
components of x may be found (possibly not uniquely) from (79). In
general, corresponding to any given eigenvalue 4,, we may expect to find
P = n independent vectors x satisfying (79) with A = 4,. In this case we
say that the ith eigenstate of the matrix exhibits p-fold degeneracy or multi-
plicity. 1f p = 1, the state is nondegenerate.

Example 1. A = I, the identity matrix. Here
() =det (I — A} =det (1 — D) = (1 — ™.

The matrix has exactly one eigenvalue, 4 = 1. Corresponding to this eigenvalue,
we may choose any n independent vectors ey, ..., e, as eigenvectors, since
Ie;, = e, = 1 ¢ for any e;. The eigenvalue 4 = 1, therefore, has degeneracy

(or multiplicity) .
12
A ==
2 3

1 -2
¢m=mu—m=w(2

Example 2.

Here,

2
=12 —41—1
3 -4

The eigenvalues are 4, =2 + vV 5, hp=2—V 5. For 4, we seek a vector
x = (g, ) such that

1 2\ fay oy [ oy + 20
Az = =} =2 + V5 =
2 3/ \x, oy, %, 20y + 30y
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Hence o, + 20, = (2 4+ V5)ay; 20; + 3 = a2 + V5).
v5—1

Choosing o, = 1, either equation gives «; = ————; hence the eigenvector

corresponding to 4, is 2
V5 -1
X; =¢
1= 6 5

where ¢, is an arbitrary constant; Similarly, corresponding to 1,, we find
~(V5 +1)
X, = C
2 2 2

Since this matrix 4 is Hermitian (symmetric and real), we should expect real
eigenvalues and orthogonal eigenvectors, as is indeed the case.

The trace (spur) of a matrix 4 = (a;;)," is

(82) Te() = 3a

the sum of the diagonal elements of 4. 1

Theorem 15. Let the eigenvalues of A be Ay, 2y, . . ., A,. Then

(83) Mhg .. A, =det 4

(84) Mtdp+ o+ A, =TrA

Proof. One finds by expanding the characteristic polynomial ¢(4), in (80),

$() = (M [A* —(ay + @+ - - + @, AT+ -+ (= 1) (det A)]

= (=D"A =)A= ) (2 — 4,)]

and the result follows by matching the coefficients of A*~* and 1°.
Generally we may write

(85) (D) = (=" — A"+ 0 A" 4 e+ (= 1) ]
and we see that
o, = 0(Ap, Ay - .5 Ay) r=1,2,...,n)

where o, is the »th elementary symmetric function formed from its argu-
ments. Thus

uw=ht+ti+ -+17,
(86) 0(2='11ﬂ'2+21'13+.“+ﬂlln+;{2)'3+”.+)‘2’2"n+“.+j'n—1)‘n

o, =MhA... 4,

n
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1.13 DIAGONALIZATION OF MATRICES

Let x4, Xy, . . ., X,, denote the eigenvectors of a given matrix A4, corre-
sponding to eigenvalues 4, . .., 4,, respectively. Then

Ax].:},jxj (j=1,2,...,n)

We define a matrix P by placing in the jth column of P the components of
the vector x;. That is

87 P); = (x,); Li=12,...,n).

Further, we define a diagonal matrix A (i.e., a matrix whose off-diagonal
elements vanish) by placing 4, in the ith position on the diagonal,

(88) (A);; = 4,05 (,j=1,2,...,n).
Then n n
(AP);; = E ay(P); = 2 A% )
=1 =1
= Z:i(xj)i
and (PA);; =k21(P )ik(A)k;i = Z (EAWN
= k=1

= A(z,); = (AP),;.
Thus we have shown that
(89) AP = PA.

Suppose now that the eigenvectors x;, X, . . ., X,, are linearly independent.
Then the columns of P are linearly independent, and the determinant of P
is not zero. Hence P has an inverse P~1, and multiplying (89) from the right
by P71, we find
(50) A =PAPL

This representation of A as the product of a nonsingular matrix P, a
diagonal matrix A, and P~ is called the diagonal form of 4, and finding the
matrices P, A (i.e., the eigenvectors and eigenvalues of A) is referred to as
diagonalizing the matrix 4. A matrix which has » linearly independent
eigenvectors is said to be diagonalizable (diagonable). The importance of
diagonalizing a matrix will appear in the next few sections. The matrix P
which occurs in (90), defined by (87), is called the polar matrix (modal
matrix) of 4.

Two matrices A, Bare said to be similar if there is a nonsingular matrix P
such that

1) A = PBP.
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Theorem 16. Similar matrices have the same eigenvalues.
Proof. If A and B are similar, let their characteristic polynomials be ¢(4),
p(A), respectively. Then

$(}) = det (4 — AI) = det (P-LBP — AI)
= det (P-1BP — AP-1P)
= det [P~Y(B — AI)P]
= (det PY) det (B — AI)(det P)
= det (B — A
= y(4)

so that their characteristic equations are identical.
We have already proved

Theorem 17. An arbitrary diagonalizable matrix A is similar to a diagonal
matrix A.

We see from these theorems that if we are so fortunate as to be given a
matrix in diagonal form (90), then the eigenvalues of 4 can be read off by
inspection, for they are the same as the eigenvalues of the diagonal matrix
A, namely the numbers on the main diagonal of A.

Theorem 18. Ler A be Hermitian. Then A has a polar matrix U which is
unitary, and hence the diagonal form of A is

92) A = U*AU.

In particular, every Hermitian matrix is diagonalizable.

Proof. First, suppose that A has distinct eigenvalues A;, Ay, . .., 4,. Then
we know that the eigenvectors of A are orthogonal and, a fortiori, in-
dependent. Hence 4 is diagonalizable. Iftheseeigenvectorsare normalized,
and the polar matrix P is constructed as in (87), then the relation

P*P =1

which says that P is unitary, is an immediate consequence of the assertion
that the columns of P are an orthonormal set, the definition (87) of P, and
the laws of matrix multiplication.

If the eigenvalues of A are not distinct, we can perturb the elements of 4
by adding a Hermitian matrix 64 such that 4"+ 64 has distinct eigen-
values. The previous argument now applies and shows that the modal
matrix U 4+ 0U of A 4+ 0A exists and may be taken as a unitary matrix,
whence by making 4 — 0, the conclusion persists.

This last proof must be regarded as unsatisfactory in that it intrudes
ideas of analysis (continuity of the zeros of a polynomial, limits, etc.) into
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the domain of algebra—unnecessarily, for purely algebraic proofs can be
given. These are, however, complicated, and we have chosen to proceed as
above.

1.14 FUNCTIONS OF MATRICES
Let A be a diagonalizable matrix. Then
A = PIAP
for some nonsingular matrix P and diagonal matrix A. Hence

A% = (PIAP)(P-1AP) = PIA(PP-)AP

= PA%P
and, in general, for any positive integer &,
AF = P7IAFP,
We notice at once that calculating A is a trivial matter, for
93) ARy, =245, (,j=12,...,n).
Next, if
94) f@O=c+cz+ -+ 2™
we have, by the above,
5 fA) =P e+ A+ + ¢, AP
= P (A)P

valid for every polynomial f (z). An obvious limiting argument shows that
(95) persists for entire functions (functions regular throughout the plane)
f(z). We conclude that the calculation of polynomial or entire functions
of a diagonalizable matrix is a simple matter once the eigenvalues and
modal matrix (eigenvectors) are known. The matrix f(A), by (93), is clearly

(96) (fA)y; =/, (j=1....n).

A remarkable consequence follows from (95) and (96) if we choose, for
the polynomial f(z), the characteristic polynomial of A4, ¢(%). For then,
reference to (96) shows that ¢(A) = 0 (the zero matrix), and (95) gives the
result

$(4) =0

which is to say that “a matrix satisfies its own characteristic equation.”
This result, known as the Cayley-Hamilton theorem, has been proved here
only for diagonalizable matrices. It actually is true for all matrices, and we
state
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Theorem 19. (Cayley-Hamilton): Let ¢(2) be the characteristic polynomial
of A. Then ¢(A) is the zero matrix.

As an application, we note a second method of finding the inverse of a
nonsingular matrix 4. Indeed, if

A=A~ 4+ (=1, =0
is the characteristic equation of A4, we have
A" — e A" -+ (=1, I =0
and multiplying by 41,
7 (=D, 41 = A" — A" 2 4 - - + (= 1), 4]

which, since Cn, = det A £ 0, determines A1 as a linear combination of 7,

A, ..., A~ with coefficients obtained from the characteristic polynomial
of A.
Example. Let
31
(98) A=
1 3

The characteristic polynomial of A4 is
$(A) = A2 — 64 + 8.

10 6 31 10 0 0
A2 — 64 + 81 = —6 +8 =
6 10 13 0 1 00

as required by Theorem 19. The eigenvalues of 4 are 4; = 2, 1, = 4, with
corresponding eigenvectors

el ol

Thus we may take, for the modal matrix of A4,

()

and find that the diagonal form of 4 is

(ol 96

If f(z) is any polynomial or entire function of z,

(Ll
f@O=1_ Mo f@/\: 1

Hence

[ T
S———
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Note, for example, the labor saved by writing

1 1\[220 o \/3 —%
A300 —
' -1 1/\0 4%0/\1 1

1.15 THE COMPANION MATRIX

We have already seen that the characteristic equation of a given matrix
is a polynomial equation of degree n, » being the order of the matrix.
Conversely, suppose

(99) $@)=72"+a" 4+ a2zt a,

is a given polynomial of degree n; can we find an » X n matrix whose
characteristic polynomial is ¢(z)? We observe that the answer is not
unique, since if A is any such matrix, P~14P is another, for any nonsingular
matrix P. The answer to the question, however, is always in the affirmative,
and the proof is of special interest because it gives an explicit (and easy)
construction of a matrix with the desired property.

Theorem 20. Every polynomial of degree n is the characteristic polynomial
of an n X n matrix.
Proof. Consider the matrix

(100) —4; —da4y —dzg "' —d,_3; —a,
1 0 o -- 0 0

| o e 0

0 0 o - 1 0

We claim that ¢(z) of (99) is the characteristic polynomial of 4. Indeed,

a, + A ay a; - a,
-1 A0 --- 0

det(f —y=|| ¢ ~“LH A0
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To evaluate this determinant, multiply the first column by 4 and add to the
second, getting

a, + 4 ay + a1 + A% ay a,

__.1 0 0 PN 0

det(i — y=1|| ° -1 Ao 0
0 0 0 --- 2

Now, multiply the second column by A and add to the third, etc. The final
result of these elementary column operations, which do not change the
value of the determinant, is

it %k ES PR ¢(l)
1 00 - 0
det(I—Ay=| 0 ~1 O 0y
0 00 0

where ¢(4) is the given polynomial (99), and the proof is complete.
The matrix 4 defined in (100) is called the companion matrix of the poly-
nomial ¢(z), and will be of considerable importance in later applications.

1.16 BORDERING HERMITIAN MATRICES

Let A be an n X » matrix, u, v (column) vectors, and « a scalar. The
matrix
-~ A u
(101) I- ( )
V¢ o«
is of order n + 1. The process which builds the matrix 4 from A4 is called

bordering, for obvious reasons. If A is Hermitian, then A4 will also be
Hermitian if and only if u = v, in which case

-

We are interested here in discovering what happens to the eigenvalues and
eigenvectors of a Hermitian matrix when it is bordered.
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The notation x = (y, ), where y is an n-vector and f§ a scalar means the
{(n + 1)-vector whose first » components are those of y and whose last
component is f.

Now suppose x = (y, ) is an eigenvector of 4. Then

e G)=20)

Carrying out the multiplication, we get two equations (one vector and one
scalar)

(103) Ay + fu=Jy

(104) (u, y) + of = 3.

Now, suppose the diagonal form of A4 is known, say,
(105) A=UAU*,

and let y = Uy, where v is to be determined. Then, from (103),

AUv + fu = AUv
or UAv 4+ fu=AUv.
Multiplying by U*, and remembering that U is unitary,
Av 4 BU*n = Av
which is to say that
(106) v = (A — Ay 1U*u
giving the eigenvector, if the eigenvalue is known. Now, using (104),

(0, Uv) = (2 — 0)f
and hence

(107) (u, UL — A)U*u) = (A — o).

This is an algebraic equation which determines the eigenvalues 4 of A.

More explicitly, if the ith column of U (ith eigenvector of A) is x;, equation

(107) can be written
n 2

(108) (CL.) iy

i=1A— 4

which brings out quite clearly its algebraic nature. In particular, by plotting,

as a function of A, the left and right sides of (108), it is easy to see that an

eigenvalue of A lies between each pair of eigenvalues of A4, one to the right

of all of them, and one to the left of all of them. If 4 has a multiple eigen-

value 2, repeated, say, p times, then 4 has the eigenvalue A repeated p — 1

times.
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Theorem 21. Let A be a Hermitian matrix with diagonal form (105). If 4
is given by (101), then the eigenvalues of A are the roots of the algebraic
equation (108). If 1 is any of these, the eigenvector x = (y, f8) corresponding
to 4 is given by (106), where y = Uv. The eigenvalues of A separate those

of A.

1.17 DEFINITE MATRICES

Let 4 be a Hermitian matrix. We know from Theorem 6 that if x is any
vector, then (x, Ax) is a real number. We say that the matrix 4 is positive
definite if for every vector x # 0, we have

(109) (x, Ax) > 0.

The matrix is non-negative definite (respectively, negative definite, negative
semidefinite) if for every x # 0, we have (x, Ax) = 0 (respectively, <0, <0).
If none of these four alternatives holds (i.e., for some x 7 0, (x, Ax) > 0
and for others (x, Ax) < 0), the matrix is indefinite. The discussion below
will be phrased in terms of positive definite matrices, for concreteness, but
each assertion will have an obvious analogue in the other three cases.

Theorem 22. Let A be Hermitian. For A to be positive definite it is necessary
and sufficient that all the eigenvalues of A be positive.
Proof. If A is positive definite, the equation
Ax = Ax
gives
(x, Ax) = XX, x)

and A is clearly positive.

Conversely, suppose all eigenvalues 4,, Ay, ..., 4, of 4 are positive.
Let x # 0 be an arbitrary vector. Since 4 is Hermitian, it has » orthogonal
eigenvectors e, €, . . . , €,, which we may suppose normalized. Then

(110) X = (x, e;)e; + (X, e))e, + - -+ + (x, e,)e,

11y Ax = (x, ePhie; + (X, e)Ase, + -+ - + (X, €,)4,8,
(112) x, 4%) = [(x, e)P A, + - + |[(x, €124, > 0,
which was to be shown.

Corollary 22. For any Hermitian matrix A and vector x 7% 0, we have

(113) 1, < &4 g
(x, x)

where 1, is the smallest and A; is the largest eigenvalue of 4.
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Proof. From (111) we have
A — (X, Ax) _ ll(x, x) — (X, AX)

(x, x) (x, x)

- Exl—x) {(}‘1 — A |(x, e1)|2 + o+ (= I, e”)lz}

=20
which proves the right hand inequality (113), the left now being obvious.

Theorem 23. For a Hermitian matrix A to be positive definite it is necessary
and sufficient that the coefficients of the characteristic equation of A alternate
in sign.
Proof. First, since 4 is Hermitian, its eigenvalues are real. Thus, if the
coefficients alternate in sign, the characteristic equation clearly cannot have
a negative root. Hence all the eigenvalues of A4 are positive, and by the
previous theorem, A is positive definite. Conversely, if 4 is positive
definite, all the eigenvalues of A are positive, and the alternation in sign is
evident by inspection of (85) and (86).

If A is a given matrix, the principal submatrices A" of A4 are the
m X m matrices formed from the first m rows and columns of A4, for each
m=1,2,...,n Thediscriminants A,, of a matrix A4 are the determinants

A, =det AM = a;; Ay =detA®; ...; A,=detA™ = det A.

Theorem 24. For the Hermitian matrix A to be positive definite it is
necessary and sufficient that each of its principal submatrices be positive
definite.

Proof. Since A = A™ is itself one of these submatrices, the condition is
clearly sufficient. Conversely, if A4 is positive definite, let x'™ = (o, .. ., ot,,)
be any vector #0in E,,. Thenx = (g, o, ...,4,,0,0,...,0)isin E,
and it is obvious that

(x™), 4™x™) = (x, Ax) > 0
which shows that each 4™ is also positive definite.
We come, finaily, to a criterion for definiteness which does not require

either a knowledge of the eigenvalues of 4 or the labor involved in finding
the characteristic equation of 4.

Theorem 25. For a Hermitian matrix A to be positive definite it is necessary
and sufficient that

(114) Ay>0,A,>0,...,A,>0.
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Proof. Tf A is positive definite, then so is A for 1 < m < n. Hence
A,, = det 4™, being the product of the eigenvalues of 4™, is positive,
and the condition is necessary.

Conversely, if (114) holds, the theorem is plainly true if # = 1 (i.e., if 4
isal x 1matrix). Inductively, suppose (114} is sufficient for matrices of
order1,2,...,k andlet Abea (k + 1) x (k + 1) matrix for which (114)
holds, with n =k 4 1. By the inductive hypothesis, 4* is positive
definite. Suppose 4 is not. Then 4 has a negative eigenvalue. Since
det 4 = Ay = M4, ... Apg > 0, 4 must have two negative eigenvalues
at least. By Theorem 21 of the preceding section, 4 has an eigenvalue
between these two, which must be negative—a contradiction—and the
proof is complete by induction.

1.18 RANK AND NULLITY

If A is nonsingular, then clearly 4x = 0 implies x = 0, which is to say
that A4 carries no nonzero vector into zero. On the other hand, if 4 is
singular, there will be nonzero vectors which are annihilated by 4. Indeed,
since A is singular, it has the eigenvalue zero, and any eigenvector corre-
sponding to this eigenvalue has the required property. Hence, for the given
matrix A, there is a space 4, called the nuil space of A, which consists of
all the vectors x such that 4x = 0. This space contains, with any vectors
x, y, the vectors x + y, ax + By, etc., and hence is itself a vector space, a
subspace of E,. The dimension » of this space 4" is called the nullity of A.

A complementary notion is that of the rank r of a matrix 4. This is
defined as the dimension of the image of E,, under A. More precisely, let #Z
denote the set of all vectors Ax as x runs through all nonzero vectors of E,,.
Z is also a subspace of E,, and its dimension is the rank of 4.

Theorem 26. Let A be an n X n matrix. Then

(115) (rank of A} + (nullity of 4) = r(4) + W(4) = n.
Proof. Letthe vectorse,, ..., e, forma basis for 4", Then we can enlarge
this to a basis e;,..., e, &,;,...,¢e, for all of E,. We claim that the
vectors Ae,,,, . .., Ae, are a basis for #. First, these vectors obviously
belong to Z.
Next, if x is any vector of E,,
X =Y o,
s=1
for some scalars «;, ..., «,. Hence

Ax =Y ade, = > ode,
s=1

s=v+1
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and therefore any vector of Z can be expressed as a linear combination of
Ae,.1, ..., Ae, (they span #%). Finally, these vectors are linearly in-
dependent, for suppose
cyr1de iy + ¢yppde,p + 00+ c e, =0
= A(c,11€,41 + - + ce,).

Then the vector ¢, .;e,., + - - - + ¢,e, belongs to A". Hence it can be
expressed as a linear combination of ey, ey, . .., €,
Cys1€uiy + 0 T C8, =00+ e,

But this is a linear dependence amongthee;(j = 1, ..., x), contradicting
their independence, unless ¢; = * - - = ¢, = 0. Thustheset de,,,..., de,
is a basis for Z. Hence the dimension of #, or rank of A4, is n — », which
was to be shown.

A particularly interesting class of matrices is the class of matrices of rank
one. Here, the image of E, under 4 is of dimension one, which is to say
that A carries every vector into a scalar multiple of a certain fixed vector.
These matrices are completely characterized by

Theorem 27. For a matrix A to be of rank one, it is necessary and sufficient
that there exist vectors w, v such that

(116) A = uv¥,
Proof. Suppose such a u and v exist. Then, if x is an arbitrary vector
Ax = uv¥*x = (v, x)u

and A is of rank one. Conversely, if r(4) = 1, by (115), »(4) = »n — 1, and
we may take vectors ey, . . . , €,_; as an orthonormal basis for the null space
A" of A. Adjoining a vector v, we getan orthonormal basis ey, e,,...,€,.,, V
for all of £,. 1f x is an arbitrary vector, we have

x = (e, x)e; + - - + (e,_4, X)e,_, + (v, X)v.
Hence
Ax = (v, x)Av = (v, x)u

where u = Av. If u and v are so defined, then the matrix uv* must be
identical with A, since its effect on every vector is the same, which was to be
shown.

Equation (116) shows that

(117) Ay =up, (Gj=12...,n)

and therefore a square n X n matrix of rank one has only 2» independent
elements rather than #2
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Suppose we have a matrix 4 whose inverse 47 is known. Consider now
the matrix 4 obtained from 4 by changing exactly one element, say a,,, to
G,,- The difference between 4 and 4 is a matrix, all of whose elements
vanish except one. Such a matrix is easily seen, from (116), to be of rank
one. This state of affairs persists even if a whole row or column of 4 is
changed. We are thus led to inquire into the relationship between A~ and
A7 when A4 — A is of rank one.

Theorem 28.7 Let A be nonsingular, and let u and v be vectors. Then
A lav*4 71
14+ (v, A7)
in the sense that if either side exists, then so does the other and they are

equal.
Proof. First, suppose A = I, the identity matrix. Then

(118) A+u®)T=4"1—

_EL} S\ + uv* — v wuv
1+ (v,u) 1+ (v,u) 14+ (v,u)
and (118) is proved in this case. In the general case,

(A + uwv®) 1 = [A( + A uv*)[ L = [T + (A a)v*] 142

which is of the type already considered, and the result follows by applying
the formula already proved.
Next, let A be a Hermitian matrix, with eigenvalues 4,, 45, ..., 4, and

(I + uv*) [1 -

eigenvectors e, e,, . . . , e,, which we assume to be orthonormal. Consider
the matrix
(119) B =4 — Lee*.

Ifj = 2, we have
Be; = Ae; — Aiee,*e; = Ae; — Ay(ey, €))e;

= Ase
while
Be, = Ae; — Aei(e;, e) = 1ie; — e, = 0.
Hence the matrix B has eigenvalues 4,, 4, . . . , 4,, 0 with corresponding
eigenvectors ey, e, . . . , €, €;. The subtraction (119) is of particular value,

in practice, if one has available some technique which is capable of finding
the largest eigenvalue and corresponding eigenvector of a Hermitian matrix.
Applying such a technique to 4, we would find 4,, e;; subtracting as in
(119), we would then form B and apply the method to it, finding 4, e,, etc.
The end result of this process would be the Hermitian matrix

A—Lee* —---— 1ee,*
t Sherman and Morrison [1}, Woodbury [1].
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which has only the eigenvalue zero, of multiplicity n. Hence this must be
the zero matrix, and we have discovered that

(120) A=Aee™+ -+ Lee™

This, however, is the second time we have discovered this fact, for, as the
reader should verify, (120) is merely a rewriting of (92).

1.19 SIMULTANEOUS DIAGONALIZATION AND COMMUTATIVITY

We know that a Hermitian matrix 4 can always be written
(121 A = UAU*

where A, is diagonal and U is unitary. Suppose B is another Hermitian
matrix having the same modal matrix U, say

(122) B = UA,U*

where A, is diagonal. Then we say that the matrices 4 and B are simul-
taneously diagonalized by the unitary matrix U. If this happens, then
AB — BA = UAU¥UAU* — UANU*UA,U*
= UAAU* — UAAU*
= U(A A, — AADU*
=0
since diagonal matrices always commute. Hence, if 4 and B are simul-

taneously diagonalizable, then [4, B] = 0. The converse is also true, and
we state

Theorem 29. Let A and B be Hermitian matrices. For A and B to be
simultaneously diagonalizable it is necessary and sufficient that A and B
commuite.

Proof. 'We have already shown the necessity. Suppose now that AB = BA.

Suppose further that 4 hasthe distincteigenvalues 4,, .. ., 4, and normalized
eigenvectors ey, . . ., €,, and that B has the distinct eigenvalues uy, . . . , t,,
with normalized eigenvectors f;, . .., f,. Then, for any j,

A(Be;) = (AB)e; = (BA)e, = B(Ae))
= B(Ae;) = 1,(Be,).
Thus Be; is the eigenvector of 4 corresponding to the eigenvalue 4;; there-

fore Be, is proportional to e;, say

Be, = o€,
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But this means that e; is one of the eigenvectors of B. Hence the eigen-
vectors fy, £, . . ., f, of Bare merely a rearrangement of e;, e,, .. . , ¢, and
by renumbering them, if necessary, 4 and B have precisely the same eigen-
vectors, and the desired conclusion follows. If 4 or B (or both) fails to
have distinct eigenvalues, we may reach the conclusion by, say, the same
perturbation argument that was used in the proof of Theorem 18.

If, in Theorem 29, the word “matrices” is replaced by “operators” and
“diagonalizable” by “measurable with arbitrary precision,” we have a
fundamental theorem of quantum mechanics known as the uncertainty
principle. The reasons for permitting this substitution of words belong to
the domain of physics and will not concern us here.

120 THE NUMERICAL CALCULATION OF EIGENVALUES

Let 4 be a Hermitian matrix with eigenvalues |4;] > |1, = |45] = -+ = |4,
and orthonormal eigenvectors ey, e,, . . . , e,. Letx be an arbitrary nonzero
vector. Define a sequence of vectors x, X;, X,, . . . by

X = X

(123) X, 1 = 4X, (»=0,1,2,..)

and a sequence of numbers

(124) o, = (xv, Xv+1) — (xw Axv) (‘V — 0’ 1, 2, .. .).
(xv’ xv) (xv, Xv)

‘We will show that

(125) lim o, = 4

if (x, &) % 0.

Indeed, we have
x=(x,e)e; + - - + (x, e,)e,
and thus,
x, = Ax = (x, e)4%; + - - + (x,e,)A%,

= Alv(x: el)el + -+ }‘nv(x’ en)en'
It follows that

o G Ax) B ) 4 4 Ak e )

v (xva xv) h A‘%\;Jl(x’ el)l2 + tre + Aiv |(X, en)lz
" J2v+1
AN e + - 42— |(x, e,))
= Al Zl

A x e)P 4 - - 4 22 |(x, )|
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When v is large, the first term in the denominator dominates it, and the
first term in the numerator is dominant there; hence the expression in
braces tends to unity as » — o0, and 6, — 4,. If the vectors x, are normal-
ized after each iteration, then it is obvious that the x, converge to the
dominant eigenvector of 4. Having found this dominant eigenvalue and
eigenvector, equation (119) may be used to find the remaining eigenvalues
and eigenvectors.

If the smallest eigenvalue is desired, rather considerable labor is involved
in the above process, and it is preferable to develop other methods which
converge to the smallest eigenvalue directly. One way, of course, is to
consider 471, whose largest eigenvalue is the reciprocal of the smallest
eigenvalue of 4, and apply the process (123) to it. Even this labor can be
avoided, however, by constructing a slight variant of (123) in the following
manner. With an arbitrary initial vector x, take

Xy =X
X,+1 = (A — n,Dx, (»=0,1,2,..))
where the number 7, is to be determined. Estimating the eigenvalue by
(124), again we find
(127) o, = (%Xy+1, A%y 41)
(Xy+1> Xy11)

. (Axv — VX, Azxv - nvAxv)

(126)

(Axv = Xy, Ax, — ﬂvxv)
_ T = 2975 + 0’y
2 — 20571 + 7,%7
where we have written 7, = (x,, A’x,), ( =0, 1, 2, 3). To converge to the
largest eigenvalue most rapidly we should choose 7,, at each stage, so as to
maximize (127); to converge to the smallest eigenvalue we need only to

minimize (127). The choices of #, which accomplish these objectives are
the two roots of the quadratic equation

L g 7
(128) T T T2 | =0
Ty Te T3
The complete iterative process consists, then, in choosing an arbitrary
vector X,, and, in general, if x, has been determined, calculating =, 7y, T,
73, and taking for #, either the larger or smaller of the roots of (128) in

(126), depending on whether the largest or smallest eigenvalue of 4 is
sought.

t Hestenes and Karush [1].
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1.21 APPLICATION TO DIFFERENTIAL EQUATIONS

Let A be a square matrix. Then the series

2.2
(129) eAt=1+At+£2‘i+...

converges uniformly on any finite interval of ¢, as does the derived series,
and hence by differentiation

(130) Aet' = %(e‘“‘) =et'4 (1)
the equation meaning that
d .
dt {(e*):5} = (Ade*Y),; = (e*'A), Gj=1...,n).

Hence consider the system of # linear ordinary differential equations in »
unknown functions %,(2), . . ., ,.(t)

(131) ‘d—yi = i a9  (=1,2,...,n)

dt =1
y£0) given
where the g,; are constants.
If we define the vector y(z) = (y,(2), - . ., ¥.(2)), (131) is

y'(5) = Ay())
1 @ ven
whose solution is plainly
(133) ¥() = e*'y(0).

Hence the solution of the initial value problem (132) is equivalent to
finding the matrix e4’. If 4 = PAP~!is diagonalizable, (133) becomes

(134) y(£) = Pe’'P~1y(0).

Another way of looking at (132) if 4 is diagonalizable is to make the change
of dependent variable u(f) = P7'y(f). Then (132) takes the form

(135) u'(f) = Au(r)

in which the equations are uncoupled, and hence may be solved separately,
the final result being, of course, (134).

As an example, suppose y(r) satisfies y'(r) = Ay(?) for 0 < ¢ < ¢, and
y'(¥) = By(?) for 1, < ¢t £ t,, where 4, B are different, diagonalizable,
constant matrices, and the solution vector is required to be everywhere
continuous.
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ForO0=t¢= 1y,

(136) y() = e*'y(0)
while for 1, = ¢t < 1,
(137) y(©) = ePlc

where ¢ is a vector of constants. Joining these solutions at ¢ = #,
eBtoc — eAtoy(())
or
c = e—BtoeAtoy(O) (?& e(A_B)tny(O)).

Hence in ¢, < ¢ < f; the solution is
(138) ¥(£) = €Be = Bl edloy(0),
From (138) we can, for instance, read off the behavior of the solution as
t— oo.

Next, we make only a few sketchy remarks about the application of
matrix methods to the approximate solution of partial differential equations.

Theorem 30. Let A be a square, diagonalizable matrix, with eigenvalues
Ay Aoy oo oy An. Inorder that
(139) limA”* =0

it is necessary and sufficient that
(140) l<l (G=12,...,n).
Proof. Since

A” = PAPT?

it is clear that what we need is 4;” — 0 for each 7, which happens precisely
when (140) holds. The hypothesis that 4 is diagonalizable is actually

superfluous.
An immediate corollary is that
(141) —ADr=T+A+ A%+

if all the eigenvalues of 4 lie in the unit circle in the complex plane. Indeed.
in that case we have

I+A+- -+ A& =PI+A+---+A}P?
—P(l —A)'P7?
=(I—-A4)""
Let us now consider, say, Poisson’s equation in a rectangle £,
(142) Va(z, y) = S(=, y)
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with values of ¢ given on the boundary of Z. If we overlay the rectangle %
with a lattice formed by the lines x,, = mh(m=0,1,..., M), y, = nh

(n=20,1,...,N), then we may approximate
az_‘,zs — ¢(xm+1, yn) _ 2¢(xma yn) + ¢(xm—1a yn)
8902 (@) h2
82¢ — ¢(xm’ yn+l) - 2(,’6(.’!7,”1’, yn) + ¢(xm, yn—-l)
ay2 (21, %5) h?

If these approximations are substituted in (142) the result is a system of
(M + D(N + 1) simultaneous linear algebraic equations in the unknown
numbers ¢(z,,, ¥,,), of the form

(143) ®=AD +S

The solution is manifestly ® = (I — 4)~1S, but because of the large size
of A [(M + D(N + 1) x (M + 1)(N + 1)] and the large number of zeros
it contains, a direct inversion of I — A is quite wasteful of effort. If, how-
ever, we take an initial guess vector ®, and define recursively

(144) P, ,=A4AP, 4+ S (r»=0,1,2;..)
then we have

P, = AP, + S

P, = A42®; + (I + A)S
(145) '

D, =AP,+I+A+ -+ AHS

From (139) and (141) we see that if the eigenvalues of A4 lie in the unit
circle (as is generally the case in practice) the first term in (145) tends to
zero, and the second to the solution of the problem. The recursive process
(144) is called relaxation, and converges rapidly or slowly depending on
whether the largest eigenvalue of A is considerably or slightly less than
unity in modulus.

1.22 BOUNDS FOR THE EIGENVALUES

The eigenvalues of a diagonal matrix are its diagonal elements. It is
reasonable to suppose, therefore, that if the off-diagonal elements of a
matrix are “small,” then the eigenvalues are not “too far”” from the diagonal
elements. Our purpose here is to quantify this assertion.
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Theorem 31. Let A = (a;)," be an arbitrary square matrix. If
(146) lagl > el (G=12,...,n)
J#i

then A is nonsingular.t
Proof. Suppose A issingularandletx = (z,, . .., x,) satisfy Ax = 0,x 7~ 0.
Let |z,| = max |z,|, then

i

|ass| |.’IJS| = |assxs| = |z g5
j#s

= Z|asj‘ EZN A z‘asi‘
J#s i#s

o < lagl |z
which is impossible.
Let us now apply this theorem to the matrix 4 — AL It tells us that if

Iz-—.aii]>z|aﬁ| (i=1,2,...,n)
FE)

then A4 — Al is nonsingular, that is, 4 is not an eigenvalue of 4. We have
proved

Theorem 32.7 Every eigenvalue of A lies in at least one of the circles

(147) |4 —ayl = z |l i=12,...,n)
in the complex plane. o

Naturally, if 4 is Hermitian, we may interpret (147) as describing intervals
rather than as circles.

This theorem can actually be considerably refined, though we shall not
prove it here, to the statement that if p of the circles (147) overlap to form a
connected region C which is disjoint from the rest of the circles, then
exactly p eigenvalues of 4 lie in C. Hence, in particular, if the circles are
disjoint, there is one eigenvalue in each.

1.23 MATRICES WITH NONNEGATIVE ELEMENTS
Let 4 = (a;;)," be a square matrix with real elements. We will write
A=0

ifa; 20(G,j=1,2,...,n),and 4 < Bif B — 4 = 0. Furthermore, if B
is a matrix with complex elements (b,,),", we write Bt = (|b;;|),". Plainly,
Bt = 0, for any B.

1 Hadamard [1].
1 Lévy [1], Hadamard [1]. See also Gerschgorin [1], Brauer [1].
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We say that the matrix 4 = (a,;)," is reducible if there exist two sets of
integers I, J having the properties
@G TuJistheset{l,2,...,n}
(ii) I N Jis empty.
(iii) Neither I nor J is empty.
(iv) If iisin I and j is in J, then q;; = 0.
Otherwise, if no such sets exist, 4 is said to be irreducible.

Example 1. The matrix
011

A=1]0 0 0O
1 00

is reducible, since we may take I = {2}, J = {1, 3}, and check that (i)-(iv) are
satisfied.

Example 2. The companion matrix of an algebraic equation whose constant
term is not zero is irreducible.

We postpone the proof of this important fact to a later chapter (exercise 1,
Chapter 3).

Naturally a matrix with no zero elements is irreducible. On the other
hand—as in Example 2—a matrix can have many zero entries and still be
irreducible. The point is that the zeros must be strategically placed so that
the sets 7, J cannot be constructed. The main theorem of the subject of
non-negative matrices gives certain information about the eigenvalues and
eigenvectors of such matrices. This theorem is rather easy to prove if one
confines attention to matrices with no zero entries. Most of the conclusions
of this theorem, however, remain true if zero entries are permitted, provided
the matrix remains irreducible. Since we wish to use the full generality of
this theorem in later applications, the notion of irreducibility is necessary
to our discussion.

For any vector y, let Z(y) denote the number of zero components of y.

Lemmal. Letd = Obeanrn X nirreducible matrix,andlety = 0,y %~ 0
be a non-negative n-vector. Then

Z(( + Ay) < Z(y)
unless both sides are zero.
Proof. Writeu= (I + A4)y. Sincel + 4 = 0, clearly Z(u) < Z(y). Suppose
Z(u) = Z(y). The zero components of u and y occur in the same places in
each vector because u; = y,. Hence we may suppose, by relabeling the

TOwWS Of u and y, that
0 0
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where x > 0, w > 0 are vectors of length n — Z(u). We then relabel the
rows and the columns of 4 in accordance with the same permutation of
the integers 1, 2, ..., n that was used in renumbering the rows of nand y.
The irreducibility of 4 is not affected by this process (see exercise 40).
Next we partition the matrix 4 into

A= (An Alz)
Ay Ay

where the submatrix 4 “matches” x, etc. Then
I+ 4 A A
el I e Rl [ R
0 Ay I+ A5/ \0 Agx

and it follows that 4,x = 0. But since x > 0, 4;; = 0, and the matrix 4
has an (n — p) x p block of zeros in its lower left corner. It is easy to see
that this contradicts the irreducibility of 4, and the lemma is proved (see
exercise 39).

Lemma 2. Let A = 0be n x nand irreducible. Then
T+ AH1t>0.

Proof. Lety = 0,y # 0 be a non-negative vector. By repeated applica-
tion of Lemma 1, (I + 4)" 'y has no zero components. Since y was
arbitrary, the lemma is proved.

Now let 4 = 0 be a fixed, non-negative, irreducible matrix. For any

vector x = 0, x £ 0, x = (X, X,, - . . , X;,), define a number
(148) r(X) = min (A—x)’
15¢2n X

Lemma 3. For the given vector x, r(x) is the largest number r such that
(149) rx < Ax

Proof. First, r(x) has the property (149), since
(150) (Ax — r(®)X); = (4%); — r(x)z,

> (Ax), — @iz o,
i
Further, there is a value of j in (150) for which the sign of equality holds
throughout; hence no number larger than r(x) satisfies (149).
The notation

sup r(x)
xin M

denotes the least upper bound of all the values taken by r(x) as x ranges
through a set M of vectors.



42 MATHEMATICS FOR THE PHYSICAL SCIENCES §1.23
Consider the following sets of vectors:

M”: The set of all vectors x such that x = 0, x % 0.
M’: The set of vectors y = x/||x|, where x is in M".
M: The set of vectors y = ({ + 4A)"'x, where x is in M.

Lemma 4. We have
(151) sup r(x) = sup r(x) = sup r(x) = max r(x)
xin M” xin M’ xinM xin M

Proof. What this lemma asserts is that in order to find the largest value
that r(x) takes on any non-negative vector x it is enough to restrict attention
to the special class M.

First, from the definition (148) of r(x) we see that the value of #(x) is un-
altered if the vector x is multiplied by a scale factor. Hence we may restrict
attention to normalized vectors, which proves the first of the equalities (151).

Next, by (149),

r(x)x £ Ax

and multiplying both sides by the positive matrix (I + 4)*,
152) rx)y = (I 4+ A" Ax = A(I + A" x = Ay

where y = (I + A)"x. But #(y) is the Jargest number with the property
(152). Hence r(x) < r(y), and

sup r(x) = sup r(x)
xin M’ xin M
The reverse inequality is obvious,

sup r(x) = sup r(x) = sup r(y)
x in M’ xin M~ xin M

since every vector in M is also in M". Hence the second equality in (151} is
proved. The third equality there states only that the least upper bound is
actually attained on some vector y in the set M. But the set M’ is just the
surface of the unit sphere in Euclidean z-space, and is therefore compact.
The set M is the image of this compact set under the continuous function
x — (I + A)"'x, and is also compact. Finally, since M consists only of
positive vectors, r(y) is a continuous function on M, which is compact, and
therefore r(y) attains its maximum value in M.

We now state the fundamental theorem of the subject of matrices with
non-negative elements.

Theorem 33.1 (Perron-Frobenius) Let A = 0 be irreducible. Then
(i) A has a positive eigenvalue r which is not exceeded in modulus by any
other eigenvalue of A.

1 Perron [1], [2], Frobenius [11, [2].
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(i) The eigenvector of A corresponding to the eigenvalue r has positive
components and is essentially unique.
(iii) The number r is given by

(153) F = max min (A2); _ min max (42);
z20 1SS X z20 154Sn X
Proof. First, the number r defined by (153) is plainly non-negative. We
show that it cannot be zero, for consider the vectoru = (1, 1, ..., 1). We
have
r(w) = min (Auw), = min (Au),
1=iS=n U 15iEn
. n
= min a;
15i<q 721 !

n
Since 4 =2 0, > a,; # 0 for any i, for otherwise a whole row of 4 would
=1
consist of zeros, contradicting the irreducibility of 4. Hence r(u)is positive,
and r, the maximum of r(x) over all vectors x = 0 is, in particular, =r(a),
and thus is positive also. ,
Next, let v be a vector on which r(x) attains its maximum value, »(v) =r,

and sety = (I + A)*v. By (149) we know that

(154) Av—rv=0

and we wish to show that the sign of equality actually holds here. Suppose
Av — rv % 0. Multiplying (154) by (I + A4)*1, we find

(155) Ay — ry > 0.

But r(y) is the largest number such that Ay — ry = 0, and (155) shows that
r(y) > r, which contradicts the maximum property of r. Hence we have
shown that

(156) Av =rv

and therefore the number r defined by (153) is an eigenvalue of A. This
number is called the Perron root of A.
Next, we see that the eigenvector v is > 0, since

I+ A v=10+r"v>0.
Now let 4 be any eigenvalue of 4. We will show that |A| < r. Suppose

Au = lu
then |2 ut = Aut
or Aut — |l ut = 0.

Thus, in view of Lemma 3,
A= r(ut) £ 1.
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Finally, we will prove that the eigenvector v corresponding to the Perron
root r is unique (aside from a scale factor). Indeed, suppose v** and v are
two linearly independent eigenvectors corresponding to the eigenvalue r.
We already know that we can take v’ > 0, v > 0. Defining
o
o= — min *
15i=q oV
the vector
ovi) L v® =0

is a non-negative eigenvector of 4 corresponding to the Perron root r, with
one vanishing component, at least, which is impossible, completing the
proof of the theorem.

Corollary 33. Let A = 0 be irreducible, and let x = 0 be arbitrary. Then
the Perron root of A satisfies
(157 min (Ax), = r = max (A—XL

1=iS & 1SiSqn Z;
Theorem 34.7. Let A be an irreducible n X n matrix with arbitrary com-
plex elements. Let A be any eigenvalue of A, and let r denote the Perron
root of the matrix A*. Then

(158) Al <1
Proof. Suppose

Ay = 1y
Then [Aly*t = Atyt
or ATyt — [Alyr= 0

By Lemma 3,
HN=rysr
which was to be shown.
This theorem, coupled with (157), can often provide useful upper bounds
for the eigenvalues of an jrreducible complex matrix.
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Exercises

1. The familiar “triangle inequality’” (the sum of the lengths of two sides of a
triangle is not less than the length of the third side) has the following form
in a vector space V:
Ix +yl = x|l + lyl.

Prove the truth of this inequality, using only our system of axioms and the
Schwarz inequality.
2. An orthogonal set of vectors is independent.
3. In the vector space V, of all polynomials of degree <2, with the inner
1

product (f, g) = f f(—x)g(x) dzx, the three vectors 1, , x? are independent.
~1
Apply the Gram-Schmidt process to orthogonalize these vectors. The
resulting polynomials are called Legendre polynomials.
4, (a) If T possesses an adjoint and an inverse, then (T*)™1 = (T-1)*.
(b) (T)* =aT™; (Ty+ T* = Th* + T*.

5. An operator 7 is skew-Hermitian if 7% = —T.
(a) The eigenvalues of a skew-Hermitian operator are purely imaginary
numbers.

(b) Let S be an arbitrary operator possessing an adjoint S*. Then S can be
written in the form
S=H+K

where H is Hermitian and K is skew-Hermitian.
6. If AB = AC, does B = C? (A, B, C are square matrices of order n.) Prove
or construct a counterexample.
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10.

11.

12.
13.
14.
15.
16.

17.

i8.

19.
20.
21.
22.

23.

. The matrix A = (
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. Let A be an arbitrary m x n matrix. Then B = 4A* is square and

Hermitian.

01
. Discuss the eigenvalues and eigenvectors of 4 = (0 0) . Is Adiagonalizable?

a b
) is a real projection operator on E,. Finda, b, ¢, d,
C

and discuss your answer geometrically. What are the spaces .#, #, in
terms of a, b, ¢, d?

a b

The matrix 4 = ( ) is a real unitary operator on E,. Find @, b, ¢, d

c
and discuss your answer geometrically.
The relation A ~ B (4 is similar to B) is an equivalence relation among
square matrices of the same order. That is,
(a) A ~ A.
(b) If 4 ~ B, then B ~ A.
(c) If4 ~Band B~ C,then 4 ~ C.
Using the result of (11), show that diagonalizable matrices with the same
eigenvalues are similar.
Tr [A4, B] = 0, for arbitrary square matrices 4, B.
Find the inverse of the matrix A4 of (98), using (97).
Find a 3 x 3 matrix whose eigenvalues are the squares of the roots of the
equation 22 + 1142 — 21 +1 = 0.
Let 4y, 45, ..., 4, be the eigenvalues of 4. Then the eigenvalues of f(d)
are f(4;), . . ., f(4;), where f(4) is a polynomial or entire function.
Let A be Hermitian and positive definite. Suppose A4 is bordered as in (102).
What are the necessary and sufficient conditions (on u and «) that A should
also be positive definite?
Let A and B be Hermitian and positive definite. Is 4 + B? 4?7 f(A)
(where f(2) is a polynomial) ?
If Ais m X n, then AA* is non-negative definite (compare (7).
What is the analogue of (114) for negative definite matrices?
Show that each of the discriminants A;, A,, . .., A, (114) is a real number.
Show that a real, symmetric, positive definite matrix A has a real, symmetric,
positive definite square root, i.e., a matrix B such that B? = 4
Consider the matrix 4 = (@) (i, n = 1,2, ..., N) where
m
amn=cos(tlog—n—) (mn=1,2,...,N)

t being a real parameter.
(a) Show that, if the complex variable s = ¢ + iz, then

N 2 N
z ns o= 2 moa,, n°
n=1 mn=1
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(b) Show that A is of rank 2.

(c) Show that A4 is non-negative definite and symmetric.

(d) Find the eigenvalues and eigenvectors of 4.

Describe a method of inverting an arbitrary nonsingular matrix based on
repeated application of (118). Count the multiplications needed for an
r X n matrix.

Show that the inverse of an arbitrary nonsingular matrix can be found by
inverting a non-negative definite matrix and two matrix multiplications.

Prove that v linearly independent vectors ey, e,, ..., e, can always be
extended to a basis ey, .. ., e, for E,.
Let A, B be Hermitian, positive definite matrices. Find necessary and

sufficient conditions for 48 to be also Hermitian and positive definite.

Is the relation 4 — B (4 commutes with B) an equivalence relation (see
exercise 11)?

Let the matrix 4 be diagonalizable. Show that the Cauchy integral formula
1 f(2) dz

SO =5 fyel — 4

holds if the closed contour C encloses all the eigenvalues of 4, and if f(z) is
regular in C. The formula is interpreted as

1
(flAD); = i fﬁ(‘(zl G f@dz Gj=1,...,n).

Use the result of problem (30) to find e4! where

s

and ¢ is a real number. Thus solve the system of two differential equations
y'(1) = Ay(t), with y(0) a given vector.

For Hermitian matrices 4, B, let A = 0 mean that A4 is non-negative definite,
and A = Bmeanthat 4 — B =0. f A =BandB=C,is4 = C?

The rank of a matrix is a similarity invariant, i.e., if 4 ~ B, then r(4) = r(B),
and hence also, »(4) = »(B) (see exercise 11).

Is the nullity of a matrix equal to the multiplicity of the eigenvalue zero?
Is it for diagonalizable matrices?

A matrix which commutes with all diagonal matrices is diagonal.

Describe all Hermitian matrices of rank one.

Find (I + wo*)®.

Show that r(4B) = min (¢(A4), #(B)).

Is (4 +8) = ¢4289 When is this true?

Let the n X » matrix 4 have an (n — p) x p block of zeros in its lower left-
hand corner. Then A is reducible.

Let A be a given n X n matrix. Let the rows of 4 be renumbered in any
manner, and let the columns of 4 be renumbered exactly as the rows were.
Denote the matrix which results by 4,. Then A, is reducible if and only
if A was,



chapter 2
Orthogonal functions

2.1 INTRODUCTION

In the previous chapter we investigated certain general properties of vector
spaces and linear operators on vector spaces and then specialized these
results to Euclidean n-dimensional space. We noticed, in passing, that
certain sets of functions also qualified for the title “vector space” and gave
a few examples of these.

In this chapter some of these function spaces are discussed in detail.
More specifically, we treat here orthogonal polynomials, Fourier series,
and the convergence theory of orthogonal expansions—of which the Fourier
series is the prototype. The concept of linear operators moves into the
background, in this context, and is superseded by the notion of orthogon-
ality itself.

Our presentation of the theory of orthogonal polynomials proceeds from
the general to the specific, in the belief that the unity of the subject is best
recognized in this manner. The degree of generality that we attain in this
way is only very slightly less than optimum, the latter requiring a knowledge
of the Lebesgue-Stieltjes integral which we do not presume. In practice,
the slight loss of generality that we incur by using the Riemann integral
means only that our discussion does not include the case of orthogonality
with respect to summation over discrete point sets rather than with respect
to integration over an interval. Thereader who is familiar with the Stieltjes
integral will find that our proofs carry over, virtually unchanged, to that
case.

48
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2.2 ORTHOGONAL POLYNOMIALS

Let [a, b] be an interval (finite or infinite) of the real axis. Let w(z) be a
function defined on [a, 4] and satisfying the following hypotheses:

Hl: w(z) = 0on [a, b].
H2: The integrals

) (‘bx"w(x) de = u, (n=0,1,2,..))

va
exist and are finite foreachn =0, 1,2, ..., and g, > 0.
A function w(x) satisfying H1, H2 will be called a weight function for
[a, b], or if the context is clear, a weight function. The numbers u,, defined
by (1) are the moments of w(z).

Example. The function w(x) = 1/ is a weight function for any finite interval
[a, b] where b > a > 0 and not for any other kind of interval.

If f(z) and g(z) are any real polynomials and w(z) is a weight function
for [a, b], the number

&) (f,8) E_['_f (2)g(2)w(z) d

being a linear combination of the u,, is finite, and is called the inner product
of fand g. It should be verified that this inner product satisfies axioms (9)
through (14) of Chapter 1 (exercise 1), so that the class of all real poly-
nomials forms a vector space over the real numbers (i.e., the constants in
the axioms (1) through (14) of Chapter 1 are all real).
That being so, we can remark that the vectors
1,z 2% 25, ...

are linearly independent in this space; therefore we may apply the Gram-
Schmidt process to orthogonalize them. The resuit of this procedure will
be a sequence of polynomials

(3) 450(95): ¢1(m), 962(1'), LU
where ¢,(x) is of degree j(j =0, 1, 2, .. .) having the property that
@) ($2), $,(=)) =f pl@)p(aw(@) dz = 6,;  (5,j=0,1,2,...).

We call the sequence {¢,()},™ the sequence of orthogonal polynomials asso-
ciated with the weight function w(z) and the interval {a, b].

We give also the following, more explicit construction of the sequence (3).
Assume that, for some fixed », the polynomial ¢,(%) has the form

) $.(2) = zax
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We wish to determine the coefficients «, so that ¢,(x) is orthogonal to each
power of x less than the nth. These conditions are

©6) (z% ¢, (x)) =0 i=01...,n—1)
Using (5), (6) becomes

@) f(wi,x")av=0 (i=0,1,...,n=1).
Now v

4 [4
(2, =) ==f F'z'w(x) dz =f Y w(z) d

= lui+v
Further, equations (7) are » linear equations in # 4 1 unknowns; so we
choose «,, = 1, for example, and then must solve

n~1
(8) Zolu’z'+va'v = —MUpt+; (l = 0, 1, R 1)
This will be possible if and only if the matrix
®) My;=pu; (Gj=01,...,n—1)

is nonsingular. This matrix is called the moments matrix of the weight
function w(z), and we have

Theorem 1. The moments matrix of a weight function is strictly positive
definite, and a fortiori, nonsingular.
Proof. Let§ = (&, &, ..., &,.1) be an n-vector. Then

1 n—1

(8, M) = ni EM & = Eithyy 55
3 =0 0

2,i=
z—1 n—~1
= (Z £, 3 5ij) >0
=0 i=0
unless & = 0, which proves the theorem.
As an illustration, we take w(z) = 1, [@, b] = [—1, 1]. Then

o 2/n+1 n even
10 Bn —f_lx de = {0 r odd
The moments matrix is

i,§=

2030
02 0 2
2020

(1) M

i

0 %20

' ~ate
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Taking, for example, n = 2, equations (8) are

o () =)
()=

Hence Py(x) = ag + oy + 22 = —% + 22 is the second member of the
sequence of orthogonal polynomials belonging to the weight function
w(z) = 1 and interval [—1, 1]. This particular sequence is the sequence of
Legendre’s polynomials.

Clearly each member of a sequence of orthogonal polynomials can be
multiplied by a constant without altering the orthogonality of the sequence.
If this is done so that

(12) (@), paN =1 (=0,1,2,..)

the sequence is said to be normalized. There is still a choice of sign to be

made even though the sequence is normalized. When speaking of normal-

ized sequences, we will assume that the sign has been chosen so that the

highest power of z in ¢,(«) has a positive coefficient, foreachn = 0,1,2,...
We summarize with

with solution

Theorem 2. Let w(x) be a weight function for the interval [a, b]. Then there
exists a unique sequence {¢,(x)},° of polynomials satisfying

(13) ($n(@), () = b, (myn=0,1,..)
(14) ¢,.(x) is of exact degree n (n=01,..)
(15) k, = highest coefficient of ¢ (x) is >0 (n=20,1,...)

2.3 ZEROS

Let w(x) be a fixed weight function on a given interval [a, b]. We wish to
discuss some of the properties of the sequence of orthogonal polynomials
associated with w(z), [a, b].

By (14), of course, ¢,(z) has » zeros (roots of the equation ¢,(z) = 0)
somewhere in the complex plane. Much more can be said, however, the
following theorem being of fundamental importance.

Theorem 3. The zeros of the polynomial ¢, (x) are
(i) real
(i) distinct
(iii) contained in the interval (a, b).
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Proof. First, forn = 1,
0 = ($(2), $o(2)) = o L $@)w(x) dz

where ¢, is a nonzero constant. Thus ¢,(2) surely changes sign at least
once in (a, b). Let «;, ..., z, denote the zeros of odd multiplicity, each
counted just once, of ¢,(z) which lie in (a, b). Since

$u() = (z — )" -+ (& — 2,)"p(x)
where y(x) is a polynomial of degree n — «; — - -+ — o,, and does not
change sign on (g, b), it foliows that

()& —z) - (@ —x) = (x — &) (2 — 2, y(2)
does not change sign in (g, ). On the other hand,

fb¢n(x)(x — xl) e (x - Z W(IE) dz =0

if r < n, which is impossible. Thus r = n and the theorem is proved.

24 THE RECURRENCE FORMULA

Let &, denote the highest coefficient of ¢,,(x), as in (15). We remark first
that any polynomial of degree n can be written as a linear combination of
(), . . ., b, (x), since, starting with
(16) J@ =c+az+ -+ 2"

we may write " as a linear combination of ¢,(x) and lower powers of z and
continue this process until the remainder is constant, i.e., a multiple of
$o(x). More precisely, if

) @) =3 0 dl@)
is the expansion in question we have

(18) ($@), f@) =a, (»=0,1,...,n)
as usual.

Now the polynomial
Ky

bu(®) — P 2d,-1(2)

n—1
is clearly of degree n — 1, and therefore

n—1
(19) $u() — k"" £har(®) = 3 0 (2).

v=

n—1
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Taking the inner product of both sides with ¢,(z),

(20) (‘an — Ko Tpr-1, 997) = a(¢;, $5)

kn—l
k,
= (¢m ¢]) - (x¢n—1’ ¢a)
kn—l
K
= ((ﬁm ¢;) - (‘?Sn—-la x(ﬁ])
kn—l
If j < n — 3, zd,(x) is of degree <n — 2, and the last two terms in (20)
vanish. Thus oy = a; =+ -- = «,_3 = 0, and using (19),
. k,
¢n(x) - k x¢n—1(x) = an—2¢n—2(x) + o("n.—ltﬁ'n—l(x)
n—1

or recalling that the numbers «, depend on #,

Q1) $u(z) = (k""

xz + Bn) qsn—l(x) - Cvn(ﬁn—z(x)-
n—1
Theorem 4. A sequence {¢,()}5 of orthogonal polynomials satisfies a three
term recurrence relation of the form (21).

Concerning the coefficients C,, we have

k
0= (¢m ¢n—2) = (¢n—2’ (k -z + Bn) ¢1L—1 - Cn¢n-—2)
n—1
k
= k = (x(l’n—l’ ‘15?1—2) - Cn(qsn—z’ ?Sn—?.)
n—=1
= kkn (d)n—b kn—zxn-—I + - ) - Cn(¢n—2’ ¢n—2)
n—1
= IfZI;—H (?Sn—lf kn—-lxn_l) - Cn(¢n—2’ ¢n—2)
n—1
k.k,_ .
= '1"27—Lz (¢n—1’ ¢n—1) - Cn(¢n—2’ ¢n—2)
Cn—1

Hence if we define

(22) yv = (¢\" ¢V) (’V = O’ 1’ 2’ .. ')
then
(23) C, = Knkn-gPn-1

k?r‘l Yn-2
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When the polynomials are normalized, y, = 1 (» = 0, 1,2,...), and the
recurrence takes the form

ks g ()

2
kn—l

$u(@) = (k"" x+ Bn) $rrl2) —

n—1
or, after some rearrangement,

k,_ -
"1 (@) +
k, k

(24) x¢n _1(.’17) =

¢n—2(x) + ﬁn—l‘ﬁn—l(x)-
1

n—

Inspection of (24) shows how one can recognize a normalized sequence by
its recurrence relation, for if # is replaced by » — 1 in the coefficient of
¢ (), the coefficient of ¢, _,(x) must result.

Example. A certain sequence of orthogonal polynomials satisfies
Pua®@) = [n 4+ Dr + 1da(2) — 30 + Dgn ().
Is the sequence normalized? If not, find the normalization constants.

Solution. Solving for z¢,,(2),
1 1
(25) Opul®) = -7 Fuaal® + 3na(2) — ~ $a(@).

Thus the sequence is not normalized. Let y,(x) = 4,¢,(z) denote the normalized
sequence, where the constants 44, 4,, . . . are to be found. Substituting in (25),

Ay Ay 1
zyp(x) = [m:, Wn+1($) + 3[%] Py y(X) — m ().

The condition for normalization is

)"n-—l }'n
it S
ni, Apg
A ! A
o n = o= e
r \/3’1 n—1
Hence
(26) Ay = 37 A(nD)YAgs,

are the required normalization constants. In other words, for this sequence we
have found that

(27) yn = (¢'n, ‘}S'n) = 3"”! 'yo (}1 = 0? Ia 25 .. )

It is also possible to give a remarkable proof of the reality of the zeros of
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¢.(x) based on the recurrence relation. Indeed, let us write (24) for
n=1,2,..., N, in the form

@) [ g fo 20 0 o 0 $o()
1
$i(2) ;% B, l’j—l 0 -+ 0 $i(2)
o @ |=| o ’;— By ’,j— o0 $o(2)
. 0
9{’1\'—1(5”) 6o 0 0 0 --- ﬁ.\'—l ‘ibN—l(x)
0
0
0
. .
0

kN—l
—‘kN P (=)

Now, suppose we choose the number z to be a zero of (), say z = ;.
Then (28) reads, with obvious notation,

(29) z,B(z;) = JP(z))

that is, the eigenvalues of the N X N matrix J are the zeros of ¢, (z.) Since
J is symmetric, these zeros are real. The matrix J is called the Jacobi matrix
associated with the sequence {¢,(z)}. We have proved

Theorem 5. The eigenvalues xy, . . . , x of the Jacobi matrix in (28) are the
zeros of ¢y(x). The eigenvector corresponding to x; is ($y(x,), $.(z), . . .,

¢N—-1(xi))-
2.5 THE CHRISTOFFEL-DARBOUX IDENTITY

Write (28) in the vector form
ky
(30) 2@(z) = JB(x) + 5—

7; MEdey
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where ey = (0,0,0,...,0,1). Replacing « by y,
ky-
€3y y®(y) = JR(y) + == $nlW)en.
N

Taking the inner product of (30) with ®(y), (31) with ®(z) and subtracting,
we get, using the symmetry of J,

(32) (& — yN(P(2), (W) = [pn-1(9)dn(®) — ¢1v—1(x)¢zv(y)]% ‘

N
This is the Christoffel-Darboux identity.f In scalar form it reads
k-1 ¢n-10)dn(x) — dn-1(2)$n(y)

ky r—Y

and is valid, as written, for normalized polynomials only. If the {¢(z)} are
not normalized, then ¢, () must be replaced by y, *¢,(z) on both sides of
(33) (note that this changes k, also).

If we let y — z in (33), the right-hand side becomes

kv-14m {¢ (x)[¢N 1(?/) ¢’N 1(x)i| + by (x)[¢w(9’) ?SN(?/)iI}
k

N vz x—1y

- % {—dn(@)Py-1(2) + dy-1(2)PN(2)}
N 5

N-1
() 3 H@hW) =

and therefore

N-1
GO 3 @ = D@y + by}
v=0 N

If we take x = x,, a zero of ¢ (x), in (34),

(35) Z [‘Isv(%)]2 N > ¢N—1(%)¢N(“’o)

On the other hand, setting n = N + 1 and # = 2, in (24), we find
(36) bv-1(%)) = — —— byi1(%)
kN+1kv 1
and substituting in (35), we obtain finally
ky

Ky

(37 Z [qu(xo)]z == v +1(Z0) PN (%)

a formula which will be of use presently.

1 Christoffel {1], Darboux [1].
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2.6 MODIFYING THE WEIGHT FUNCTION

Suppose {¢,(x)}5 is the sequence of orthogonal polynomials associated
with the weight function w(z) on the interval [a, b]. Let p(x) be a polynomial
of degree r which is non-negative on [a, b]. Then w(x)p(z) is again a weight
function for [a, ], and we may seek the sequence {y,(2)}5 of orthogonal
polynomials associated with this modified weight function on the same
interval [a, b]. Christoffel has given the following ingenious construction
for the ().

Consider the determinant

(38) $ul®)  Puia(®) - buin(2)

Fax)  Purr(z) o b))
D@=| - -

¢n(xr) ¢n+ 1(1:,,,) te ¢n+fr(xr)

where 7;, %,, ..., 2, are the zeros of p(x) which we suppose, for the moment,
to be distinct.
Clearly D, (x) is a polynomial of degree n 4+ r and

(39) Dfz)=0 (i=1,2...,7r)

since, for these values of #, two rows of D, (x) are the same. Thus D,(z) is
divisible by p(x), so that

(40) D,(@) = p(@)yp,(2)

where y,(x) is a polynomial of degree n. Next, if we expand D, () across
the first row,

Dn(x) = A0¢n(x) + A1¢n+1(x) + -+ Ar¢n+r(m)

where the A4; are certain constants. Thus, if f(x) is any polynomial of
degree =n — 1,

f P (2)f (2)p(x)w(2) dw =f D (z)f (x)w(%) d=

= o] @@ a4+ 4] by @) dn
=0
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by definition of the {¢,(x)}. Thus y,(z) is orthogonal to every polynomial
of lower degree with respect to the weight function p()w(z), as required.

Theorem 6.1 The orthogonal sequence {y ()} associated with the weight
Jfunction p(x)w(x) on the interval [a, b] is

1) (@) = —— D,()
p(x)

where D () is given by (38), if the zeros of p(x) are distinct.

It is not hard to see that if a zero of p(x) has multiplicity m, the corre-
sponding rows of D,(x) must be replaced by the derivatives of order
0,1,...,m — 1 of the polynomials ¢,(x), ..., ¢, (r) evaluated at this
repeated root. The proof is identical with that already given.

Example. Find the sequence belonging to the weight function 1 —zon[—1, 1].
The Legendre polynomials P,(z) belong to w(z) = 1 on this interval. Taking
py=1—=z,2 =1,r=1in(38),

Pr(x) Ppiq(2)

D, =
@ =1 p Pott)

and the required polynomials are
pa@) = (1 — 271Dy ()
= (1 = ) UP@)Pryy(1) = Papy@P, (1] (1 =0,1,2,..)).

2.7 RODRIGUES’ FORMULA

Suppose that our weight function w(z), in addition to satisfying the usnal
hypotheses for weight functions, is also infinitely often differentiable at
each point of the interval (a, b). In that case, we can give yet another
method of constructing the sequence of orthogonal polynomials.

We define
@) by =—— LD 01,2,

w(z) dz"
and will now determine G, {(z) so that the ¢,(x) so defined are the required
sequence. First, ¢,(x) is to be a polynomial of degree n, and hence we must
have
n+1 n
43) d (L d_G<_>) ~o.
d.’tn+1 W(II:) dz®

T Christoffel [1].
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Since this is a differential equation of order 2n + 1, we may also impose
the end conditions

(44) G(a) =G, (a)="-"=Gr"a)=0
(45) G (b) =G, (b)="--=GIMb)=0
and we state

Theorem 7. Let G, () satisfy (43-45), w(x) being an infinitely differentiable
weight function. Then the polynomials ¢, (x) of (42) are the orthogonal
sequence associated with w(z), [a, b].

Proof. Let g(x) be any polynomial of degree <n — 1, then

® d"G(x)
dz"

[ s.@amiz) do = [ LD g2 aa

This can be integrated # times by parts. At each stage the integrated part
will vanish, by (44) and (45), and at the last step we will have an integral
involving the nth derivative of g(x), which vanishes because the degree of
g(z) is <n. Thus the integral is zero, and ¢,(x) is orthogonal to every
polynomial of degree <n, as required.

Equation (42) is known as Rodrigues’ formula.

Example. w(x) =1, [a, b] =[—1, 1]. Here (43)(45) are

gt
gotert Gn® =0

Go(=1) = = G V(=) = Gy()) = -~ = G~V =o.

The solution is clearly
Gn(@) = (1 — ™

Therefore Legendre’s polynomials are given by

(46) P(2) = ;1 (1 — 23"

x’ﬂ

aside from a multiplicative constant.

2.8 LOCATION OF THE ZEROS

The matrix J of (28) is a ready source of precisc information concerning
the zeros of ¢ (). Indeed, by direct application of Theorem 32 of Chapter 1,
we find at once
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Theorem 8. Each zero of ¢x(2) lies in one of the intervals

ko
— < 0
| /30| = k1
ki—-l kz’ .
C) [z — Bil = =+ (i=12,...,N=2)
ki k‘i+1
ky-2

|z~ Byl =
kn-1

The utility of this result is illustrated by the example of the Hermite
polynomials, which belong to (— o0, o), e=*'. They satisfy the recurrence
e (x) = $H,,,(2) + nH, 4(x).

To find the recurrence relation for the normalized polynomials ﬁn(x),
write, as usual, H,(x) = A,H,(x). Then, substituting,

(48) sl (0) = 212 ) + P ()
2 2, A
and the normalization condition is
1 4, —n ln_l'
22,1 .
From this we find 4, = Vv ZTn—!, and from (48),
(49) 2H,@) = V(n+ D2 Bpy@) + Va2 B, @),

is the recurrence formula satisfied by the normalized Hermite polynomials.
Theorem 8 gives

Theorem 9. The zeros of H,(x) lie in the interval
(50) 2l < V(n — D2 + V(n — 2)]2.

Notice how much more exact this is than Theorem 35, which, in this case,
tells us only that the zeros are somewhere on the real axis. When # is large,
the right side of (50) is about v/ 21, which happens to give exactly the correct
asymptotic rate of growth of the largest zero of H,(x), as can be shown by
deeper methods of analysis.

Another method—based on the Perron-Frobenius theorem—gives more
precise information about the largest zero. First we need

Lemma 1. If thenumbersf, =2 0(n =0, 1,..., N — 1), then the matrix
J is non-negative and irreducible.

Proof. The non-negativity is clear, for we may always suppose the leading
coefficients k, to be positive. For the irreducibility, notice that J,,; ; 0
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Gi=1,...,N—1andJ,,,, #0(@=1,..., N — 1). Now suppose J is
reducible, and let 7, K be the two sets of integers which show this. Let i, be
the largest integer in /. Then §; — 1 is not in X because that would imply
Jipii-1 = 0, Which is false. Hence j, — 11is in . Continuing in this way,
all the integers iy, iy — 1, ..., 1 arein /. Thus K contains i, + 1,..., N.
But this means J; ; ;; = O—which is also impossible—and we have the
desired contradiction. Now from (157) of Chapter 1, the Perron root r of J
being the largest zero 2y of ¢y(x), we find

. (Ix); Jx),
(51) min (%) < zyy < max ()
1SISEN X 1IN 2,

as bounds for the largest zero of ¢, (), the vector x being arbitrary, aside
from non-negativity. Equation (50), for example, is a special case of (51)
in which x = (1, 1, ..., 1), but considerably more freedom exists in (51)
because the components of x can be chosen for optimum results.

2.9 GAUSS QUADRATURE

One of the most interesting and useful applications of the theory of
orthogonal polynomials occurs in the theory of numerical integration. The
reader is no doubt familiar with the simple numerical integration formulas,
such as the Trapezoidal rule

(52) | @) 42 = 370 + 150) + exror
0
and Simpson’s rule
(53) flf(z) dz = ¥f(0) + /() + #/(1) + error.
0

The first of these is exact if f() is linear on (0, 1), the second if f(z) is
quadratic on (0, 1). In general, the sizes of the error terms involved depend
on the second and third derivatives, respectively, of f(). Both of these
formulas are of Newton-Cotes type, which means that equally spaced
abscissas are used. The most general Newton-Cotes formula has the form

(54) fo ' f(2) dz = évOHV f (le) + error.

In such a formula there are N 4 1 free parameters, the “weights” H,
H,, ..., Hy. These can be chosen so as to satisfy any N 4+ 1 compatible
conditions, the ones usually used being the requirement that (54) shall be
exact for polynomials of degree <N. These conditions are

fl 1 N » \°
55 " dg = - Hv(—) =0,1,...,N
(53) 0:1: ‘ n+1 vz=:o N (n )

which are clearly N 4 1 linear equations that determine the H uniquely.
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It was Gauss who first pointed out that the form (54) is unnecessarily
restrictive in that there is no real reason for using equidistant points
%, = v/N at which to evaluate the function. He suggested that we adopt
the more general

1 N
(56) fo f(@)dx = Zlef(xv) + error

in which we have 2N parameters Hy, . .., Hy, 7, . . ., ,, free, and hence
may hope to satisfy 2V exactness conditions of the type

(57) fx do=—t =S Hz* (1=0,1,...,2N — 1.
0 +1 v=1

The word “hope” was used in the previous sentence because these last
equations, while linear in the H,, are nonlinear in the «,. Hence these might
(a priori) be complex numbers or even real numbers outside of (0, 1). In
either case the formula (56) would be useless.

As an example, consider the formula

1
(58) f_lf(x) dz = H,f(z) + Hyf (%)

which we require to be exact if f(x) is a polynomial of degree <3. The
conditions are
(59) ( H,+ H,=2
Hyx; + Hyzy =0
Hyz)® + How® = §
Hiz® + Hyz,® =0
The solution here is readily foundtobe H; = Hy, = 1,2, = —x, = 1/\/3
We notice that the weights H,, H, are positive, and the abscissas x;, x, lie

inside the interval (—1, 1), so that the resulting approximate integration
formula

(60) j_llf(x) dx = (\/3) +f( \/3) + error

is actually useful. We propose now to show that this benign state of affairs
persists in general. The principal theorem of the subject is

Theorem 10.7 Ler w(x) be a weight function for the interval (a, b]. Then
there exist real numbers xy, %y, . . ., Zy; Hi, ..., Hy having the properties

Da<z <ay<< -+ <azy<b
(i) H,>0 r=1,2,...,N)

T Gauss [2], Jacobi [1].
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(iii) The formula
b N
(61) [ et az = 3 H.f(z)

is true for every polynomial f(x) of degree <2N — 1.
Proof. Let ¢p(x) be the Nth member of the sequence of orthonormal poly-

nomials belonging to w(x), [a, b], and let z;, x,, . . ., ) be the zeros of
¢n(2). Define the polynomials
(62) I (=) = & v=1,2,...,N)
(x - xv)SbN (zv)
Clearly
(63) I{x,) = 0, (p,v=1,...,N).

Hence if we write
Lyo(®) = 3 1@ (@)
then Ly_,(x) is a polynomial of degree ¥ — 1, which passes through the
points (z,, f(x,)), » = 1,2,..., N, ie,
(64) Ly-4(z,) =f(=) (»r=12,...,N).

But this says that the zeros of ¢y(x) are also zeros of the polynomial
Ly_y(x) — f(x), which is of degree <2N — 1. Hence there is a polynomial
r(x) of degree =N — 1 such that

(65) J@) — Ly_(2) = dy(@)r(z).
Thus

fbf(w)W(x) dz =f Ly-y(2)w(z) do +fb¢N(x)r(x)w(x) dx

=beN_1(x)w(:c) dz

since ¢y(x) is orthogonal to r(x). Therefore

b N b
(66) ff ()w(z) de = Zlf (xv)f I(x)w(z) dx
which is precisely equation (61) with
(67) H, f (@) dz_ (»=1,2,...,N).
N (xv)(x - )
Conclusion (i) is clearly true, for the abscissas #y, ..., zy of the Gauss

quadrature formula have been revealed as the zeros of ¢ (). Finally, let
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us take f(#) = [/, (»)? in (61), remembering (63). We get

fb[l”(x)]zw(x) de=H, (u=12...,N)

which shows clearly that H, > 0, completing the proof.
To find a more convenient expression for the weights H,, letusputy = x,
in (33), where z,, is a zero of ¢y(x). Then

ky-1 n(®)dn-1(%)
ky T —x, )

N-1
S bz =
Multiplying by w(z) and integrating over [a, 5],

= kn- ? dn(@)w(z) dz
1= kNl ¢N—1(xu)£ r — .

N

Comparing with (67),

g @@ w=12, )
N-1

(68) H,=

which is perhaps the most useful form. Another interesting relation results
from comparing (68) with (35), namely,

1 N-1

— =3 [¢u(=)]? »=12,...,N)

H v n=0

which again clearly shows the positivity of the weights. We emphasize that
the ¢ () are here assumed normalized, and must be replaced by ¢,(x)y, *
if this is not the case.

(69)

2.10 THE CLASSICAL POLYNOMIALS

The classical polynomials are those obtained from Rodrigues’ formula
(equation (42)) where G, (z) has the special form

(70) G (x) = w@)[G()]"
and G(x) is a quadratic polynomial
(71) G@) = a + Pr + ya2

To satisfy the end conditions (44), (45), we require

(72) % W@[G@Vocas =0 (k=0,1,...,n—1).
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Now, consider

P . ro
1 L2 (0@ L wae@) = 60 5L (e
+ (1 + 1)6(®) —(— ()G
+ oot 1)G<) L @67 @)

where we have used Leibniz’ rule

(74 L y@s@ =3 (5@
and the form (71) of G(x).
Now, using the definition (42) of ¢x(z), (73) becomes
7 (0@ £ w6 = Gy
+ (n + DG (@)(w(@)p,(2))
+ 2D 6@yl
Now, set n = 1 in (42), using (70), and get
(76) ($1(=) — G'@)W(x) = GR)W'(2).
Thus
(1) 6~ W)
= G(@){nw(2)G" " H(z)G'(x) + G (x)w'(z)}
= nw(x)GY(%)G'(x) + G"(x){¢(x) — G'(x)}w(x)
= GHw(@){(n — VG (%) + ¢y(x)}.
Now, apply the operator d"+1/dz"+! to (77), using (74) again,

(75

d n+1 n
7y & M(G(x) 2 () @)
dd (G @@ — DG(@) + ()]}
= [(n — DG'(@) + (@] di L (@@

+ (n 4+ DI(n — DG"(2) + $/'(2)] ﬁ (W(2)G™(x))

= [(n — DG'(®) + $(2)] (W)’
+ (n + D(n — DG"(2) + ¢/ (@)](Ww).
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Comparing (75) with (78), we find
(79)  G@W(@) (%)) + (n + DG (R)(W(x)$,(2))’

+ 25D 6@ (e a)

= [(n — DG'(@) + (@) Jw(z) ()Y

+ (@ + Dl(n — DG'@) + ¢,/ (@)](w()$a(2))
and finally

Theorem 11.  Let{¢,(x)}? be asequence of classical orthogonal polynomials,
with weight function w(x). Then the function y,(x) = wz)$, (%) satisfies the
differential equation of the second order

(80) G(x)y" + {2G'(z) — dy(x)}y’
n—n—2_, ,
in which the coefficient of y"(x) is quadratic, of y'(x) is linear, and of y(x)

is constant.
Next, consider the polynomial

h(@) = G(x)¢,'(x) — inG"(@)xd,(x)
On the surface, this would appear to be of degree n + 1. Referring to (71),
however, we see that the coefficient of ™1 is
nk,y —in-2yk, =10
and therefore A(z) is of degree <n. Hence

(81) h(z) = G(z)¢,'(x) — InG"(F)xd,(x)
=v2::0av¢v(:v).

Multiplying by w(z)¢x(z) 0 < k =< n),

(32) e = (G, dp) — (¢m 2G"dy).

The second term clearly vanishes for & g n — 2. For the first,
b
f b, (2)G() i (x)w(2) da
b
d
=~ [[6.0L c@hEmo) iz

= — [ 4. 0@064T + 6w @) ds

—J.ab<ﬁn(x){W(xI>[G(w)¢k(x)]' + S@)[di(2) — G'(@)Iw(2)} dw
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where (76) has been used. Now the integral of the first term vanishes when
the degree of {(G¢,) }is=n — l,or,whenk + 1 < n — l,ie .k <n— 2.
The integral of the second term vanishes when k + 1 < » — 1 also; hence
we have shown that o, = 0(0 < » < # — 2) by an argument very much
like that in the proof of Theorem 4. Thus, by (81),

@) G@4@ = (re+ )40 + b @

Theorem 12. The classical polynomials satisfy a differential recurrence
relation of the form (83).

1t should be emphasized that the classical polynomials are a very special
case of orthogonal polynomials. This can be seen clearly in (76), which
shows that if w(z) is a classical weight function, the w'(x)/w(z) is the ratio
of a linear and a quadratic polynomial.

2.11 SPECIAL POLYNOMIALS

In this section we tabulate, for reference purposes, the developments of
this chapter as they apply to four special orthogonal sequences: the
Legendre (P), Tschebycheff (7)), Laguerre (L), and Hermite (H) poly-
nomials.

() Weight Function

P: wx) =1
T: w@)=( —a) %
L: wkx)=¢e"
H: wx) = e
(B) Interval:
P [—1,1]
T: [—1,1]
L: [0, )
H: (—o0, )

(y) Conventional Normalization:
P:y,=2/(2»+1) (»=0,1,2,..)
T: yo=m, p,=7/2 (=12,..))
L:y,=0@)Y (»=0,12..)
H:y,=2%!Jn (»=0,1,..))
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(8) Recurrence Formulae:

P:

(/ + DP (@) = @1 + DaP(x) — IP,_y(x)
T, n+1(x) = 2T, n(x) - Tn—l(x)

L: L,,(®)=@2n+ 1— 2)L,(®) — n?L, ()
H: H, () =2zH, (x) — 2nH,_,(x)
() First Two Polynomials

P:

P)=1 P@==«

T: Tyz)=1 Ti(x)==

L:

L@)=1 L(xy=1—=2

H: Hyx) =1 Hy(x) =2z
(0) Highest Coefficient

P k,=1-3:5---2n— n!
T: k,=2"1 (n>0)

L: k,=(—-D"

H: k,=2"

() Rodrigues’ Formula
P: P,(x) =(2"n !)_1(i) (= - "
dzx

T: T(®) = (=1)"[2"T(n + H] V1 — 2T (%) (Jix)n“ — 2ty
L L@ = (L e

H: H () = (=) (-d—) e
dzx
(0) Christoffel- Darboux Identity

P:

N
= (N + D[Py 1(x)Py(y) — Pp(2)Py1(9)]
N
+ ngn(x)Tn(y)

= (@ — 9 Ty 1(DT(Y) — Tn(®)Ty1(¥)]
L (x)L(y)
1 (n!)?
= [(N ')2(55 - y)]—l[LN+1(x)LN(y) - LN+1(y)LN(x)]

N =

IM=

: Z H(2)H ,(y)

o 2"n!
= [2Y"IN! (z — )] ' [Hy+1(®)H 5(y) — Hy(@)H y41(¥)]

n
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(&Y Gauss Quadrature

1 N
P: f f(@) dz =3 H,f(z,)
-1 v=1
where Pp(z,) =0 (»=1,2,...,N)

H, = g [PN'(:I:V)]'2 r=12...,N)

r ¥ -1

f f(:v) xz =5 2=: (cos N 77)
f _a.;f(x) dZ = Zva(xv)

where Ly(z,)=0 r=12,...,N)

2
(N)[LN(V)]_ (1’:1,2’--',N)
H: f_w f(:v)e'z dx =§=:1va(xv)
where Hp(z,) =0 r»=12,...,N)

H, = 2N /a[Hy(2)]2 (»=12,...,N)
(<) Differential Equation:

H, =

P: (1 — 2P, (@) — 22P,"(@) + n(n + 1)P(x) =0
T: (1 — AT, (x) — =T, (z) + n2T,(z) = 0

L: zL,"(x) + (1 —2)L, () + nL,(x) =0

H: H,"(z) — 2zH,'(%) + 2nH,(2) = 0

(%) Differential Recurrence:

P: (1 — 2P, (x) = —nxP(x) + nP, ()
T: (1 — AT, (x) = —naT,(x) + nT, (%)
L: zL,'(x) = nL, (x) — n*L,_,(x)

H: H,'(z) = 2nH,_,(x)

2.12 THE CONVERGENCE OF ORTHOGONAL EXPANSIONS

Let w(x) be a weight function for [a, 5]. Let f(») be defined on [a, 5], and
suppose that the integrals

84) fba:’ff(x)w(x) de = p,[f] n=0,12,..)



70 MATHEMATICS FOR THE PHYSICAL SCIENCES §2.12

exist. If {¢,(2)}§ is the normalized sequence of orthogonal polynomials
belonging to w(x) on [g, b], we may calculate the Fourier coefficients of
Jf(@) with respect to the {¢,(z)},

(59) er = 8. dz
= (¢,,f) n=0,1,2,..)).

The Fourier series of f(z) is

(86) f(#@)~ Eocnrﬁn(x)-

n=

The relation (86) simply means that the constants ¢, have been calculated
in the manner (85) and not that the series converges at all or, in particular,
to f(#).

We wish to inquire as to what restrictions on the function f (), in addition
to (84), will insure that the series actually does converge—and to the sum
f(x). Before proceeding, we remark that there exist functions f(x) for
which the integrals in (85) exist, such that any of the following possibilities
may occur: (a) the series diverges everywhere in (@, b); (b) the series con-
verges at some points of (a, b) and not at others; (c) the series converges
everywhere on (a, b) but to f(x) nowhere; (d) the series converges every-
where on (a, b) at some points to f(x) and at others not to f(z); (e) the
series converges everywhere on (a, ) to f(z).

Even if f(x) i$ continuous on [a, b, possibility (e) need not hold.

Now let us consider the Nth partial sum of the series (86) evaluated at a
fixed point x lying interior to (a, b).

N

87 Sn(@) = % cadpn(®)

n=0
We wish to determine conditions under which Sy(z) — f(x) as N — co.
Now

N
(88) Su(®) = 3 (B0 /)hn(2)
N b
=3 (6016w v 4.

— '[l l}(y)W(y){§0¢n(x)¢n(y)} dy.

Next, from the Christoffel-Darboux formula,

3 4 @hs) = o xS x(®) ~ S a®)
v=0

kyiy r—y
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we deduce, by multiplying by w(y) dy and integrating over (a, b), that

| = o [* $a @ a® = S @Inan®) i
kniiva Ty

Multiplying this by f(x),

f(x) _ ﬂ l}'(x):d’N(y)d’N+1(x) - ¢N(x)¢N+1(y)}w(y) dy
N+1ve rT—Yy

and subtracting from (88),
(89) Sy(x) — f(=)

b
Theorem 13.  In order that the Fourier series of f(x) should converge to f(x),
it is necessary and sufficient that, at the given point x, the right-hand side of
(89) should tend to zero as N — 0.

Next, we propose to show that on a finite interval, the factor ky/ky.
can be ignored in the sense that the right side of (89) converges to zero if the
integral does by itself. We suppose that the sequence {¢,(z)} has been
normalized so thatk, > 0,8, =2 0(n =0, 1,2,...), the , being defined
by (24). Now, by (113) of Chapter 1, we know that x,, the largest zero of
¢n(x), being the largest eigenvalue of the Jacobi matrix J, satisfies

Ky da

(x, Jx)
Ty = ——=
T (% x)
for any N-vector x. Taking, in particular, x = (0,0,...,0,1, 1),
kn_
(90) Zyy Z ¥By-1 + By-o) + 22,
ky-1
> M .
kAY_l

If the sequence ky_,/ky_; were unbounded (as N — o), we would find
arbitrarily large zeros of the sequence {¢,(2)}, contradicting Theorem 3,
which asserts that all zeros lie in the finite interval (a, b). In the same way,
from (90),

Tyn Z 1PN
and therefore the sequence {8,} is likewise bounded.

Theorem 14.  Let the sequence {$,(x)}5 of orthogonal polynomials belong to
a finite interval (a, b). Then the coefficients k,_,[k,, B, appearing in its
recurrence formula (24) are bounded functions of n.
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Referring back to (89), we see that in order to prove convergence of a
Fourier series on a finite interval it is enough to show that the integral tends
to zero as N — oo.

2.13 TRIGONOMETRIC SERIES

We wish now to push our analysis further in the case of the classical
trigonometric series. This could be done for cosine series by specialization
of our general result, Theorem 13, to the case of Tschebycheff polynomials,
using the result of exercise 7(a). For full generality, however, we start from
the beginning, supposing that a function f(x) is given on (0, 27), and defined
by periodicity elsewhere; that its Fourier coefficients

©1) a, =21 f ¥ (%) cos nw da
TY0

92) b, =1 f ¥ f(2) sin ne dz
7m0

exist and have been calculated, and that we are to study the convergence of
the sequence of partial sums

e
(93) Sp() = ta, + 2 (a, sin nz + b, cos nx)
n=1

to the function f(x). As before,
94)
1 2r 1 N 27 .
Salz) = ——f f@dt+-3 f f(D[cos ntsin nz + sin ntcos nx] dt
2w o T =170

=1 2’rf(t)[% + cos(t — x) + cos2(t — x) + * - + cos N(t — z)] dt.
T V0

Now, for any fixed 6, consider the sum

C,, =cos0 + cos20 + - -+ + cos mb.
We have

2sin9Cm=22sin—6-cosw6'
2 v=1 2

=Z|:—sin27_10+sin27+19:l
v=]1 2 2

2m+10=2sin~n;—ecosm;-1‘0.

.0
= —sin = + sin
2
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Hence
ﬁ cos 18 = sin m(0/2) cos ((m + 1)/2)8
v=1 sin 6/2
and
1 & sin 2m + 1)6/2
95 = cos ¥ = ——— 1+
®3) R el 2 sin 62

Substituting (95) in (94),

2 : _
sx@ == | LB

sin (¢ — z)

2 4.

Replacing ¢t — z by ¢, and using the periodicity of f(#),

27 H
(96) Sp(z) = _l_f f@+1 MN_'FI_)U_/Z_) dt .
27w Jo sin ¢/2

g 27
If we break up this integral into f and f , replace ¢ by —t¢ in the second

0 E
and use the periodicity of f(¥) again, we find

Su(@) = 1 f 4D +f(z = Hsin@N + D02) ,
™Yo 2 sin ¢/2

and finally, replacing ¢ by 2¢,

fﬂ/Z f(x + 2t) +f(x —_ 2t) sin (2N + I)t dt
0 2 sin ¢ ’

O Sy@ =§T

This is Dirichlet’s integral. 1t is analogous to (88) in the general case.
Next, as before, from (95) we find by integration,

2r o;

f sin @N + D(t/2) ;. _
0 2 sin t/2

and repeating the chain of transformations following (96),

T2 o3
gf sin@N + 1t o _ o

) sin ¢

T2 .
fy =2 [ SN+ Dt
7 Jo sin ¢
and subtracting from (97)

(98)
7/2 z 2z — .
Sx(@) — f(2) = 727 fo [f( +20) + f(z —20) _ f(x)} sin @N + 1)t

2 sin ¢

Hence
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Theorem 15. In order that the Fourier series of f(x) converge to f(x) at the
point x it is necessary and sufficient that the integral in (98) tend to zero as
N — o0,

Now let § > 0 be an arbitrarily small, fixed positive number. The function

_[fe+m+f@—20 . ] 1
v = (: 2 f(:c)i| sin ¢

is bounded for § < 7 = w2, and hence integrable over {d, 7/2]. Thus, by
the Riemann-Lebesgue lemma (equation (41) of Chapter 1),

J‘w/zl}f(x + 26) + f(x — 21) _f(x)j| sin(2n + Dt o

s 2 sin ¢

as n — 0.

Thus we see that the question of convergence of the Fourier series at a
point x depends only on the behavior of the function f(z) in a small
neighborhood of . More precisely, what we need is

M f(x + 20 + f(z — 20) _ sin 2n + 1)t N
o [ [ G i

as n — oo, for some fixed é > 0.
Next, writing

1 1 1 1
o SR e
simt ¢ sint ¢t
we see that the second term is bounded as 7 — 0; hence, by the same
argument, we may replace (99) by
(101)

f"[f(w +20 + /(2 —20) —f(:v):l sin@n+ D250 (1 o)
0 2 ‘

We notice that this condition cannot be met unless
[f(m +20) + f(x 4 20)
2
(assuming the limit exists at all), i.e., unless
f(z+0) + f(x — 0)
2

which is no restraint if « is a point of continuity of f(z), but shows that at
any point of discontinuity of f(z), the function must be standardized by
defining it as the average of its right-hand and left-hand limits.

lim

=0

—f(fv)} =0

(102) f(x) =
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Theorem 16. Suppose there are constants A > 0, § > 0 such that

| flx + 26) + f(x — 20)
2

Jor |t = 6. Then the Fourier series of f(z) converges to f(z) at the point .
Proof. If Lipschitz’ condition (103) holds, then

L"[f(x + 21) —;—f(z =2 f(x)]fit_’ gJ:At”_l dt

—f(@)| = 4

(103)

_ 4y
p
Thus the coefficient of sin (27 + 1)¢ in (101) is integrable, and by the
Riemann-Lebesgue lemma, the integral tends to zero.
The Lipschitz condition (103) is perhaps the easiest and most general
condition to use in practice. It obviously holds if f'(z) exists but is less
severe than differentiability.

2.14 FEJER SUMMABILITY

The developments of the preceding section, while immensely interesting
from a mathematical point of view, must be regarded as disturbing in the
sense that the Fourier series of a function which is merely continuous need
not converge to the function. This difficulty can be ameliorated by an
elegent device, known as summability, whose importance was first recog-
nized by Fejér. Before proceeding with the discussion of summability of
Fourier series, we illustrate the ideas involved with a simple example drawn
from the theory of ordinary power series. Consider the relation

1
104
(104) e
valid for # < 1, in the usual sense of convergence. If we formally replace
by 1 on both sides, we find that

I=1—1+1+--

=1l—z4+a*—a2d 4.

which is, of course, nonsense, since the partial sums of the series on the right
are

1 n odd

0 n even

and the sequence S, S;, S, . . ., naturally, does not converge. Consider,
however, the average of the first n partial sums,

s,
v=1

(105) S, =

(106) o, =

N =
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A short calculation shows that

1
2
7 =
(107) n %(1+1) n odd

This sequence is

§2.14

and it is clear that the sequence converges to the value . Hence we may
say that if we understand the word “‘convergence” in the sense of conver-
gence of the o, rather than of the s,, the relation (104) is actually valid for

0=z 1.

Definition. Let Y a, be a formal series. Defining

n=1

(108) S, =

n
v=

A A4
1 n

(109) =- 35,
nv=1

we say that the given series is summable to the value A i

(110) limo, = A.

nrom

It is a simple matter to verify that if a series converges in the ordinary
sense to a value A4, then it is summable to the same value, so the notion of
summability actually broadens the class of series to which sums can be

assigned in a natural manner.

Theorem 17. [Fejérl.t Let f(x) be integrable on [0, 27] and periodic with
period 2w, Let %, be a point of the interval [0, 2n] at which f(z, + 0),
f(zy — 0) exist. Then the Fourier series of f (%) is summable at x, to the value
3 f(zy + 0) + f(x, — OV]. In particular, the Fourier series of a continuous

Sunction f(x) is everywhere summable to f(x).
Proof. If

‘;—0 + > (a, cos nxy + b, sin nx,)
n=1

is the given series, by (97), we have

2 72
(111) S (=) = ;fo H Mo + 20 + fzo — 26)]

T Fejér [1].

sin ¢

sin (2n + l)t
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Forming the Fejér means (109),
(112) no,-1 = S(%g) + Sy(%) + ** + S, y(%)

T2
-2 fo 3Lf(zo + 21) + f(@o — 20)]

% smt+sm3t+"--+sm(2n—1)tdt
sin ¢

=2 ["401@o + 20 + 5t — 200 (2

T

We have used without proof the identity

n—1

L
(113) S sin (2 + 1)t = 201
v=0

nt
whose proof is similar to (95). Hence

(114) 0, y(m) = = f Zl[f(xo + 21) + f(zo — 20)] (Sm "‘) dt.
hm sin ¢

Comparing this with (111), we note the essential difference that “Fejér’s
kernel” (sin nt/sin £)? is everywhere positive.
Now from (113) we observe that

w2 : 2 n—1 72 o
(115) f (snfl nt) it =" f sin (2.v + Dt
0 sin ¢ v=0J0 sin ¢
—n—lﬂ
v=0 2
w
= n -
2

where (95) has been used. Thus, as before,

fap == f £ o(sm ’”)

t

and
(116) 0, 1(20) — f(2p) =

;2; f :/2 [f(a:o +20) + f(zy — 20) 7 (xo)} (sifl m)2 dr.

2 sin ¢
Referring to the hypotheses of the theorem, we see that the expression in
brackets approaches zero (assuming f(x) to be standardized (102)). Let us

abbreviate
fxo + 28) 4 f(zg — 20)
2

h(t) = — f(#o)-
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Since A(t) — 0 as ¢ — 0, there is a number J > 0 such that, ¢ > 0 being
given, |A(r)] < gf2for 0 < ¢ = 4. Fixing 6, we observe that A(f) is bounded
on [, /2], say |h(t)| < M there. Then

5/ 2
fh(t)(sm nt) ‘ < £ € 2 f (51? nt)dt < £
sin ¢ 2nw sin ¢ 2

/2 : 2 /2 [ o 2
f h(t)(S]fl nt) it iMf (Slfl nt) it
& sin ¢t nw 5 sint
2
nr
2 M
nir sm2 0

1M
nsiné’

nir
and

2

nw

IA

1A

IA

f (sin nt)* dt

Thus, for the given &, we can choose n, so Jarge that this last integral does
not exceed ¢/2. For all n = n,, then,

| f(xe) — 0pa(zp)] < &
and the theorem is proved.
One of the most important applications of the convergence theory of
Fourier series concerns “equiconvergence.”

Two series

are called equiconvergent if the convergence of one of them at a point 7,
implies that of the other. There is a wide class of theorems to the effect
that if {¢,(z)} is an orthogonal sequence of functions, then the series

expansion of f(z),
f@ =2 a.$.)
converges to f(x) if and only if the trigonometric series expansion of f(x)

1)) S(@) = > (b, cos nz + ¢, sin nx)

converges to f(x). This is true, for example, for expansions in the classical
orthogonal polynomials and for expansions in the eigenfunctions of certain
linear differential operators, particularly those of Sturm-Liouville type

:;ix(f’(x) f;g) + (ha(x) + @y = 0

with homogeneous end conditions. One invariably finds, for instance, that
expansions in series for which equiconvergence with (117) is true are always
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Fejér summable to f(x) if f(x) is continuous or to (102) otherwise. Thus
the range and significance of the Fejér summability theorem is greatly
amplified to the class of all orthogonal expansions equiconvergent with
trigonometric series.
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Exercises

1. For the weight function w(z) = ¢~ on the interval (0, ),
(a) find the moments matrix M.
(b) construct the first three members of the sequence {¢,(z)} given by (8), in
this case.
(c) verify Theorem 3 for these three polynomials.
2. Letx,, ..., xy be the zeros of ¢ (2} and let Hy, . .., Hy be the weights for
Gauss quadrature. The N x N matrix

Uj = VH ¢@) (G =1,2,...,N; j=0,1,...,N—1)

is unitary.

3. If J is the matrix of (28), then
(@) Pn(x) = ky det (I — J).
() () =0.
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. If ¢,(x) is a sequence of orthogonal polynomials, then the zeros of ¢,(x)

separate the zeros of ¢, ().

. At a zero, z;, of ¢,(2), we have ¢, 1(z)$,,1(=;) < 0.
. The Laguerre polynomials L,() satisfy the recurrence

Lon(@) = @2n + 1 — 2)L(@) — n’Ly,_4(2).

(2) Find the recurrence relation satisfied by the normalized Laguerre
polynomials.

(b) Write down the'2 x 2 matrix J in this case, and verify directly that its
eigenvalues are the zeros of Ly(z).

(c) Find an upper bound for the largest zero of L, (), using Theorem 8.

(d) Find the weights and abscissas for the Gauss quadrature

J;) f@e=dz = H, f(z;) + Hy f(x,).

[ee]
(e¢) Evaluate f x*~= dx both exactly and by the formula of part (d).
0

. (@) Using the recurrence relation for the Tschebycheff polynomials 7,,(z),

prove that T,(z) = cos (ncos2)(n =0,1,2,...).
(b) Thus find an explicit expression for the zeros

zy =1,...,N)
of Ty().
(c) Using the results of parts (a) and (b), verify, from the general formula
(68), the relation H, = «/N (v =1, ..., N) for the weights of Gauss-

Tschebycheff quadrature, which is stated without proof in the text.

(d) Prove the result of part (2) by direct integration, showing that the correct
orthogonality condition is indeed satisfied.

(e) Using the result of (a), translate the Christoffel-Darboux formula for
T,(=) into a trigonometric identity.

. The remarkable result of exercise 7(c), that the weights for Gauss-Tscheby-

cheff quadrature are all equal, leads one to investigate the possibility of
finding other formulas of the type

b
f J@w@) de = Hylf(z;) + f(x) + - - + flzn)]

(@) If [a,b] =[0,1], w(x) =1, N =2, is there such a formula with
Hy > 0,0 < z; <, < 1, exact for polynomials of degree <2?

(b) If [a, b] = [0, ], w(z) = %, investigate the same question for N =2
and N = 3 separately. ,

The general question posed here is that of Tschebycheff-Bernstein
quadrature. The question of characterizing the weight functions and
intervals for which this formula exists is still unsettled. (See Bernstein
[1], Wilf [2], Ullman [1].

. 1/H, is the square of the length of the »th eigenvector of J if the vector is

b

normalized so that its first component is g ¥, where p, =f w(z) de.
a
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10. Consider the formal series

1 -]
&(z) = - + z Cos nz.
2 n=1
(a) Prove that this series converges nowhere.
(b) Calculate the nth Fejér mean of the series, and hence find all points at
which the series is summable and the values to which it is summable.
(c) Let a, 0 < a < be given, and let f(z) be a given continuous function
on (—=, »). Show that

z lim J‘a [, () dt = f(0)

T p—o0

where o,(¢) denotes the Fejér mean formed in (b).
The moral of this story is that we may regard the formal power
series as ‘‘representing” the Dirac d-function and formally write

2 a
- f_ fO D dt = f(O)

provided that this last equation is precisely understood in the sense of
the result of part (c).



chapter 3

The roots
of polynomial equations

3.1 INTRODUCTION

A function f(2) of the form
M f@=a+az+ -+ az"

of the complex variable z, with complex coefficients a,, 4y, . . . , a,, is a poly-
nomial of degree n. A complex number 2y, having the property that f(z,) = 0
is called a root of the equation f(z) = 0, or a zero of the polynomial f(z).
We will assume throughout, for simplicity, that in (1) @, 7= 0 and a,, # 0,
which can always be achieved in a trivial manner.

We further assume that the reader is familiar with the fact that f(2) of (1)

always has exactly n zeros z;, z,, . . . , 2, in the complex plane and may be
factored in the form
@ J@ =az—z)z—2) (2~ 2,)

Our concern in this chapter is almost entirely with the analytic (as opposed
to the algebraic) theory of polynomial equations. Roughly speaking, this
theery is concerned with describing the position of the zeros in the complex
plane, without actually solving the equation, as accurately as possible in
terms of easily calculated functions of the coefficients.

82
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Specifically, we list the following questions, all of which are answered
more or less completely in the following sections:

1. Suppose we know the zeros of f(z). What can be said about the zeros
f@?

2. What circle |2| £ R, in the complex plane, surely contains all the
zeros of f(2)?

3. How many zeros does f(z) have in the left (right) half plane? In the
unit circle? On the real axis? On the real interval [a, 5]? In the sector
o< argz < 7

4. How can we efficiently calculate the zeros of f(z)?

3.2 THE GAUSS-LUCAS THEOREM

Let us recall—from elementary calculus—the theorem of Rolle, which
asserts that if f(a) = f(b) = 0, then f*(z) = 0 somewhere between a and b,
f(%) being continuously differentiable in (a, b). Viewed otherwise, this
theorem states that if z,, 2, are two real zeros of f(z), then f”(z) has a zero
somewhere between z;, z,. We propose to generalize this result to the case
of arbitrary complex zeros, z;, 2y, . . . , 2,. We need first

Lemma 1. Let the complex numbers £y, L, . . . , {, all lic on the same side
of some straight line through the origin, in the complex plane. Suppose,
further, that at least one of the points is not on this line. Then

G zz £0.

Proof. This result is geometrically obvious, by repeated use of the
“parallelogram law”’ of adding complex numbers. For a proof, however,
our hypotheses state that

fp<argl, =0+ = r=12,...,n

with each equality sign excluded for at least one value of y. But then,

< arg {e—i[(w/2)+oo]cv} < K
2

ie.,

(4) Re {e" M@0V >0 (v=1,2,...,n)

with equality excluded for some ». Hence

Rei {e—i[(ﬂ/2)+90]‘€v} > 0
v=1
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and
n . . n
z e—z[(ﬂ/2)+00]gv — e—z[(wl2)+00]z Zv _7,é 0
v=1 v=1

completing the proof.
Next, let us recall that a set of points is convex if it contains, with any two
points P, Q in the set, the line segment joining P and Q.

Theorem 1.7 (Gauss-Lucas.) Let K be any convex polygon enclosing all the
zeros of the polynomial f(2). Then the zeros of ['(2) lie in K.
Proof. First, let us write the factorization (2) in the form

3) f@) =a,(z —2)™(z — z)™2 - -+ (2 — 2z,)™
where z, . . ., 2, are the distinct zeros of f(z) and m; is the multiplicity of z,.
Of course,

?
©) Sm=n

i=
Now

f_d 2 m,
7 2= —logf(z) = 7
@ f dz e/ 5212—2,-
and therefore
. 2 my
® fl@) = az —2)™ (2 —2,)™ 3 —L-.
ji=12 — zj

From this relation, it is clear that if z; is a zero of f(z) of multiplicity m,,
then z; is a zero of f”(2) of multiplicity #; — 1. In this way we account for

© 3 (m—D=n—p

of the n — 1 zeros of f'(z). The remaining p — 1 zeros of f'(z) are the zeros
of

(10) F@)=3

i=1z2 — 2

m;

Now let { denote any zero of f'(z). If { is one of the zeros accounted for in
(9), { is identical with a zero of f(z) and plainly lies in the polygon K. It
remains to show the same if { is a zero of F(2). Suppose { lies outside the
polygon K. Since K is convex, it subtends an angle 6, < 7= when viewed
from . Now the vectors { — z; join the point { to each of the z;, and hence
alllie in the angle subtended by K'at {. Thus the “‘spread” in the arguments
of the numbers { — z;(j = 1, ..., p)isless than 7. The same is true of the

vectors 1/{ — z;, and therefore also of the vectors m;/{ — 2;. Thus the

1 Gauss (1], Lucas [I].
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Set Convex Hull

(a) . L] *~——»

Figure 3.1

points m;/{ — z; all lie on the same side of some line through the origin, and
hence, referring to (10),

FQ =3 ml 7,

is not zero, and { is not a zero of F{(z), which was to be shown.

The “smallest” convex set containing the points z,, . . ., 2, is called the
convex hull of the points z,, . . ., 2,. It is the set K having the properties
(i) K is convex, (i) K contains 2y, 2y, . . ., 2, (iii) If K is any other set
satisfying (i), (ii), then X < K.

The theorem of Gauss-Lucas then says, in particular, that the zeros of
f'(z) lie in the convex hull of the zeros of f(2). The figure above shows
three point sets and their convex hulls.

Example. The polynomial
f@) = +4

has zeros at £(1 & i), i.e., at the corners of the square of side 2 centered at the
origin. Hence the zeros of f’(z) must lie in this square, as they obviously do.

3.3 BOUNDS FOR THE MODULI OF THE ZEROS
Again referring to the polynomial
(11 S@ =ay+az+ -+ az"

where the g, are arbitrary complex numbers except that g,a, # 0, we would
like to make statements of the type that all zeros of f(2) surely lie in the
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circle |z| < R, where R is some (more or less) easily computable function of
the coeflicients.

Let C be the companion matrix [Chapter 1, equation (100)] of f(2), and
let zy, . . ., 2, denote the zeros of f(z) arranged in nondecreasing order of

magnitude |z;| = [z,] < - -- = |2,|. The eigenvalues of C, of course, are
2, . . ., 2, Let Ctdenote, as usual, the matrix C with its elements replaced
by their moduli:
An-1 In-2 @
a, a, a,
(12) Ct = 0 1 0
0 0 R | 0

We leave the proof of the irreducibility of C* as an exercise. Assuming
this, by Theorem 34 of Chapter 1 we know that the eigenvalues of C, i.e.,

the numbers z,, z,, . . ., 2,, do not exceed in modulus the Perron root r
of C*.

But Ct is itself a companion matrix, namely of the polynomial
(13) f@ =lal +lalz+ -+ + la, 4| 2° — |a,| 2"

Hence the Perron root r of C is the largest positive zero of f(z). We claim
that f(z) has exactly one positive zero. Indeed, the function,

lagl | lail
z" :17"'—1

Ay
ooy laanl

x
is clearly monotone, decreasing from 4 oo to zero as « goes from zero to
+ co. Hence this function attains the value |a,| exactly once, which was to
be shown. We have proved

Theorem 2.1 A/l the zeros of the polynomial f(2) of (11) lie in the circle
|z| < r, where r is the unique positive real root of (13).
Now, for this number r, we get the inequality
T

r £ max ———= x>0,x#0)

1=izn x;

immediately from equation (157) of Chapter 1, where we have replaced C*+
by its transpose, which, of course, does not alter its eigenvalues. Now, by

1 Cauchy [1]. See also Pellet [1].
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direct multiplication, using (12),

an-1 SU1+ xz
) n
T2 a;_z 2y + 23
n
C*Fz=(C*| - |=
x, a
a’ﬂ

and from (14), deduce at once

Theorem 3.} Let zy, x,,..., x, be arbitrary positive numbers, and let
%1 =0. Then cll the zeros of the polynomial f(z) of (11) lie in the circle

- Ap—;i | x;
(13) |Z| g max { bk ek 3 it ¥ + ﬂ_l}'
1ign a, x; x;

Furthermore, there exists a choice of xy, . .., %, for which the right side of
(15} is the positive root of (13).

From this general theorem we may get several results as special cases.
First, take all z; = 1.

Theorem 4.1 All the roots of the polynomial f(z) of (11) lie in the circle

1

Next, take z, = p? (i = 1,2, ..., n), for some p > 0. Then all the roots
lie in

a
a

dy
a‘ﬂ

An-g
a

an.-—]
a

(16) |z|§max{ +1, +1,..., + 1,

n n n

Ap—s

p“"} +p
43

an |z| = max [

1<isn »

for example (actually (15) gives a slightly better inequality than this). Now
suppose the “max”™ in (17) is attained when { = p, say. Then, denoting the
maximum value by M,

M= An—p pl—p
an
Solving for p,
(18) p = Mt/ | Gazg |77
a

n
T Wilf [1].
i Cauchy [1].
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Suppose we choose p so that p = M. Setting (18) equal to M,

1/p
App

(19) M =
a7L
Since p = M, the two terms on the right side of (17) are equal, and therefore

all roots lie in the circle

1/p
an—zz

a

2] < 2p = 2M = 2

n

Now we do not know the integer p but can state with assurance
Theorem 5.7 All the zeros of the polynomial f(2) of (11) lie in the circle

1/¢
dp—:

20) [z] £ 2 max

1=iznl a,

since one of the values of / on the right is p.
As a final example, let us choose the x; so that the two terms in the braces
in (15) are equal, foreach 1 =1,2,...,n — 1, i.e,, so that

n—1i .
X 0q = z, (i=12...,n—=1).
n
Then,
An—i| %1 + Ziv1 | Gn—i 1 |a| + An—i
a, 1% Z; an Hag—;i1l2 qpn—i+1
—_ 2 a‘n—‘i
Ap-i+1

and we have

Theorem 6.5 Al the zeros of the polynomial f(2) of (11} lie in the circle

e = max]|%] 2| @] o] assa] o] @)
! s Ap-y a,
To illustrate these theorems, consider the polynomial
22 22 P
(22) f(z)=1+2+2—!+§-!+ '+;1—‘:

which is the nth partial sum of the Taylor’s series for e*. We have

23) av=—1; (»=0,1,...,n).

t Fujiwara [1].
1 Kojima [1].
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From (16) we get the circle

24) lz| £max{n + La(n — 1)+ 1,...,n' + Lnl} =1 4 n!

while from (20),

(25) |2| £ 2 max

1 1/z

1zizn | (n — i)!
=2max {n, /n(n — 1), &/n(n — D)(n — 2),...,n""}
= 2n.
Finally, (21) gives the circle
(26) 2| < max {20,2(n — 1),...,2,1}
= 2n.

Thus the best result we get from any of them is that the zeros of (22) are in
the circle |z| < 2n.

To find a lower bound for the zero of smallest modulus of a polynomial,
see exercise 2. To find a lower bound for the zero of largest modulus, we
may use the Gauss-Lucas theorem repeatedly, as follows. Let f*)(z) denote

the »th derivative of f(z), and let 2y, 2s,, . . . , 2,_,, be the zeros of f*(z),
arranged in nondecreasing order of modulus. Now
@n Y@= z ak - = Z ak(k — 1)+ (k — v + 1)2*7°

< k—v

E (k - 'u)J '

The ratio of the constant term of f®(2) to the coefficient of the highest
power of z in /*)(2) is the product of the zeros of /*)(2), aside from a sign.

Hence
a,»!(n —»)!

|z1v22v e Zn-—v,vl -
a, n!
. a,
< ln v
= n v,V
and therefore , 1 y
a n-v
> v
|zn—v,v| = { - {/
a

n

On the other hand, the Gauss-Lucas theorem tells us that

Iz'n—v,.vl é Izn-—v+1,v—1| g Tt é |zn0|

a2

thus
a

a,
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This being true for each » =0, 1,...,n — 1, we have proved

Theorem 7.f The modulus of the zero of f(2) of largest modulus is at least

n -1 1/n—v
(28) max {( ) }
0svEn—1 v

Using (22), again, as an illustration, (28) becomes

a,

a

n

vi{n — »)! a}VrY _
(29) max {(—)— —} = max {(n— I
osvsn-1 n! »! O0sv=n-1

= max {r!}'/7
1sr=n

= max {Z}
lgr=n\€

=r
o

Thus the largest zero of the sth partial sum of e” lies in the ring

(In (29) we used the relation (n!)/" = nje, which may be proved easily, for

n! =f z"e”% dx 2f x"e” " dx (¥ >0
0 "

o
= y"f e *dx = y"e V.
0

Taking y = n, the result follows.)

3.4 STURM SEQUENCES

We turn next to the location of zeros on the real axis, considering only
the case where the coefficients of f(z) are real.

Let (a, b) be a finite or infinite interval of the real axis, and let fi(z), . . .,
/(%) be p continuous functions defined on (a, b). We say thatfi(z), ..., f(z)
are a Sturm sequence for (a, b) if

(i) at a zero z; of f,(%), fre1(zg) and f;_i(x,) have opposite signs and are
notzero(k=2,3,...,p—1; a<<zy < b).
(ii) the function f (z) is never zero in (a, b).

1 L. A. Rubel (unpublished); compare Throumolopoulos [1].
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Now, suppose f1(2), . . ., f(*) is a given Sturm sequence for (a, b). Let
x, be a fixed point of (g, b), and suppose first that none of the f,(z) vanishes
atzy(k =1,...,p). We define V(x,), the number of variations of sign in
the sequence fi(%y), fo%), . . . , fo(%o), by writing down the vector

(sgn /1(%0), 30 fo(%o), - - - , 58N f(%o))

and counting the number of times the sign changes from + to — or from
— to 4 as we pass from left to right along the vector. Next, if one of the
functions is zero at w,, say fi(%,) = 0, then by axiom (i), the functions
JSr1(2), fr1(x) have opposite signs at 2, and it is clear that in determining
V(z,) we may give either sign to f;(z,) without affecting the answer. Finally,
at the endpoints a, b, V(@) means ¥V(a + 0), and V() means V(b — 0).

Theorem 8. Let f(x) be defined and continuously differentiable on (a, b),
and suppose

(30) J@, [ @, f5), - . ., fol®)

is a Sturm sequence on (a, b). Then the number of zeros of f(x) in the interval
(a, b) is precisely V(a) — V(b).

Proof. Notice, first, that the theorem asserts that if we can form a Sturm
sequence which begins with f(z), f'(z), then we can find the number of
distinct zeros of f(x) in (g, b) by examining ¥(a) and V(b).

To prove this, let us trace the behavior of the function V{(x) as * moves
from a + 0 to b — 0. Initially ¥(z) has the value ¥(a). Clearly V{(z) can
change only at a point where one of the functions f;(x) changes sign, i.e.,
vanishes. Let z, be such a point and suppose fi(z,) = 0. Now k 5= n by
axiom (ii); thus1 < k< n—1.

Suppose that 2 < k < n — 1. By axiom (i) for Sturm sequences there
are exactly the following possibilities:

Left of z, Right of z,
Jea(@) So@) Jrear(®) JSea(®) fi(@) Ser1(®@)
+ + - + — -
+ — - + -+ -
— + + - — +
- - + —_ + +

In each of these four cases, the number of variations of sign in the
sequence is unchanged as we pass through z,. In other words, at a zero z,,
of fi(#,), where 2 < k < n — 1, we have

Wz, + 0) = V(z, — 0)
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Hence the only points at which V(x) can change are those at which
fi(®) = f(x) is zero. Let x, be such a point. Since f'(«) is the slope of f(z),
we have only the following possibilities:

Left of z, Right of z,
/@) /@ J@) /@
+ —_— J— —_
- + + +

In each case the sequence loses exactly one sign variation passing through
T, 1.€.,

V(xg + 0) = V(zg — 0) — 1.
Therefore, as we move from a to b, the sequence loses as many variations of
sign as there are zeros of f(x), which was to be shown.

Notice that if f(x) has multiple zeros in (a, b), then there are points at
which () and f(x) simultaneously vanish, contradicting axiom (i). Then
there is no Sturm sequence starting with f(2), f'(z), although, as we shall
see, the situation is not irretrievable.

Now let f(z) be a polynomial of degree » with real coefficients. We
propose to construct a Sturm sequence beginning with f(z), f'(2), if this is
possible (i.e., if f(x) has no multiple zeros in (g, b)), and in any case to
construct a Sturm sequence which will give the number of distinct zeros of
f(z)in (a, b). Define fi(z) = f(), fo(x) = f'(x). Now divide f,() by fx),
getting a quotient ¢,(x) and a remainder ry(x). Take f3(z) = —r(2). Then

3y fi&) = q(2) - o) — fi(=).

Next, divide f,(x) by f;(x), taking f4(x) to be the negative of the remainder
0 obtained. In general, if fi(), . . ., fi(x) have been found, write

(32) Je1(®) = §11(®) (%) — fia(®) k=23,...,m

thereby determining f,.,(z). Since the degrees of the fi(x) are steadily
decreasing, this process will terminate after m =< n + 1 steps with f,,_(x),
fm(®), where f, (z) divides £, _;(x) with no remainder, i.e.,

(33) fm—l(x) = qm—l(x)fm(z)-

If m=n+ 1, f(z) is a constant, and we claim that the sequence fi(z),
So@), . . ., fra(@) so generated is a Sturm sequence. Indeed, axiom (ii) is
clear since £, (%) is constant. Next, if z, is a zero of fi(), then from (32)
we see that f;_,(%,) and f,,,(#,) have opposite signs, unless one of them
vanishes. But this cannot happen, since if two consecutive functions vanish
at x,, then by the recurrence (32) all succeeding functions vanish at =z,
hence the constant f, () vanishes at x,;, and therefore identically, hence
working backward, all functions vanish identically, which is impossible.
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It remains to consider the case where m < n + 1, i.e., where the process
terminates after fewer then n steps. From (33), f,,(«) divides f,,_,(x). From
(32) with k = m — 1, f,,(x) divides f,,_,(z), and so on; f, () divides each
of fi(), ..., fnu(®); and f, () is clearly the highest common factor of
f@), ..., frq(x). Then it is easy to see that the functions

fl(_x)_ M . fm—l(z) 1

M CON M C M W C) Bt

form a Sturm sequence. Since fy(2)/f,.(%) is not the derivative of fi(z)/f,.(x),
Theorem 8 is not directly applicable, but examination of the proof of that
theorem shows that its conclusion remains true in this case also. We
summarize with

Theorem 9. The sequence of polynomials formed from (32) withf,(x) = f (),

fo(x) = f'(z) is a Sturm sequence if m = n + 1, and (34) is such a sequence
ifm < n+ 1. Ineither case, the number of distinct zeros of f(x) in (a, b) is
V(a) — V(b), where V() is defined on the appropriate sequence.

As an illustration, take

(35 f@)=o%—222 — 2+ 2= (2 — 1)z — 2).

With fi(#) = f(z), folz) = f'(x) = 32® — 4o — 1, we divide fi(z) by filz)
and get f3(x) = Tx — 8, then fy(x) = -1 (we have multiplied the f;() by
positive constants, to clear of fractions). Thus V(z) is the number of sign
variations in the sequence

(B =222 —2+2 322—4dx—1, T2 —38, 4+1).
To find, for example, the number of zeros of (35) in (0, 5), we have
VO)y=2, VB =0, V0)-—-¥5 =2

thus there are exactly two zeros in this interval. To find the number of real
zeros of (35) wetakea = — o0, b + 0. Whenxis very large and negative,
V(z) = 3, while, when z is very large and positive, V(») = 0; therefore all
of the zeros of (35) are real.

To illustrate a degenerate case, take

(36) f@=2—22—2+1=(@— D%z + 1)

Here we find fo(x) = 32% — 22 — 1, fy(x) = # — 1, and the process then
terminates because fy() is divisible by # — 1. Thus we form, instead, the
sequence (34), which is

(349

2—1, 3x+1, 1,

and use this sequence in the usual manner, interpreting the answers as the
number of distinct zeros of f(x) in (a, b). At this stage, however, one
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actually has complete information about the zeros, since the “extra” zeros
are those of f,,(z), in this case simply z = 1.

We state, without proof, two theorems which giveless precise information
than the above, although they are considerably easier to use.

Theorem 10. (Descartes’ Rule of Signs.) The number of positive zeros of
the polynomial

37 f@=a+az+ - +azx"
is either equal to the number of variations of sign in the sequence

(dp, ay,...,4a,)
or less by an even number.

Theorem 11. (Budan’s Rule.y The number of zeros of (37) in (a, b) is either
equal to V(a) — V(b) or less by an even number, where V(z) is the number of
variations of sign in the sequence

(38) J@,f' @, @), ..., [ @)

Budan’s rule reduces to Descartes’ when @ = 0, b = co. It gives exact
information when V(a) — V(b) is zero or one, or if it is somehow known
that the sequence of derivatives of f(x) forms a Sturm sequence. The
conditions under which this happens are in exercise 6.

Theorems 10 and 11 give upper bounds for the number of zeros of f(x)
in an interval. We propose next to find lower bounds for this number.

If f(x) is given, define, recursively,

l So®) = f(z)

39 e

(39) foei(®) =J;fn(t) it (n=0,1,...,N—1).

Lemma 2.t The number of zeros of f(z) in the interval (0, a) is not less
than the number of changes in sign of the sequence

(40) ﬁ)(a)sfl(a)7 L 9fN(a)-

Proof. We first remark that N is arbitrary here and is not related to the
degree of f(); indeed, the result holds for any continuous function. Now
the conclusion is obvious if ¥ = 0. Suppose the result has been proved for
0,1,...,%k — 1. Suppose the sequence f;(a), f5(a), . . . , fi(a) has m varia-
tions of sign. By the inductive hypothesis applied to fi(x), fi(x) has at least
m zeros. Considering the full sequence

fo@), fi(@, ..., fla)

T Féjér [2].
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what we have to prove is that if f(a) and £,(a) have the same sign, then f(z)
has at least m zeros, and if f(a) and f{(a) have opposite signs, then f(x) has
at least m + 1 zeros. Consider the first case, where f(a), f,(@) have the
same sign. Since f;(z) has m changes of sign in (0, @), and vanishes at z = 0,
by Rolle’s theorem we know that between each pair of zeros of fi(x) lies a
zero of /;'(x) = f(x). Hence f(x) has at least m changes of sign in (0, a).
In the second case, suppose fi{a) > 0, f(e) = f;'(a) < 0. Then the curve
y = fi(x) decreases at a to its positive value f;(a) at . Hence the curve
turns around between its rightmost zero and a. Therefore, as above,
J(@) = fi'() has m zeros between the zeros of fi(x) and another between
the rightmost zero of f;(z) and @, completing the proof.

Theorem 12.7 The polynomial (or continuous function) f(x) has at least as
many zeros in (0, a) as the sequence

£(0), J; o, ..., fo " (o) dt

has variations of sign, n being arbitrary.
Proof. Since

Sl = [@-oyoa

1)'
we have

fa) =

f (a — 0" Y@ dt = f fla— o1,

— ! 1)'

Hence the sequence (40) can be replaced by

f(a)o f:f(a - t) dt, cv ey f:f(a — t)tN—'l dt.

Since f(a — ?) has just as many zeros as f(¢), we can replace f(a — ) by
f(¢), thereby proving the theorem.

3.5 ZEROS IN A HALF-PLANE

Now let f(2) denote a polynomial with complex coefficients, of degree 7.
‘We are interested in determining the number of zeros of /(z) in a half-plane,
which we take to be the upper half-plane, although obvious changes of
variable make our results applicable to any half-plane.

We suppose that f(2) has no zeros on the real axis. Now, let z traverse
the real axis from — oo to co, and let z; be any fixed point in the upper half-
plane. Then, as z moves from —cc to oo, the argument of the number

T Fekete [1].
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z; — 2, increases by , as can be seen from the diagram. Similarly, if 2, is
fixed in the lower half-plane, the argument of z — 2, decreases by = as z
moves from — oo to oo along the real axis.

Now, consider the factored form of f(z),

(41 J@=G—2)z—2) " (z—2,).
Clearly,
42) argf(z) =arg(z —2z) +arg(z —2) + - + arg(z — z,).

Hence, as z moves from — co0 to o0, arg f(z) increases by r, for each zero in
the upper half-plane and decreases by « for each zero in the lower half-

21

Z

2z

Figure 3.2

plane. Denoting by A, arg f(2) the net change in the argument of f(2) as z
traverses the x-axis from left to right, we have
(43) Apargf(x) =pm —gqmr =(p — q)m

where p, g are, respectively, the number of zeros of f(z) in the upper and
lower half-planes. Since also

(44) ptg=n
we may solve (43), (44) simultaneously for p and g, getting
1
(43) p="+ - Apargf()
2 2z
1
(46) g=7—>—Apargf().
2 2
Now let us write f(2) in the form
47 f@A=ay+az+ - +a, 2"+ 2"
where
(48) a, = o, + ir, (»=0,1,...,n—-1)

o,, T, real. Thus

Ty

49) (%) = P(z) + iQ(x)
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where
(50) Px)=o0,+ 0@+ + 0, "1 + 2"
(51) Q(x) =T, + T + PPN + ,T"_lxn—l

are both real polynomials. Now, when  is real, from (49) we see that

F(@) = |f(@)] exp {i cot-lgg—;}

and therefore

(52) arg f(z) = cot™ y(z)
where
. P(z)
3 =—,
(53) y(z) o)

We wish to calculate Ag, arg f(x), which from (52), (53) obviously depends
on the real zeros of P(z). Suppose the real zeros of P(x) are

(54) << o<, (m<n).

None of the §, is also a zero of Q(x), since that would imply, by (49), that
J{(=) = 0 on the real axis, contrary to our supposition.

Now consider the interval (&, + ¢, &,,; — ) of the real axis. As z
traverses this interval from left to right, if P(x)/ Q(x) changes from — to 4,
cot™! y(z), and therefore arg f(x) increases by =, while if P(#)/ O(z) changes
from + to —, arg f(x) decreases by 7. Combining these results, we see
that 1/m Ap arg f(x) is the excess of the number of points of the real axis at
which P(x)/ Q(x) changes from 4 to — over the number of points at which
it changes from — to + (see exercise 8).

Now, examination of the proof of Theorem 8 shows that this excess is
precisely measured by ¥(o0) — V(— o), where V() is the number of
changes of sign in any Sturm sequence beginning with P(z), O(x). Summar-
izing, we have

Theorem 13.7 Let f(2) of (47) be given, let P(x), Q(x) be defined by (48),
(50), (51), and suppose f(2) has no real zeros. If P(x), Q(x), f5(z), . . . is any
Sturm sequence beginning with P(x), Q(x), then the number of zeros of f(2)
in the upper half-plane is

(55) p = {n + V(w0) — V(—0)}.

As an illustration, we ask for the number of zeros in the left half-plane of
the polynomial

(56) JR=2>—32+ 4 -2
T Routh [1], Hurwitz [1].



98 MATHEMATICS FOR THE PHYSICAL SCIENCES §3.5

whose zeros are actually at the points z = 1,z =1 — 7,2 =14 i. Now
this number is the number of zeros in the upper half-plane of the polynomial

(57) g2y =if(iz) = 2 + 3iz® — 4= — 2i.

Referring to (50), (51), we have

(58) P(x) = 2° — 4o

(59 O(x) = 322 — 2.

By the usual division algorithm, the rest of the Sturm sequence is
(60) fo(x) = L2z

(9] falr) = 2.

Hence, from (55),
P =313+ V() — V(—)}
% + %V('*" +, +, +) - %V(—, +, —, +)
=, + 0— %
=0
as is obviously true.

The process of forming the Sturm sequence and examining the number of
sign variations can be mechanized, in a certain sense, by constructing certain
matrices, known as the Routh and Hurwitz matrices. It is the author’s
opinion that in small problems the straightforward construction of Sturm
sequences is not troublesome, while large problems require the use of
computing machinery in any case. In the latter event, paradoxically
enough, the best way to evaluate the determinants of Routh and Huritz
turns out to be by essentially rederiving them from the algorithm above. In
view of this circumstance it appears that in any event the best mode of
approach may well be the direct construction of Sturm sequences. For
these reasons we will not discuss the Routh-Hurwitz determinants here,
but instead refer the reader to the bibliography at the end of the chapter.

3.6 ZEROS IN A SECTOR, ERDOS-TURAN’S THEOREM

By proceeding in the manner of the preceding section one can construct
certain Sturm sequences which give exact information about the number of
zeros of a polynomial in a sector. As these results are of rather limited
utility in practice, we devote this section to a most remarkable theorem on
this same subject, which, even though it does not give exact information,
nonetheless gives some insight into those properties of a polynomial which
tend to make it have a uniform or nonuniform distribution of zeros in
angle.
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Suppose we choose a polynomial

(62) f@&=ag +az+ -+ az"

with complex coefficients “at random,” in some sense. How many zeros
would it be expected to have in the sector « =< argz < f? In the absence
of further information about f(z), the answer must clearly be (8 — o)n/27.
Let V(«, 8, ) denote the number of zeros of f(2) in this sector. Then if
&) Vi by - L2

27

is never very large for any 0 = « < § < 27, we may say that the zeros of

f(2) are rather uniformly distributed in angle.
The prototype of those polynomials whose zeros are so distributed is

(64) fl@=1+z"

with zeros evenly spaced around |z] = 1. The salient feature of (64) is that
its “middle coefficients” ay, ay, . . . , @,_; are small in modulus compared to
theend coefficients g, = 1,4, = 1. One mightreasonably expect, therefore,
to see a theorem which states that if a, as, . . . , a,_; are not too large, in
modulus, compared with g, a,,, then the quantity (63), which measures the
equidistribution of zeros in angle, will also never become too large. The

precise result is
Theorem 14.7 If f(z) is defined by (62), let
—= lagl + [ay] + -~ + |an|.

n

65 P B
( ) \/iaoanl

Then

(66) V(e B, f) — B 2‘ %n| < 16/nlogP.

We are unable to prove this theorem here because that would require a
rather deep analysis of the relationship between the maximum modulus of a
polynomial whose zeros are on the unit circle and the number of zeros of
that polynomial on an arc of the circle.

Instead we shall attempt, by a naive argument, to make the inequality
(66) appear reasonable. To do this, observe that the left-hand side of (66)
is never larger than » and reaches » only when the zeros of /() are on a ray
argz = y,and « = f§ = y. Let us suppose that this is so and that all the
zeros of f(z) are on the negative real axis. In this class of polynomials let us
try to minimize the right-hand side of (66). We have the
Lemma. 1f f(z) has negative real zeros, then

P ; 272
the sign of equality holding only for f(z) = (1 + 2)".
1 P. Erdds and P. Turan [1].
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Proof. Such a polynomial can be written in two ways,
f@=a,llG+z)=ay+az+ - +az"
i=1

where z; > 0,2, >0({=0,1,...,n). Now,
lagl + -+ 1an| _ao+ay+- - +a,

v 'aoan, B aydy,
_ SO _ aJId + =)

P =

Jaoa, aga,,
= V@Il + = =1L
— 114 + =)

+ \/x) =z2"
T1(/=) 11&r
since x > 0 implies  + 1/z = 2, with equality only if z = 1.
Thus the minimum value of log P in the class of polynomials with negative
real zeros is n log 2. Hence for all such polynomials we have

1
= \/B.g_z,/n log P

and the general theorem of Erdos-Turan asserts that this actually holds for
all polynomials if (log 2)™* is replaced by 16 (although this may not be
necessary).

Wm&ﬁ—ﬂ;“n

3.7 NEWTON’S SUMS
In this section we write f(z) in the form
(67) f@=2"+cg" 4+ -+ gz + Cp

Let the zeros of f(z) be 2, z,, . . . , 2,. The power sums

(68) Se=232"
v=1
are called the Newton sums of f(z). The first few are
(69 Se=n
Si=xn+n++a,
S2=212+222+...+zn2
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It was first shown by Newton that the S, can be found without solving
the equation f(z) = 0, by a simple recurrence relation. Indeed, taking the
logarithm of both sides of (2), and differentiating,

1

z—z;

(710) 1@ =103

@IS,
=3 =
Z v=02
the expansion being valid for |z| > max |z,|. Thus
’ it SV
(71) SO =3 >
n n—1 < Sv
=@ e )
v=0

=n"+(m— D" 1+ -+ ¢, g2

Let 1 < p < n. The coefficient of z*~? on the left is (n — p)c, and on the
rightisnc, + ¢, 181 + ¢, 28 + -+ S, 1 + §,. Hence

(n—pc, =8 +aS, 1+ + ;485 +ne,
or transposing,
() S,+aS, 1+ 6S, s+ +cpaSi+pe, =0  (p=12,---,n).

For p = n, the coefficient of 2"~? on the left of (71) is zero and on the
rightis S, + ¢,S,; + -+ + ¢,S,,; hence

M) S,+aS, a1+ +6Sp,=0 (p=n+1n+2,..).

Theorem 15. The Newton sums (68) of the polynomial (67) may be deter-
mined recursively from the coefficients by means of Newton’s identities (72),
(73).
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The first few sums are found to be
So=n=14+14+---41
Sl='—cl=z1+"'+zn
Se=62—2c, =224+ ---+2,2

(74) Sz=3(cie, —c3) — e =2 4 -+ + 2,2

etc.
Now, suppose that one of the zeros of f(2), say 2, exceeds all others in
modulus. Then

Senn _ AT+
Sk AR A
— A1+ Raf2) T 4 - 4 (zuf2)Y
2"{1 + (zaf2)" + - - + (2a/20)"}
and making k — oo, clearly

(76) fim Skt1 5

k= o0 Sk

(75)

If our assumption concerning 2, is fulfilled, then equation (76) gives an
elegant technique for calculating 2, numerically. This procedure, known as
Bernoulli’s method, is as follows:

(a) Using Newton’s identities, calculate S, Sy, Ss, . . . recursively.

(b) When the ratio S,,,/S; has converged sufficiently, take 2, to be the
last value of this ratio.

(c) Form the reduced polynomial

f(2)

z— 2

and repeat the process until either all roots have been found or a root which
is repeated in modulus is reached.

To deal with this last eventuality, suppose first that 2, z, are complex
conjugates of each other and that the remaining zeros have smaller modulus.
If

2y =1re", z,=re "
then
S, =2 +2"+ - +z2f=2%Fcoske + o+ (k— ©)
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where the term o(r*) refers to a function of & which, when divided by r*,
tends to zero (see Chapter 4 for exact definitions of these symbols) as
k — co. Hence

a7 % — cos kg + o(1)
(78) ;’;11 = cos (k + D + o(1)
(79) ;7;;22 = cos (k + 2)@ + o(1).

Multiplying (77) by 1, (78) by —2 cos ¢, (79) by 1 and adding,

S—’”’i—Zcossz"Jr1 +%=0(1)
r

9pk+2 gpk+l
or

(80) Sprg — 2r €08 @S,y + 23S, = o(r**?)
and replacing k by k — 1,

81) Sy — 2r cos @Sy + 28, = o(r®+Y).

We may regard (80), (81) as two simultaneous equations in two unknowns
r%, r cos @, which are the squared modulus and real part of the root we seek.
Solving,

Sk-1Sk+2 — SpSk+1 + o(1)

2rcos ¢ =
P SiSen— 52

2
P2 = Sksk+2 - Sk+1

+ o(1)
Sk+lsk—1 - SI%

or what is the same thing,

(32) 2r cos ¢ = lim Se-1Sk+p = SkSIc2+1
Eoo SpieSpog — S

(83) r2 = lim Sksk+2 - S:+1 .
k=00 Spr1Sk—y — Si

This analysis shows first that the presence of a root of repeated modulus
can be detected during the calculation by the oscillatory behavior of the
Sy It will be observed that the ratio in (76) is not tending to a limit. In this
case the ratios in (82), (83) should be checked for smooth behavior. If
those ratios tend to limits, then those limits are respectively twice the real
part and the squared modulus of the conjugate pair being sought. If neither
of these eventualities occurs, then a multiplicity of some order is present.
Although these can be dealt with similarly, the method is probably un-
suitable in such cases for multiplicities of order higher than the second.
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3.8 OTHER NUMERICAL METHODS

The Newton-Raphson iteration for finding the roots of polynomial
equations, which we now discuss, converges very rapidly, if at all. It is
somewhat less reliable than the Bernoulli iteration described in the previous
section in that it requires a moderately good estimate of the root to be
available at the start of the process. The iteration is carried out by choosing
an initial “‘guess” z,, and calculating recursively

(84) Zyr1 =2, —j% »=0,1,2,...).

If the process converges at all, z, — z, and if f'(z) 7 0, then (84) shows
clearly that f(z) = 0, i.e., zis a zero of f(z). The following theorem gives a
sufficient condition for the convergence of the method.

Theorem 16. If the initial guess, z,, is contained in some circle C,
2=l =p
about a zero, {, of f(2) such that if 2', 2" are any two points of C, we have
N
f'@) f@)
then the sequence {z,} generated by (84) converges to .
Proof. First, we claim that all 2, lie in C if 2, does. Indeed,

W,

syl —=2" y<1

e
(86) Izv+1 - Cl = |% f’(Zv) g

_fe) . SO

et ro

=yla—l<lzy =1

which proves the previous assertion. Next, from (86) we see that
IZV_C'gyv'ZO—C’ (’V=1,2,...)

whence z, converges to { with geometric rapidity.

Because of the slow-but-sure character of the Bernoulli iteration, as
contrasted to the rapid but unsure behavior of Newton’s iteration, a
combination of the two is a reasonably good calculation scheme. Bernoulli’s
method is then used to provide the initial guess z, for (84).

Next, we propose to find a family of numerical methods by relating the
Bernoulli process to matrix iterations. Indeed, referring to (99), (100) of
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Chapter 1, the companion matrix of the polynomial

£0) @A =2+t 4+,
is
—C —C " T,
1 0 --- 0
88) e 0 1 - 0
0 0 --- 0

Any method of calculating the eigenvalues of 4 is a method of calculating
the zeros of f(z). One such method is to choose a starting vector y,, and
form Ay,, A%y, . ... If the eigenvalues of 4 (zeros of f) are distinct in
modulus, the ratio of components of successive members of this sequence
tend to the dominant zero of f(z) (see Section 1.20; compare (75) of this
chapter). This is essentially Bernoulli’s method, as can be seen by writing
down y,, Ay, A%y, and comparing with Newton’s identities. The rate of
convergence of this process is determined by (z,(z;| where z, is the sub-
dominant and z, the dominant root, as is clear from (75). Therefore, any
transformation which diminishes |z,{2,] will accelerate the convergence of
the iteration.

One such transformation consists in squaring the companion matrix
before beginning the iteration. The eigenvalues of 42 are 2%, 2,2, . . ., 2,2,
and the convergence is now governed by
PR
2

29[22y

% 1 %
since |z,/2;| << 1. Indeed, one can form the matrices 4%, A%, A%, A5, ...
successively, by repeated squaring, the separation of the roots being en-
hanced by each successive matrix multiplication. This procedure is quite
effective when the roots are close together in modulus and is known as
Graeffe’s process. It has the disadvantage of being unstable against buildup
of roundoff error, and it is wise, for this reason, to take the roots as found
and correct them once or twice with Newton’s iteration.

As a final remark on numerical methods, let us recall, from the theory of
functions, that the number of zeros of the function f(z) inside a simple
closed curve C which lies inside its domain of analyticity is equal to the
change in the amplitude of f(z) around C, divided by 2.

Hence, let f(z) be a polynomial, in particular, and C such a curve. Asz

goes around C in the counterclockwise direction, a curve w = f(z) is traced
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out in the w-plane. The theorem just referred to states that the number of
zeros of f(z) in C is the number of times this image of C winds around the
origin in the w-plane. This can be made into an effective numerical pro-
cedure by choosing several pointsaround C, calculating f(z) at those points,
plotting the resuiting curve, and counting the number of turns around the
origin,
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Exercises

1. Prove that the companion matrix of (11) is irreducible.
2. (@) If f(?) = ay + a4z + - - - + a,2", display the function g(z) = z"f(1/2).
(b) If the zeros of f(z) are z,, . . ., z,, what are the zeros of g(2)?
(c) Using the result of (b), find a lower bound for the modulus of the zero
of f(2) of smallest fiodulus, and hence find an annular ring containing
all the zeros of f(z).
(d) What does your result say about the zeros of

f(Z)=1+z+22+--- 219

What are the zeros of this polynomial ?
3. Find a circle which contains the zeros of the (2m)th partial sum of the
Taylor’s series for cos z.
4. What is the convex hull of the set consisting of the interval [0, 1] of the
z-axis and [0, 1] of the y-axis? Of the set consisting of the entire real axis
and the entire imaginary axis?



5.

6.

7.

8.

11.
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If no zero of f(2) exceeds R in modulus, then the convex hull of the zeros of
[f(2) is contained in the circle z < R,

Let f(z) be a polynomial of degree n, with real coefficients. Suppose that
Budan’s theorem gives exact information for every interval (a, ). For this
to happen it is necessary and sufficient that all the zeros of f(x) be real.

If @o®), ¢y(2), ..., pu(x) are the first # -+ 1 members of a sequence of
orthogonal polynomials on (g, b), then they form a Sturm sequence on any
interval of the real axis.

Prove the assertion made in the paragraph immediately preceding Theorem
13, and carry out the operation called “combining these results,” in the
paragraph preceding that.

. Derive (17) directly from (16) by considering f(e2).
. If f(2) has complex coefficients, how can Sturm’s theorem be used to give

the number of zeros in a real interval (a, b)?

It is desired to find precisely the number of zeros of the polynomial f(z) in
the circle |2] < R. How can this problem be transformed into that of
Theorem 13?7 Exactly how many zeros has the polynomial

f@ =28 =322 2~ 1
in the unit circle?



chapter 4
Asymptotic expansions

4.1 INTRODUCTION; THE O, o, ~ SYMBOLS

Asymptotics is the art of finding a simple function which is a good
approximation to a given complicated function, the accuracy of the approxi-
mation increasing as the argument of the given function behaves in a certain
preassigned manner. It is a branch of mathematics in which intuition,
experience, and even luck play an important role, since particular problems
have a habit of being highly individual, and not special cases of any theorem.
With these cautions, we proceed to summarize in this chapter a few of the
rules which do exist.

Consider the function

1+ a?

) f@) = e

as z — . The crudest statement we could make is simply that f(z) — o
as ¢ — oo. The next question concerns the rate at which f(z) — co. Does
it, for example, grow like ¢*? 227 loglog #? I'(z)? The answer is quite
clear here, even though we have not defined the word “rate” yet; this
function grows like « as x — co. Next we may ask about the growth of
f(x) — x. To answer this we write

2® 41 x2+ll 1 1 1 \
2 — = 1—-—- — o ——— a v .
@ @ = e e TE e T
(e (-t lo )
x x x=
x P
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From this expansion, which converges for |x| > 1, we see that f(z) — «
remains bounded as # — oo, and, actually, that f(x) — x approaches —1
as a limit. Next we ask about the behavior of f(r) — z + 1 as x — oo.
From (2) we can make either the crude statement that f(z) — z + 1
approaches zero as  — o0 or the more precise statement that f(x) — « + 1
“behaves like” 2/x when x is large. The process can be continued in-
definitely, and we notice that all such questions will be answered by the
expansion (2), which is therefore both a convergent development of f(z) in
a series for |¢] > 1 and an asymptotic expansion of f(x) for large x, which
means roughly that the chain of questions asked above can be answered by
inspection of the series (we give a precise definition below).

The relation (2) is quite useless for discovering the behavior of f(z) as
x — 0, for it is neither convergent nor asymptotic, but writing

1+ 22
14+ =z

(3 f(z) = =(+2d0 —az+2>+--)

=1—az+22%— 2%+ -

gives an expansion which is both convergent and asymptotic in a neighbor-
hood of # = 0.

Passing, by way of contrast, to a more difficult situation, consider the
function

N
C) F(N) = Z=1°°S (log n)

and let us ask about the growth of f(N)as N — co. The only obvious fact
is that

N
(%) If(N)] = §=:1I cos (log n)|
<N

so that | f(V)| grows no faster than N. The indiscriminate use of absolute
value signs in (5) has, however, destroyed the entire delicacy of the problem
{4), which arises from the cancellation between terms of (4) caused by the
changes in sign of the cosine. It is by no means clear even that | f(N)| — o
as N — oo, or—if it does—whether it does so at the rate of N, N4, N*¥log N
etc. What we are saying is that not only do we not have an asymptotic
expansion like (2) but also that we are completely in the dark about the first
term in that expansion.

We now wish to give precise definitions of three symbols which are used
to compare the rates of growth of functions.
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Let f(x), g(x) be given functions, g(x) continuous, and let z; be a given
point. We say that f(x) = O(g(x)) as x — x;, written

6) f() = 0(@) (z—>)
if there is a constant A4 such that
) [f(@)] = 4lg@)]

for all values of = in some neighborhood of x,.
We say that f(x) = o(g(®)) as x — x,, written

® S@) =o(glz))  (z—z)
if
| f(2)
9 | —= 1 =0.
® w:n:;:lo g(x)

Finally, we say that f(z) ~ g(x) as x — x,, written
(10) J@) ~gl@)  (z—x)
if

. f(®)
11 lim == =1,
( ) a:LTO g(z)

In the definition of the O symbol, if z, = oo, the phrase “in some neighbor-
hood of z,” means “for all sufficiently large . In some cases we are
interested in the rate of growth as x — %, from one side only, say z — x,
from above. In such cases we write, for instance,

(12) J@) =o0(g@) (= —x7)

with corresponding modifications in the other cases.
Roughly speaking, the symbols O, o, ~ have the following meanings:
(a) f(x) = O(g(x)) means f(x) does not grow faster than g(z) as = — x,.
(b) f(x) = o(g(x)) means f(x) grows slower than g(x) as x — .
{¢) f(x) ~ g(z) means f(x) and g(z) grow at the same rate as = — x,.

Needless to say, the last three statements are mnemonic devices only, and
the formal definitions given above must always be used.
The equations

(13) f@ = g@) + O(h(z))  (z— )
(14) J@) =g@) + o))  (z— )
mean, respectively,

(15) J@) — g(@) = Oh(@)  (z— )

(16) f@) — gl@) = olh(@)  (z— )
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The following examples should be carefully studied before proceeding
further.

) sin z = O(1) (x — )
(18) (I + 22 = o(l) (& — o)
(19) (1 + 21 = oz (x — )
(20) (1 + 29 = 0@ (& — o)
21) (1 +a¥)l~a? (x — 0)
(22) 1+ 2B r=a?2+4 ofc?) (x — )
(23) 1+ 2 =224 o(z®) (x — )
24 (142571 =a24 O™ (x — )
(25) Q4+ l=a?2—2%4 002 (x> 0
(26) nln+1)~1 (n— )
@27 sin 2 ~ (z—0)

(28) cosz = 1 + O(x?) (z—0)

29) 4 1l~n (n— o)
(30) ViE+ 1 =n+ o) (n — o0)
(3D ViE+1=n+ 0@ (n — o0)
(32) (nfe)" = O(n!) (n — )
(33) ilx" = 0ol — )™ (x—17)
34) if%“=wﬂ—@*) @ 1)

% gy
(35) J; Y = O(log ») (x — o0)
(36) fﬁe—’:4 sin nz dx = o(l) (n— o)
0

From these examples it may be noticed that f(x) = O(1) (x — x,) means
simply that f(z) is bounded and that f(z) = o(1) (# — #,) means that f(z)
approaches zero as ¥ — &,. Furthermore, we see that there is no point in
putting two terms on the right of a “~"" sign if one dominates the other,
for example

f(x)~x+\/; (x — 00)
conveys no more information than

f@ ~z
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since the function f(x) = z + 2™ log = satisfies both of them, as does
f(x) = z itself. As a final remark we note that it is possible to have

fl@)=0@"")  (z— x)
for every e > 0 and yet not have f(x) = O(z%). Indeed, for every £ > 0,
Jzlogz = 0(z**%) #£ 0(=%)  (z— oo).

Now let ¢o(x), ¢y(x), (), . .. be an infinite sequence of continuous
functions, and let ¢, be a fixed point. We say that {¢,(2)}5_, is an asymptotic
sequence for x, if for each fixed n we have

bpa(@) = o($,(x)) (z — ).

For example, the sequence

1,1,
x

5 4 e

&Nl)—a

is an asymptotic sequence for oo, and the sequence
l.z, 22, ...
is an asymptotic sequence for 0.
Suppose f(z) is a given function, and let {¢,(x)};>_, be an asymptotic
sequence for z;,. A formal series

aydo(®) + ayhy(2) + - - -

is called an asymptotic series for f(x) at x, if for each fixed integer » it is
true that

BN f@) = ad®@) + -+ a,p.2) + o($a(@)) (@)

The abbreviation
(38) f(.’l’,') I ZoaquV(x) (.’If g xﬁ)

means that the formal series on the right side is an asymptotic series for
f(z) at zy, in the sense of (37). It does not imply that the series converges,
and in most of the interesting applications it will not converge. This means
that for any fixed value of «, the series in (38) cannot be used for the exact
calculation of f(z), for the terms will decrease in size for a while but ulti-
mately will increase to infinity. Nonetheless, such series are extremely
useful for the approximate calculation of f(x) because at the beginning the
terms will usually decrease quite rapidly, and more rapidly the closer = is
toxz,. Inmany cases just a few terms will give quite extraordinary accuracy.

In (2) we have seen an asymptotic expansion which is convergent. To
illustrate the other kind, consider

(39) (@) = f ) £ fﬁ
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when = js large and positive. Integrating once by parts, we get

Jo =t [T

x  Jo (xz+ 1)?
Generally, after integrating # times by parts, we find
1 2!
(40) f(’li) —'—;é‘l‘;_—"f’ (= 1)‘” ol
® e td:
+ (=)™ n + 1 !f L
(=17 + D1

Denoting the remainder term by R,(z), we have

ol etdt  (n4 1)'f e ™
41) R ()| =0n+1 !f ¢ d
( ) | ()' ( ) 0 (x+t)n+2 xn+1 0 (1+y)fn+2 Yy
DU 0 ()
sTom ), ¢ s

Therefore, if we terminate the expansion (40) after the nth term—ignoring
the remainder—the error we make is o of the last term kept, as required by
the definition (37). Hence we may write

) f(ac)=f0 LRIV o)

Actually the analysis in (41) shows that even more is true, namely that the
magnitude of the error committed in stopping after # terms is less than the
first term neglected. The series in (42) converges for no finite value of z.
Indeed, if z is fixed, the vth term is obtained from the (v — 1)st by mulitiply-
ing by v/x (aside from sign). Therefore the terms decrease in size as long as
vfx < 1, ie., as long as v < z. For v > x they rapidly increase, without
bound, in magnitude. If (to simplify the argument)  is a fixed integer, the
size of the smallest term in (42) is

z!

z+1

x
which, as we shall see presently, is
2nfr e (z — ).
This is the theoretical limit of accuracy in the use of (42). To put it more
plainly, since f(x) ~ z~%, the minimum relative error that can possibly be
attained by using (42) for a fixed value of  is
2nx e (x — o)

which can be gotten by using  terms. The use of more terms will result in
a larger error. On the other hand, notice that using only one term gives a
relative error of 1/z, which may be eminently acceptable if « is large, and is
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certainly preferable to the numerical evaluation of the integral in (39),
which, in contrast to (42), gets more difficult as « gets larger.

With the above remarks we conclude our general discussion of asymptotic
expansions and pass now to the question of obtaining such expansions in
particular cases. These cases may be grouped, roughly, as (i) sums, (ii)
integrals, and (iii) other. This will cover only a minute portion of the pos-
sible areas of application of asymptotic methods, but a respectable fraction
of the areas for which there exist general rules of procedure.

42 SUMS

Let f(x) be a given continuous function. Our objective is to study the
rate of growth of

@3 S() = 350)

as n — co. It will probably come as no surprise, for example, to learn that
n 4
3r~L (o)
v=0 4
for the reader is, perhaps, used to comparing (43) with

(44) S(n) =J:}’(t) dt.

We wish to explore here the connection between the rates of growth of (43)
and (44), with a view to writing down a complete asymptotic expansion,
when possible, for (43), in which (44) will be the first term. We need, first,
a certain amount of preliminary apparatus.

Let us start with the numbers

1
(45) =3 = @=12%..)
and the function
46) 86 =3 Lo 2l <1
— Z z2nz _t;
n=1 v=17

1l
Ms
1M 8

v=1lmn
-+ 22/,”2
—211—z2/v2
| zw{ 1 1 }
=22 _ - —_—
\sz—zz 2v§=:1v—z 42
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Now this last series obviously converges for every fixed value of z, excepting
only the nonzero integers. It therefore represents a function analytic in the
whole plane except for simple poles at z = +1, 2, ..., with residue —1
at each pole. Another such function is ’

1
- — 7 cot mz.
P

It can be shown that actually
Z{ ! ——1—} =—1-~—7rcot1rz.

y=1Ww — 2 v+ 2z z

The proof, while straightforward, is omitted here because it is rather
lengthy.
Assuming this, it follows that

..d

47 Z(Zn)zz" = = 7z cot mz

)

||M8
NIP“

or replacing z by iz/m,

py 1)ty = {1 — 2 coth )

_1_EeZ+eZ

2 2é —e7 %
_1l_zd4d

2 28 —~1

1 z[ 2 }
=== 1

2 2e2z—1+
_1__z _z

2 ¥ —1

Finally, replacing z by 2/2, and transposing,

“8) e —1 2 & @ )2"

So, if we define Bernoulli’s numbers B, (n = 1,2,...) by

(49)

:lu
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we see that
By=1
B, = —%
(50) Bynr1 =0 (n=1,2,3,...)
2n)
By, = (—=1)"*1(2n !«—‘2
o = (=120 S
On the other hand, from (49),
Gl z=e Y 2B, -3 2
n=0 n! n=0n!

n=0n! z=0n n=0N
©  Ln n
© z'nj'
—'nz() ! \

(n=1,2,

O (e (2

3,...).

Jo..)

§4.2

Comparing the coefficients of like powers of z on both sides of (51), we
see that Bernoulli’s numbers can be calculated from the recurrence relation

(52) (S)Bo + (’1’)31 + (;)32 + 4 (n " 1)3,,_1 =0

=0,B; =

(n=2,3,...).
The first few are found, in this way, to be
(53)
By=1,Bj=—+ B,=1 B,=0,B,=——,B
0 s ~1 23 2 65 3 > 4 30, 5
etc. Using (50), we have also,
2 4 6
DN="0 W=, (6)=-,---
{2 S {4 % ¢(6) 945

and so on, which are far from obvious, directly from (45).

Next we define the function [x], the greatest integer contained in z, e.g.,
[2] = 2,[3.165] = 3,[.71] = 0, etc. Thenz — [x]is the fractional part of =
and always lies between 0 and 1. Finally, the function = — 2] — % lies,
for each z, between —% and § and is easily seen from its graph (which the
reader should sketch for himself) to be a periodic function of z, of period 1.
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Now, let f(z) be a given function which is continuously differentiable for
positive . Then

[(e-ta-Yr@a="5 " (s~ a1~ Yree

y=1vy

=”zlfvv+1 (x—v——)f(x)dx

v=1
- z {f of () de — ( + 5) (o + 1) —f(v))}

- :Ei {[xf(x)]:‘fl — fvvﬂf(z) dz — (v + %)(f(” +1) —f(ﬁ’))}
= ”g {(,, + D+ 1) —of ()

- fvmf(x) dz — (v + %)f(v +1)+ (v + %)f(v)}
i {lf(v + D+ 80— fvwlf(z) dx}

O+ +fB+fQ+ -+ ) + f(n— 1)}—J;nf(w)dx

NI= N = ¢

O +26Q+2C)+ -+ 2f(n — D +f(m)} — _[nf(x) dz

= §=:1f(v) - 3f(1) — 3f(m) — J;nf(x) de.
Transposing, we have shown

Theorem 1.t Let f(x) be continuously differentiable on the interval [1, n].
Then

9 350 =] 1@ da+ 20w + 50

+ £ (z — [x]——) 7() da.

This is the first form of the Euler-Maclaurin sum formula. As an example
of its application, take f(x) = 1/x in (54), then

o 1=l - [ -m-)%

g " 1\ dz
~1 +—+——f (-— ——)—.
ogntot+ oL F-lE-3) 5

1 Euler [1], MacLaurin [1].
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The integral onlthe right is o(1) as # — oo, since (x — [x] — %) isless than }
in absolute vgl , and therefore

// n
2
v=1

Actually we can say more about this sum because we can write

= log n + O(1) (n — o0).

< =

z1 1 1 « 1) d=
-=lo +—+———f (z—x——)—
z'u gn 2 2n 1 (=] 2/ 2?

v=1
® l)dx
z—|z]| —=)—
+ -[z ( [=] 2/ x?
and define the constant (Euler’s constant)

© il ey

xz

= lim {1+1+---+1—logn}
n—w 2 n
= 05772 -
Then

(57 1+%+§+"'+l=logn+y+o(1) (n — o)
n

which is as far as we can go at this stage.

To refine Theorem 1 further, we would like to integrate by parts, differ-
entiating f(x) repeatedly, and integrating (x — [x] — }). To do this, we
need first a reasonable choice for the indefinite integrals of (x — [x] — ).

Let us recall that the Fourier series

< Sin 2nmx

(58) P)= -3 ——
n=1 nw
converges to  — % in the interval (0, 1). Since obviously P,(x) is periodic
with period one, it must represent x — [z] — 4 for every nonintegral value
of x. Therefore one reasonable choice of a function whose derivative is
x—[z] —%is

< 2cos 2nmx
59 Py(x) = -
(59) 2(%) ”gl Oy
which is also periodic, of period one, and actually continuous everywhere,
since its Fourier series converges absolutely and uniformly on any finite
interval, in contrast to (58). On (0, 1), Py(2) = 2%/2 — z/2 + £,. In general,
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if we define

® 2 cos 2nmx
60 P — _1 k+1
(60) w(®) = (—1) ngl (2nm)®
(61) Py s 4(%) = (—1)F1 z 2 sin 2nmx

n=1 (2n77)2k+1
fork =1, 2,...,thenthese are all continuous periodic functions of period
one satisfying

(62) '1,'+1(x) = 'r(x) (r = 15 25 . )
(63) Py(0) = (—1y** Z

(2n7'r 2r
2 31

= (_1)"“"1 (277.)27‘ ~ 21'

2
— 1'r+1 ¥
(-1 (2)2,<)
B,,

T )'
Thus armed, we take the integral on the right side of (54) and integrate
by parts twice:

flnPl(z)f '(2) de = [f'(@)Pyx) ]} —flan(x)f "(x) de

=P, (2) = r=1,2..).

=/f'(n) % =) % — [P2)f (@) +LnPs(w)f (%) dx

- % (F(n) — 1'(1) +f”P3(x)f'"(x) dz.
1 1

This process may be repeated as many times as f(x) is differentiable, the
result being the extended form of the Euler-MacLaurin sum formula,
which we state as

Theorem 2. Let f(x) be 2k + 1 times continuously differentiable in [1, nl.
Then

6 370)=] 7@ dx +100) + 00
+ 227w — £10) + 220 — 7

e B2k (2% —1) (2k~1)
o R ) — )

+f P2k+1(x)f(2k+1)(x) dz.
1
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1t should be remarked that (64) is not in itself an asymptotic expansion, an
infinite series, or indeed anything but an identity which is useful for produc-
ing asymptotic expansions if and only if the remainder term

(65) Py(n) =£nP2k+1(x)f(2k+1)(x) dx

can be conveniently estimated. Some applications follow.

4.3 STIRLING’S FORMULA

We are interested here in an asymptotic expansion for n! when # is large.

If we take
Jf@) =logz
the left side of (64) is
(66) >logv=1log [ »
v=1 v=1
= log n!

On the right side we have

b 1 B,(1 B,(2
log z d Zlo ——3(—— ].) +—4(———2)
J;Og x+2 gn+2! n 3

41
B, (4! ) By ((2k 2)! )
)+ M= A 2k —2)!
+ 6!\n° + QN 2t = ( )
" dz
+ (2k)!J; P2k+1(x);2k_+I
1) B, 1 B, B
= =11 — -1+ =-4 ——
("+2 ogn = =D+ st e
+ e+ sz 1 _ ﬁ — &. ..... __&7‘__
Qk)Q2k — )n®*t 1.2 3-4 k)(2k — 1)

dz d
+(2k>!f Powis(®) =53 — [P weia(®)

1f we define the constant

By By . Bo

67) A=1— — e S
1-2 3-4 T @k)k - 1)

+ (2k)! f P2k+1(z) T

then we have

(68) logn!=(n+;) By 1, B 1 .

1- 2 3:-4n3

1 ® dx
) 1 - (2k)!.[1 Py 11() L

B2k
+ (k)(2k — 1
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Next, we claim that 1, is independent of &, for (68) shows clearly that
Ay =1im{logn! - (n + %) logn + n}

and the right-hand side has nothing to do with k. We will show in a later
section of this chapter that actually

Zk=log\/f7—r

and will accept this, for the moment, without proof. Finally, in the remain-
ing integral in (68), substitute x = ny. Then

© dz | I dy
P r)—— | = —f P ny) —=
‘L ae+1(%) S nZ ) a+1(nY) Iz
< const.j“G dy __ const.

- n27c 1 y2 n2k

where we have used only the fact that since Py, (%) is continuous and
periodic, it is uniformly bounded, in absolute value, by some fixed constant
(depending on k). Therefore, if k is fixed, the remainder in (68) is
O(n2)(n — o), and thus for every fixed k it is true that

(69)

logn! = (n +1) logn —n + log\/2?+—Bil
2 1-2n
By 1 Bor L ~ 2k

— 44 o > O

tiaw 2k — i T O (=)

which is the complete asymptotic expansion for log n!. We may say that
(70) log n! ~ (n+%) logn — n + log /27

< By, 1

+2

=12k — 1)(2k) %2
though the series converges for no fixed value of ».
Bearing in mind the result of exercise 2, since by (69) we surely have

(n — )

(71) logn! = (n+%) logn—n+log\/2—7r+o(1) (n — o0)
we may take exponentials and deduce that \
(72) nl~.2mn (-’3) (n — o0)

e

which is Stirling’s formula. Notice how much less informative (72) is than
(69).
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4.4 SUMS OF POWERS

Let p be a fixed positive integer. We wish to investigate the rate of growth
Of n
(73) 2y =17 4224 -+ 4 n”
as n— co. T

Suppose we write f(x) = 2? in the Euler-MacLaurin sum formula. In
this case we get an unexpected bonus because all derivatives of f(x) of order
higher than the pth vanish identically, and therefore the expansion termi-
nates. What we have then is an evaluation of the sum (73) in closed form,
in descending powers of n, the coefficients involving Bernoulli numbers.

Because of the derivatives evaluated at x = 1 in the sum formula, it is
easier to work with the function f(x) = (x — 1)?. Furthermore, for reasons
of symmetry, we will insert the Bernoulli numbers with odd subscripts, even
though they are zero. We find then,

S p— | 1yo 1. By
v2=:1(v_1) —J;(z 1) dx+2(n 1) +2!p(n -t
+%p(p—1)(n—1)”'2+"-

(n— 1Pt 1 B,
=) L lhi— 14 22
a1l 2TV

+ 2 pp = D — 1P

1
p+1

p(n — 1)°7*

o =14 2 Ly
+ 2264 np 71 4+
_— :(n — (p'; 1)%(:: — 1y

r+1
(3 e

n=1
=
v=1
Now replace n — 1 by n, and transpose the term n? from the left side of the
equation to the right. Then

74 1”"+2+---+(n—1)
= 1 p+1 (p + 1) » (P + 1) »-1 .. }
__.p+1=n + |77 B+ |5 ) B+
One more remark is necessary concerning (74). We stated previously
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that the expansion (64) terminates because all derivatives higher than the
pth are zero. Even more is true, however, for the integral in (64) even
vanishes if f #*+1)(z) is a nonzero constant. To see this, observe that the
integral is over n full periods of the periodic function Py, (%), whereas
from the Fourier series (61), it is evident that the integral over any full
period is zero. From this observation it follows that the expansion (74)
is to be terminated not at the constant term but at the last term containing a
positive power of n. In other words,

D
(75) 1”+2“’+---+(n—1>“’='Jlrlz(p:rl)an"’“‘".
P v=0
The first few of these formulas give
2
(76) 1+2+3+---+n="-2—+g
3 2
(77) 24224324 pn2=2 4040
32 6
(78) BaP 4P =l Byl
4 2 4
4, nd . s o0t n n
(79) P42+ 3+t =2t o T

Next we consider the sums of nonintegral powers of the integers, where
the series no longer terminates. Taking f(x) = x~* in (64), we find

(80) zv-5=fx-5dx+1(1+n—5)+§2(s— s)
v=1 1 ! n”l

4 +%(s+2k—2)(1_ 1 )
n

2k 2k — 1 st+er—1
s + 2k) | ™ Pya(2) dx
— Qk + D! (2k n l)fl ——:S+2k+1

_ oy a2k =2)
{s—1+ Y (1)+ +2k 2k —1

2k Py () |, |
— 2k 4+ 1) (S + )f Posal®)
( + ) 2k +] xs+2k+1 J

1 1 Bg(s) 1
+— == -
(1=t 2n° 2\1/n*!

_@(s-kzk—z) 1

2k\ 2k —1 /[peteel
s + 2k [® Pypiq(2) da
+ @it by (31 [ P e

where k is taken large enough so that the integrals converge.
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In this last equation the expression in braces is independent of » and
apparently depends on k. However, suppose s is any complex number
satisfying Res > 1. Keeping s fixed, we can make » — co and all terms
involving » on the right side approach zero. Hence the expression in braces
must be equal to

(81) )= »* (Res> 1)
v=1
where {(s) is the {-function of Riemann. We have previously encountered
this function evaluated at s = 2,4, 6, . .. in equation (45). Hence if we
regard {(s) as a known function, equation (80) takes the form
z l B 1
82 =)+ —+—— —2( )
( ) \Zl g() ( ) 2 1 nS+1
. ng(s+2k—2 1
- 2k —1 /pttEl
s + 2k Py 1(2) dx
+ @k + D! (2k + 1)fn :’;:2’“1 ’

On the other hand, we notice thatalthough the series in (81) fails to converge
when Re s = 1, the original quantity in braces in (80) represents an analytic
function of s for every value of s except s = 1. Therefore the relation

1 Bz(s) B2k<s+2k—2)
83 S T
@) =5t W\ 22— 1
s+ 2k} |*® P x)d
—(2k+1)!(2k+1)£%21—x (k> —}Res).

furnishes an analytic continuation of {(s) throughout the plane, aside from
the simple pole at s = 1. With this understanding, equation (82) remains
valid for all s #= 1. For example, if s = —~1,

»E = %n% + %‘n% + {(—H + o(1) (n — )

M=

(84)

v=1
while for s = §,

(85) Sy =2 i) o) (1 o)

Generally one sees that the term involving the {-function appears between
the last ascending power of # and the first descending power.

4.5 THE FUNCTIONAL EQUATION OF ((s)

The {-function of Riemann satisfies a remarkable functional equation
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which, aside from its considerable intrinsic mathematical importance, can
be of value in identifying some of the constants which occur in asymptotic
expansions.

First, taking k = 0 in (83) gives

1 1 ® Py(x) dx
86 §)= —0 + = — sf .
(86) € s—1 2 1z
This relation is obviously valid if Re s > 0, since the integral converges
absolutely for such values of s. We claim that the integral actually con-
verges if only Re s > —1, for

A 4 A
Px)dx _ Pyx) Py(x) dx
_[ I +G6+D 1zt
and making 4 — co we see that the claim is correct. Now if Re s < 0, we
have
ly—[z]—1% 1 1

87 sf ol T gy = — = —
¢7) 0 z* ¥t 2 s—-1

by a trivial calculation. Hence if —1 << Res < 0, (86) and (87) hold
simultaneously, and if we subtract (87) from (86),

(88) U(s) = —sf: P2y i <Res<o.

$s+1
Substituting (58) in (88) and integrating term-by-term,
® dx & sin2nnx
Us)=s f — > S cnme
0 Z n=1 nw

_Si 1 °°sin2n71':z:d:C
noinmdo st

s I ® sin y dy
;(277') {nzln 1}f s+1

oy

=3 a0 — s)f sin y dy
T 0 Yy

=S m)a — s){ —sin 2 l"(—s)}
T 2
1

= =@yl — T — s) sin 2Z.

T 2
The justification of termwise integration is not to be found in uniform con-
vergence, since the series involved does not converge uniformly on every
finite interval. Instead, one uses the fact that the series converges “bound-
edly,” i.e., the partial sums are uniformly bounded. For a proof of the
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sufficiency of bounded convergence for the interchange of integration and
summation, the reader is referred to any text in the theory of functions of a
real variable.

The evaluation

f ? sin y:fy = —sinZ(—s) (Res> —1)
y 2

results from a suitable deformation of the contour in equation (122) of
Chapter 5.

Theorem 3. The {-function of Riemann satisfies the functional equation
(89) {(s) = 2°7*Lsin %T Tl — )1 — s).

We remark that although (89) was proved only for —1 < Res < 0, it
continues to hold throughout the plane except at s = 1, by the principle of
the permanence of functional equations, for both sides are analytic except
ats = L.

The principal importance of (89) from our immediate point of view is
that it permits us to express, for example, {(—$£) in terms of () and known
functions. Thus, whereas {(—%) itself has only rather complicated integral
representations, {(%) is readily accessible to calculation from (81), the series
converging at quite a satisfactory rate.

To illustrate these considerations we ask for the asymptotic rate of growth
of the numbers

(90) VYo =112233 .. p

for large n. Since

(€2)) logy, =3 vlogv
v=1

we take f(x) = z log z in (64), with the result that

log v, =.[ zlog z dz + ~ log n + By log n —J.vPs(x)ﬂ
1 2 2! 1 x?

2 2 ©
_nlogn _n +-1-+%nlogn+llogn—f Pa(x)-de
4 12 1 z*

2 4
@ d
[
ntlogn n*  nlogn 1 1 f‘”P(x)dz
_nlogn no nlogn 1, 1 _ [ Pyx)dz
2 4t TRttt T

+ o(1) (n — ).
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Taking exponentials,

(92) Yo~ nn2/2+n/2+ U e*(nz—l)/'l exp : f Pa(x) dx} (n > OO)

and we would like to evaluate the argument of the exponential in some
more reasonable form.
Now with &k = 1, (83) reads

03 L) =t m s+ D 2)f e
Diﬂerentiating, and putting s = —1, there results

Y . 1
(94) f Py L = =1y + £,

1 x 6
and (92) is
95 ~ g2 n/2+ 2 (___ o 1) .
(95) ya~n exp 4+12 &= (n — 0)

which is somewhat more presentable than (92). However, the functional
equation, after differentiation, relates £’(—1) to {’(2). Indeed logarithmic
differentiation of (89) gives

v=n _ _T'® _ b
= log 27 0 (@ -

From (93) with s = —1, we find '(—1) = — 3, whereas equation (127)
of Chapter 5 gives the value

I"(2)
= -y,
o 7
where y is Euler’s constant. Hence
, 1 1 X logn
96 (=) = ——={log2n — 1 + 9y} — — —=.
(96) O(=1) = — 5 {log2n =532 s

Putting this value in (95) we get, finally, the interesting expansion
97y 112238 ... p"~

(277_)%2{112%3%4%6 - }1/2#2 e~ WA Y1Zyn 2+ nf2+ Ve (n — o0).
4.6 THE METHOD OF LAPLACE FOR INTEGRALS

From the asymptotic expansion of sums we turn next to certain kinds of
integrals which lend themselves readily to analysis. We consider first the
behavior of

98) G() =f°° £y
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when z is large. The content of the following theorem is, in essence, that
the major contribution to the integral arises from points near the maximum
of the function A(y).

Theorem 4.7  Suppose
(a) h(y) is real valued and continuous.
(b) h(0) = 0 and h(y) < 0 for y # 0.
(c) there are numbers « > f such that h(y) < —o when |y| = .
(d) there is a neighborhood of y = 0 in which h(y) is twice differentiable
and h"(0) < 0.
(€) the integral in (98) is finite for each fixed x > 0.
Then

99) G(=) ~{ Zul

— xh"(0)

Lemma. If € > 0 is given, and if A(y) satisfies the hypotheses of the
theorem, then there is a > O such that

}% (z — ).

2
(100) l h(y) — %h"«»[ < e,
for all |y| < 6.
Proof of Lemma. Let
2
w(y) = h(y) — % h"(0).

Then 9(0) = v'(0) = ¢"(0) = 0, since A'(0) = 0 by (b). Hence
¥y 0 )

that is, '(y) = o(y) (y — 0). By the mean value theorem,

W) — ) =yp'By) O<O<])
= yo(by)

=0y (y—0).
Therefore

i M) — @) _

2
¥—0 y2

which is exactly what the lemma asserts.
Proof of Theorem 4.

- Let 6 > O be given. Then there is a number p such that /(y) < — p when
—w<y=< —dord=y< oo To see this, suppose first that 6 > §, §

1 Laplace [1].
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being defined by hypothesis (c). Then take p = «. If < §, #(y) is con-
tinous on the interval § < y = f and therefore attains its maximum value
at a point £ of that interval. Then the number

p = max (i), )

will obviously do (see figure 4.1 below).
For the given value of 6, we have

(101) f e:ch(v) dy +f emh(y) dy =f eh('y)e(z—l)h(y) dy
L)

— o0 -0

= o]
+f eh(y)e(:c—-l)h(y) dy
)

-6 ©
= e—p(:c—l)f eh(y) dy + e—p(z—-l)f eh(y) dy
6

— o0

< e—p(a:—l).[oo eh('y) dy
Next, let € > 0 be given. Choose ¢ to be the number whose existence
was proved in the lemma, so that (100) holds in the interval —d < y < 4.

Then the contribution of the integral over —4, § can be estimated as follows.
First, by (100)

2 2
%(h"(O) —2) = h(y) < ?’;(h"«» + 2)

on (—46, 6). Therefore
8 5

(102) f exp [$2y*(h"(0) — 2¢)] dy sf & dy
-9 —

5
gf exp [$2y*(h"(0) + 2¢] dy.
-5

Next we claim that in each of these integrals the limits —4J, 6 may be re-
placed by — o, co with an error which is O(e**) as  — oo, where k is a

8 3
— —

B

—

h(y)

Figure 4.1
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certain constant >0. Indeed, for the middle integral in (102),

L=l
=f_°°w+ 0 (x— )

according to (101). The other two integrals in (102) can be similarly
handled. Hence from (102) we deduce that

J. exp [3xy%(h"(0) — 2¢)] dy + O(e %) <f M gy

< f_w exp [32y3(h"(0) + 2&)] dy + O(e™*®)  (z— 0)

The first and third integrals are easily evaluated in closed form, the result
being that

2m o =kt ® Th(y)
) + 23 TO€TIS) T

< L}%‘F O(e™")  (z— o)
[—h"(0) — 2¢]= '
Hence for all sufficiently large =,
27 % 27 %
{[—h”(O) + 36]2:} < 6@ < {[—h”(O) - 36]:1:} ’
or
. 1 —zh"(0)% 1
U9 A —aw©) ~ { 2 } €@ < )

Since & was arbitrary, (103) is just the definition of the assertion
—_ 4 l/é
lim {—M} G(x) = 1
x— o 27

which was to be shown.
To illustrate the use of Theorem 4, we return to Stirling’s formula for a!,
this time writing

o
n! =f e " dt.
0

Replacing » by the continuous variable z,

o0

2! =Tz +1) =f e dt.

0
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The maximum value of the integrand occurs at ¢ = z. Hence to reduce this
to the standard case of Theorem 4, we make the substitution ¢t = z(y + 1),
getting
(104) zl = z””e""f exp {z[log(! + ¥) — ¥]} dy,

1

which is of the form (98), where
(105) hy) =log(1 +y) —y

satisfies all the conditions (a)—(¢) of the theorem. The fact that the integra-
tion extends only over (—1, o), instead of (— o0, c0), is quite irrelevant
from the point of view of asymptotic behavior, for only the neighborhood of
y = Ois important. (This assertion can easily be made rigorous, along the

lines of the proof of the theorem.) Therefore, from (99), since 4"(0) = —1,
o x
(106) ! =D(z + 1)~ 27z (f) (z — o),
e

which is again Stirling’s formula. We have here the rigorous proof, which
was promised earlier, for the evaluation of the constant 4, occurring in
(68), since any other value would produce an asymptotic expansion not
agreeing with (106). It is interesting to observe that the Euler-Maclaurin
formula is often capable of producing complete asymptotic expansions
except that certain constants occur in obscure forms. Any independent
method, such as the above, for producing only one term in that expansion
will often lead to an evaluation of the constant in question by comparison
of the expansions and thereby to a complete expansion in usable form.

Entirely trivial modifications of the proof of Theorem 4 show that under
the hypotheses (a)-(e),

27

%
—xh”(O)} (&= <),

awn [ gweay~ 50|

if g(y) is continuous in a neighborhood of the origin and g(0) # 0, the idea
being that since only the point ¥ = 0 matters, g(y) might as well be g(0)
everywhere.

4.7 THE METHOD OF STATIONARY PHASE

We turn next to oscillatory integrals of the type

b
(108) G= f e dy

a
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where h(y) is real. In this case the main theorem, below, states that the
principal contribution to the integral comes from the points at which the
“phase” h(y) is stationary, i.e., where A'(y) = 0, or, if no such points exist,
from the endpoints (a, 5) of the interval.

Lemma 1 (Abel’s lemma). Let f(x) = 0 be bounded, and nonincreasing on
(a, b). Then

@ = [ @8 dr = M@

where m, M are the lower and upper bounds for

6 = st dy

on (a, b).
Proof.
ff(z)g(x) dz =f 1(2) dG(z)
— F(B)G(b) —fbc@c) i ().
Thus, ‘

m0) —f:df(x)} < ff(z)g(.z) 4z = Mis) —f:df(x)}

or

m (@ < | @) d= = Mf(a)

as required.

Lemma 2 (Second Mean Value Theorem). Let f(x) = 0 be bounded and
nonincreasing on (a, ). Then there is a number &, a < & < b such that

& b
(109) f (a)f g(x) dz =ff (2)g() dz.

Proof. If f(x) = 0, this is obvious. Otherwise, since f(z) is nonincreasing,
f(a) > 0. By the previous lemma,

1
f(a)

z
lies between the greatest and least values of f gW) dy = G(z). But G(z)
a

(110) fbf(w)g(x) dx

is continuous and therefore takes all values between m and M. In particular
it takes the value (110) at some point &.
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Lemma 3. Let h(x) be differentiable on (a, b), and suppose k'(z) is mono-
tonic, with either 4'(¥) = m > Q0 or A'(x) < —m < 0in (q, b). Then

b
f eih(z/) dy 4

= —.
m
Proof. Suppose, for concreteness, that 4'(z) is positive and nondecreasing,
By Lemma 2,

fbcos h(y) dy =fb k' (y) cos h(y) dy

(111)

a h'(y)
I __sin A(§) — sin h(a)
=@ f h'(y) cos h(y) dy = )
and
[ 2
cos h(y)dy | < —.
a m

Applying the same argument to the imaginary part proves the lemma. The
other cases are handled similarly.
A trivial generalization of Lemma 3 is

Lemma 4. Let g(x), h(x) be differentiable on (a, b), with g(x)/h’(x) mono-
tonic, and suppose that [g()/h' ()| = m > 0.
Then

b . 4
f g(y)ezh(y) dy\ < —.
a m

The proof is the same as that of Lemma 3.

Theorem 5. (The Principle of Stationary Phase.) Let h(y) be real and three
times continuously differentiable on (a, b). Let & be a point of (a, b) at which
h'(§) = 0. Further suppose that either

(112) 0<y=< Wy = My
or
(13) O<y=s Wy < My

throughout (a, b). Finally, let

W'y = My, a=sy=h.
Then

+4(m/4) +in(E)

b ~ 1
(14) [ ay = g2 T 4 0ty

Vin)l
t 0(|h’za)|) + 0(]h’zb)|)




134 MATHEMATICS FOR THE PHYSICAL SCIENCES §4.7

the choice of the plus or minus sign depending on whether (112) or (113)
respectively, holds.

Before proceeding to the proof, notice that the O symbols are used without
any comment about a variable tending to infinity. The meaning of (114) is
that the difference between the left-hand side and the first term on the right
can be split into three parts, the first of which is smaller than some absolute
constant times y~*y,’%, etc. These terms are of importance when A(y)
depends on certain parameters and one wishes to know when the first term
on the right correctly gives the behavior of the integral when the parameters
are large.

Proof. Write

f 2h(y) dy _f zh(’y) dy +f s+o 'Lh(’y) dy +f ez‘h(v) dy
a E~6 +4

wherea + 6 < £ < b — 6. By Lemma 3,

b . 1 B!
115 1h(’y)d —_
4 fme ’ {Ih(§+6)l IU W) dy ”

-

and in the same way,
J‘f—ﬁeih(u) dy = 0(i)
a (5)/

Next, as in the proof of Laplace’s theorem,

E+6 §+o
[ e ay = [ exp i) e + v — o + Lo - 7wy
I L §-9¢ 2

+ é(y — &Ph"(E + Oy — E))]} dy
_ ei"‘f’JZ:sexp {zB (v — E)Zh”(f)]}
X exp lé (y — ©n"[& + (y — 5)]} dy
. £+ i
= ™ L o E (y — E)Zh"(f)}{l + O[(y — &°n]} dy

' £+6 ;
= o) f exp [12 (y — E)zh”(é)} dy + O(5*y).
&=-6
Now let

Lo oo
2(3/ &°h"(&)
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in the integral, and suppose 4“(§) > 0. Then for the integral we have
£+o i opn )
e [5 v — e ®| ay
(21207 (8) _
= \/Z/h”(é)f e (duf\/u)
0

2/h”(§)[ fo  (dufJu) + 0(5 7 )} (Lemma 4)
— Vo @ e+ o(L).

oy
Hence, combining these results,

(116) f 69 3y — [ 2n]H(E) exp {i[h(f) + ’ﬂ] + o(é) + 0(8%,).

We choose 6 now, if possible, so that these last two terms are of the same
order, i.e., so that

1
— = §Yy..
5y Y1

This means that we take 6 = (yy,)™*, if possible, in which case (116)
becomes

(117) f "m0 gy — 2K E) exp {i[h(§) + ’ﬂ} + 00 %y,

However, we assumed at the outset thata + 6 < £ < b — 4, which might
not be true for the particular § just chosen. In other words, £ might be too
close to an endpoint of the interval. If, for instance, b — § < & < b, then
we have actually integrated beyond the right end of the interval in (115) and
have thereby committed an error of

ei”‘f’fﬁex;) B iy — 5)2}'”(5)} dy = Ol(b——lfﬁ}

~liten

the first equality arising from Lemma 3 and the second by the same argu-
ment as the one appearing on the right side of (115). If the difficulty appears
at the other endpoint, @, the argument is identical, and the theorem is
proved.

As an example, suppose A(y) = t@(y), where @(y) is independent of ¢, and
t is a parameter. If ¢(y) satisfies the hypotheses required of A(y) in the



136 MATHEMATICS FOR THE PHYSICAL SCIENCES §4.7

theorem, then, as ¢ — oo, the first term in (114) is of order %, the next
being O(t~%), and each of the last two being O(t™). Hence, in this case,

(118) beitq)(y) dy = \/—2—77_6)([) (:t(i”/4) + lt¢(f)) + O(t—-%)
‘[‘ Vi |g'(8))

(t - )

the formula being valid if ¢'(£) = 0 at an interior point, &, of (@, b). As
before, if g(y) is continuous at £, we have also

(119) f )6 dy = [Tmg(e) SRLEUTD + 1O | -3
@ Vilg'@)
(t — )
under the same conditions on ¢(y), if g(§) #~ 0.

4.8 RECURRENCE RELATIONS

It often happens that a sequence of numbers a,, 4y, @5, . . . , is given, not
explicitly, but instead by a recurrence relation with given initial values. The
problem of determining the rate of growth of such a sequence can be quite
troublesome. We give here a method which works on a reasonably wide
class of such problems.

To illustrate the ideas involved, consider Fibonacci’s sequence

(120) pio = Auq + @, =012,...)
ay=a; = 1.
This sequence has the appearance
1,1,2,3,5,8,13,21, 34, 55,89, .. ..
and we wish to estimate the size of the nth member a,. For the a, defined
in (120), consider the function
(121) @) =73
Then

n=0 N!

SO+I@=3 Ly 5
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Solving the differential equation with constant coefficients,

(122) @) =1+
with
SO =10)=1
one finds
YL 1+./5
(123) f@e = 2(1 + \/3) exp ( 5 z)

#3li= g e (55

Matching coeflicients between (121) and (123), we find an explicit closed
expression for the Fibonacci numbers

and, of course, the asymptotic relation

T\n+1
(125) g, ~ i_(l + \/5) (n = oo).
J5V 2
To justify the formal process leading from (121) to (122) it is enough to
observe that the final series obtained actually has a nonzero radius of
convergence, and we shall henceforth ignore this question. The function
f(®) in (123) is called the generating function of the sequence (120).
More generally, consider the recurrence

(126) Anrp = Cnip1 + Collyt p—o +o ok Cpln
with
127) G, ys - ., A,y given.

With the same form of the generating function (121) as before, we find this
time
(128) @) =, fPVE) + - + ¢, f(2)
the values f(0), £7(0), . . ., f*~1(0) being given.

Since (128) is again a linear differential equation with constant co-
efficients, the solution will give f(z) as a linear combination of terms of the

form (ag + oz + -+ * * + a,, _12™ 1)e”, where the r; run through the roots
of the equation
(129) P o= clrp—l + 02,47—2 +-+c,

of degree p, and m; is the multiplicity of the root r;. Assuming these roots
to have been found, the solution of the recurrence (126) will be of the form

130) a, =Dy +ogn+ -+ oy, ™ > (n=0,1,...)
7
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where the sum is extended over the distinct roots of (129) and the v, are
constants determined from the initial data.

We now state a number of results which are all obvious by inspection of
(130).

Theorem 6. If all the roots of (129) lie in the circle |z| < R, then for every
e > 0 we have

(131) a, = O((R + &)") (n— 0).

Theorem 7. In order that a, = o(1) (n — o) for every set of initial values
(127), it is necessary and sufficient that all the roots of (129) lie in the interior
of the unit circle.

Theorem 8. In order that a, = O(1) (n — o) for every set of initial values
(127), it is necessary and sufficient that all the roots of (129) lie in |z| < 1 and
that all roots of modulus unity be simple.

The theorems.of the preceding chapter are of obvious utility in deciding
such questions.

If the coefficients ¢y, ¢,, . . . , ¢, are not constant, i.e., if they depend on #,
the differential equation satisfied by f(z) can still be found, but its co-
efficients will depend on z. Hence a solution in closed form may not be
possible.

Let us introduce the notation

S@ > a,

to mean that f(z) is related to the constants a,, by means of (121). Then

if(z)‘_’ ant1

dz
(132)

(;jiz)'}(z)H Gt

and

na,o ( ;i) @

n*a, <> (z %)kf(z)
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Hence if P(n) is a polynomial in # with constant coefficients,
d
P Plz— .
(e, (s 5) 1)
Combining these, we see that if the a,, satisfy the recurrence

(133) @i =Pi(Mayiq + Po(M)ayyy s+ -+ + Py(n)a, (r=0,1,...)

the generating function of the a,, satisfies the differential equation

(134) f(k)(z) — Pl(z diz)f(k—l)(z) + Pz(z %)f(k—m(z) 4 -

+r(:2) 0

if the P(n) are polynomials in » with constant coefficients.
An example of a different kind results from noticing that

(135) SR a,

implies

(136) e (2) s S (’:) ae™™"
v=0

which is often of assistance in solving recurrence relations involving bino-
mial coefficients.

For instance, we may work backward from (52) to (49), for if f(z) is the
generating function of the B,, which satisfy (52), then

/@) B,
e?(@«»éi(Z)Bv

nil(’v‘)Bv 0 (=2

FORSOTE N =1

LO (n = 0)

which is to say that
() — f() =
and (49) follows.
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York, 1958.
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This book is highly recommended to the serious worker in all branches of the
*““mathematical sciences.” In particular, the most powerful method for dealing with
integrals of a general kind, the saddle-point method, was ignored in these pages largely
because of the definitive discussion of the method in the above reference.

The asymptotic expansion of delicately oscillating sums and integrals has been
studied most extensively by the analytic number theorists. When confronted with such
problems, one should, perhaps, turn first to

2. E. C. Titchmarsh, The Theory of the Riemann Zeta Function, Oxford University

Press, New York, 1951,
on which our discussion of the elusive principle of stationary phase was based.

For an abbreviated discussion, which because of its large bibliography is quite
valuable, see

3. A. Erdélyi, Asymptotic Expansions, Dover Publications, New York, 1956.

Finally, a recent development of great generality and importance is contained in the
paper of W. K. Hayman [1] listed in the Journal References at the end of this book.
This is a method of finding the asymptotic behavior of numbers which are the coefficients
of a rather wide class of analytic functions. Several kinds of problems in asymptotics
which are superficially unrelated to such functions can nonetheless be transformed into
problems of the type considered by Hayman, and his results and methods are readily
accessible to the reader who has, for example, carefully studied the material in this
chapter.

Exercises
1. Of the following assertions, some are true and some false. Which?

(@ V22 +1~z (x> )
() sinz = O(=*) (x —0)

z dy
© f cos y2 i OQogz) (z — )
1

y—

Ve

2. Give an example which shows that
f@® ~gx) (x> o)

does not necessarily imply
el (@) ~~ et®),

Prove that the conclusion does follow if the stronger relation

f@ =g@ +o0(1) (z—> )

holds.
3. Show that if
f@) ~gx) (z— )

then not only does

log f(z) ~ logg(x) (x — o)
but actually

log f(x) = log g(x) + o(1) (x ~ o).
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. Show that

kil z | S
2 —e—,Tz=§Vnw+O(l) (z - )

. The Bessel function J,,(%) is defined by the series

L2 (=D
) ‘LZO ACET
Show that
\/_ 1/7 _%(_e_)n+l
J.(Vn) re W (n — ).

n

. Prove that

_ {nen
By, ~ (=D 4Vpn (—e) (n —> o),

. Find the complete asymptotic series for

1 1
1+§+"‘+"—1 (n—>00)

. For Landau’s numberst

(1-3-5---'(2n—1))2

1-3¢
= 1)2
G, 1+(2)+(2_4)+ + 2.4---2,

show that (use the result of exercise 14)

1
G,,,~;logn (n - o).

. Let0 < 4 < oo and suppose f(») is bounded on [0, 4] and continuous at 4.

If f(A4) # 0, then

A
f " de ~
0
From Bessel’s integral

1 27
Jolx) = P f cos (x sin 6) 49
0

n

+1
—f)  (n~ ).

show that

7 . 3
Jo(x) =A/E cos (’c - 4_1) + O(x—%) (x — ).

For the sequence

T Landau [1].
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(@) Find the generating function f(z).
(b) Show that for every € > 0, and no ¢ < 0, we have

_ 1 n\*
ol ) oo

12. Prove that (135) implies (136) and (132}.
13. If

m
An =f x™ sin x dx
0

then
7r"+2

© -
Ay =————— {1 -1y
" (n+1)(n+2){ +,§1( )(n+3)(n+4)---(n+2v+2)}
which is first convergent evaluation of 4, in closed form, and second an

asymptotic expansion for n — . (Hint. Find the generating function and
remember that sin7 = 1 + cos# = 0).

14, If
I a, ~b, (» »> ©)
II a=0, b,=0 r=12,..)
111 b, = +
r=]1
then

Znav~zb, (n — o).



chapter 5

Ordinary differential

equations

5.1 INTRODUCTION

In this chapter we study some of the properties of the solutions of ordinary
differential equations. The range of possible subject matter is so vast that
we shall not attempt to do more than indicate some of the directions in
which interesting results lie. We assume that the reader has already been
exposed to a variety of special methods of obtaining solutions of equations
of certain types. Our concern rests first of all with the existence and unique-
ness of solutions of first order equations and therefore, by an easy extension,
for equations of arbitrary order. Next we discuss some numerical methods
for solving such equations, one of which, incidentally, will be a by-product
of the existence theorem and its proof.

Finally, a specialization is made to the case of a second order equation
with variable coefficients. With these equations we are primarily interested
in their function-theoretic properties in the complex plane. Application of
some of these results to the higher transcendental functions is then made.

5.2 EQUATIONS OF THE FIRST ORDER

The most general initial value problem of the first order requires the
determination of a function y(x) such that

M) Fz,y,y) =0
and
) f’/(zo) =Y

143
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where F is a given function of its arguments and ¥, is a given number.
Instead of discussing this completely general situation we impose the mild
restriction that (1) can be conveniently solved for y’ in terms of #, ¥, and
therefore we take as our standard case

(3 Y'(x) = f(=, y()
@ Y(x) = Yy

The combination of the differential equation (3) and initial condition (4)
will be called the initial value problem. To say that a certain function y(x)
is a solution of the initial value problem is to say that (4) is true and that
there is a number £ > 0 such that y(z) exists and (3) holds at every point of
the interval [z, 2, + A].

It is possible for an initial value problem to have no solution, one solution,
finitely many different solutions, or infinitely many different solutions. A
problem with no solution is (see exercise 1)

©) vo =" 70
©®) y(0) = 0.
The problem L
- [0 = 4@
y©0) =0

has two solutions, namely y(z) = 0, and y(z) = 2%
Finally, the pathological specimenf
y©0) =0
has infinitely many distinct solutions, for if « and § are arbitrary positive
numbers, the function

0 -z«
&) y(@) = | —(= + p)? z= —f
(x — )? = a

is everywhere continuous, differentiable, and a solution of (8).

In view of these extraordinary possibilities it is obviously of importance
to have criteria which are capable of detecting in advance when there will
be a solution, when it will be unique, and how far to the right of z, it will
continue to be a solution. It should be emphasized at this point that
situations in which several solutions may exist actually occur, with distress-
ing frequency, in physical situations, generally because of the incomplete

1 Bourbaki {1].
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formulation of a problem. The blind use of computing machinery in such
cases can lead only to chaos.

5.3 PICARD’S THEOREM

Theorem 1. Let f(x, y) be a real valued function of the real variables x, y,
defined on an open region R of the x-y plane. Suppose

(@) f(x,y) is a continuous function of x and y on R.

(b) there is a number L such that for any two points (x, y,), (%, ¥5) of R
we have

(10) |f (@, ) — f@ 9l = Ly, — vyl

Then, for any fixed point (g, y,) of R there is a number b > 0 and a
JSunction y(x) such that
1. y'(%) exists and is continuous in |x — x| < b.
2. y'(x) = f(=z, y(x)) for |x — x| < b.
3. y(@%) = Yo
4. y(z) is the only function satisfying c1 — 3 at once.

Before proceeding to the proof, notice first the reappearance of the Lip-
schitz condition (10) which we have already encountered in the theory of
Fourier series. The essential content of Picard’s theorem is that a differential
equation whose right-hand side satisfies a Lipschitz condition in R has a
unique solution in some neighborhood of ,, if (%, ¥,) lies in R. A final
remark is that the proof which follows actually gives an explicit method for
finding the solution, the method being readily adaptable to automatic
calculation.

Proof. First, since Ris open, there is a rectangular neighborhood of (g, ¥,)

(1 St lz—ml=a ly—yl=c

lying entirely in R. Next, since f(x, ¥) is continuous on the compact set S,
it is bounded, say

(12) lfE,l=M  (z,y)inS.
Now let

. c
(13) b = min (a, }\—/I)’

and let S* be the rectangle
(19 S*¥: |lx—ml =0 |y — yl = c.

We will show that this number b has the property stated in the conclusion
of the theorem.
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y

l«—8

le— 2b _Q)L‘/—_S*

<9
™ 2a
“(xg,q)
Rk
Figure 5.1

Let a sequence of functions y4(x), y;(x), ¥x(2), . . . be defined for jx — x| < b
by
(1% Yo(®) = Yo
(16) yn+1(x) = yO + f(t, yn(t)) dt (n = Oa 19 2’ - ‘)'

Our first task is to show that these definitions actually make sense by

proving that the point (2, ¥,(2)) always lies inside the region R where f(x, )

is defined. We show now that, in fact, (¢, y,(¢)) lies always in S*.
Indeed, for |z — z,| < b,

£
% — %ol = f J@t, y,) dt
Zo
=Mz — 2
=< Mb
=c

Inductively, suppose it has been shown that

[Y:(2) — Yol = ¢

for |z — x| = b. Then (z, y,(x)) lies in S*, and therefore | f(z, y(x))| < M,
from which

|9 42(®) — Yol = J:f(t, 1) dt’

SMiz—zg=c

and the proof is complete by induction.
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Therefore the points (z, y,(x)) lie in S* if |r — x| < b, for each
n=20,1,2,..., the functions f(z, y,(x)) are well defined, and (15), (16)
do indeed define an infinite sequence of functions {y,(2)}°_y in [x — z,| < b.

Next, we claim that

_q1 (@ — 2z)"
(1) 192(8) = Yaes@)] = M B2
forn=1,2,....2y < 2 < 2, + b. For,

l91(2) — go(®)| = fzf (. %o(®)) dt‘

= M(z — )
which proves (17) for n = 1. Supposing, as before, that (17) has been
proved forn =1,2,...,k, we have

19 +1(%) — y(®)| =

[ w16 v at

A

L[ 100 = vl at

k-1 (=
< ML f(t— zo)t di
Zo

k!
Lk(x — zFtt

(k+ 1!

and (17) is proved for every n. It follows that the terms of the series

(18) Y(@) = Yo + 2 [9(%) = ¥n-1(%)]
are dominated by the terms of a convergent series of constants, indeed

Yo + i;l[yn(x) — Yua@®]| = |yl + 1Iyn(vc) — Yu-1(7)]

s IMs

Ln—l (1‘ _ xo)"

= |?/0| + Z M
n=1 n!

a0 _ b7L
< Iyl + 3 ML >

M
= [yl + z(e"L — 1.

Therefore the series (18) converges absolutely and uniformly for

To=x=1z,+5b
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to a sum y(x), by the Weierstrass M-test. Since y(z) is the uniform limit of
a sequence of continuous functions, y(x) is itself continuous in

x5+ b

Since the nth partial sum of the telescoping series in (18) is just y,(z), it
follows that
(19) lim y,(%) = y(2)

n—»0

uniformly on [z,, 2, + b].
Next, if € > 0 is given, we can choose #, such that for n = n, we have

19:(=) — (@) = 7

forallzin zy < = < z, + b.
Then, for n = n,,

|f (2, y(®)) — f(2, y(2))| = Lly(2) — y,(2)|

L.E
L

iA

=¢
that is, f(#, y,(2)) — f(z, y(z)) uniformly in [x,, x, + b]. That being so,
we may write

0@ = 10+ | St v(0) at

and take the limit under the integral sign on the right, getting

lim ,(2) = 9(2) = o +lim | f(t, y,(9) dt

n—0 n—00 ¥

=g+ | limfet, y.(0)dt

Zp N>

= vt 16 vt

which is to say that y(x) satisfies the equation

y(®) = 9o +f S y(®) dr.
Hence, clearly, y(z,) = ¥, and by differentiating,
Y'(@) = f(=, y(=))

also, i.e., () is a solution of our initial value problem.
Next, we claim that y(x) is unique, for suppose () is another solution of
our problem,

#(x) = 9y, +fzf(t, #(0) dt.



§5.4 ORDINARY DIFFERENTIAL EQUATIONS 149
Then
19(2) — ypar(2)| = f Lf(t, () — f(t, Yn41(D)] dt

< L[ 196) - .01 .
Taking n = 0, ’
|#(x) — y1(2)| £ Le |z — 2
where ¢ is an upper bound for |§(t) — y,| onz, < t < x, + b. Inductively,
it is.easy to show that for each n,
n+tl
(n+ 1!
< Lﬁl_ prtl
(n+ 1!
= o(1)

(x — xo)n+1

[9(%) — Ypsr(®)] =

as n — oo, which says that
§(=) = lim y,, 45(2) = y(=),

n— 00

completing the proof.

5.4 REMARKS ON PICARD’S THEOREM, WINTNER’S METHOD

First, as an example of the explicit construction of a solution, consider
:y’Cx) = y(2)
y(0) = 1.
Then the Picard iterates y,(z) are defined by

(20)

[yn+1(x) =1 +J\ yn(t) dt (n = 07 13 2: . )
0
Yo(z) =1
and we find easily

nEy=1+z=

2
@ =1+z+=

Y3

2
2! n!

the nature of the convergence being obvious.
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Next, we call attention to the local character of the theorem. It does not
state that a function y(x) exists which everywhere satisfies the differential
equation and the initial data but only that b > 0 exists such that y(x) is the
solution in z, £ = < %, + b. Indeed, consider

{y’(x) = y¥(x)
y(0) =1

which satisfies the conditions of the theorem. The solution y(z) is clearly

2N

22) y(@) = ——
i—=

which is a solution in 0 £ < 1 — 6 (6 > 0) but not in any interval
containing x = 1.

The theorem actually provides an estimate of the size of the number 4 in
explicit form, for, from (13),

b = min (a, —c—)
M
where
(23) M = max |f(z, y)| = M(a, ¢)
(z,y)in 8
and S is any rectangle
(24) S: lx—xlZa ly—yl=c

in which f(z, ) is defined and satisfies the hypotheses of the theorem. Now
we may choose the numbers @ and ¢ in such a way as to get the best (i.e.,
largest) estimate for b, subject only to the restriction that the rectangle S
lies in the region R of the theorem. Hence we have

Corollary 1. Let f(x. y) satisfy the hypothesis of Theorem 1 in the region
R. Let

(25) = max min (a, ¢ )
Sin R M(a, c)

where M(a, c) is given by (23) and S is the rectangle (24). Then a unique
solution of (3), (4) exists in z, < x < 2, + b.

To illustrate the use of this result, let us try to estimate the number b for
(21). Here R is any compact set in the plane, so the rectangle S is arbitrary.
Further

M(a, ¢) = max [y
s

=(1 + ¢)?
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and (25) reads

. c
b = max min (a, ——)
a,c>0 1+ c)?

If a % ¢(1 4 ¢)72, the min can be increased by increasing the smaller one.
Hence the max occurs when a = ¢(1 + ¢)~2 and is equal to the largest
value of ¢(1 + ¢y 2forec = 0, i.e.,

b==
4

is the best estimate we can get directly from Picard’s theorem. Since we
know that a solution actually exists in (0, 1), the estimate is clearly quite
conservative.

Because of the importance, in practice, of being able to estimate the
largest number & directly from the given equation, we proceed now to
develop a more refined estimator than that supplied by Corollary 1. We
need first

Theorem 2. Let f(x,y), g(x, y) be functions satisfying the hypotheses of
Theorem 1. Suppose further

@ |fyl =gy (y)inkR
b) g(x, y) is, for each fixed x, a nondecreasing function of |yl, that is, if
il = |ysl, then g(xy, y,) < g(xy, yo). Lety(w), Y(x) denote the solutions of

{y'(w) = f(z, y(%)) {Y'(w) = g(z, Y(%))
y(0)=0 Y(0)=0
Then, if the point (x, Y(x)) lies in the rectangle
S: 0=z=aq lyl = ¢
so does the point (x, y(z)), and |y(@)| = Y(x).

Proof. Theidea of the theorem is that if you dominate the right-hand side
of an equation suitably, you also dominate the solution.
If we consider the two sets of Picard iterates

yn+1(x) =J‘0zf(t, yn(t)) dt

Y, 4q(2) = fo ﬁg(t, Y.(1)) dt

Yo(2) = Yy(2) = 0
then we claim that for each value of n =0, 1,2, ...

[y(@)] = Y,(2)
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when 0 < z < 4. This is obvious for n = 0. If it has been shown for
n=0,12,...,k, then

| % +1(2)| =

f:f(r, u(0)) dt ‘
< fo |F &, ()| dt
< _[fg(t, y (1)) dt

éf:g(t, Y () dt = Y, ,y(2)

and the theorem is proved by an obvious limiting argument.

Now let f(z, y) be given. A particularly simple choice of a dominating
function g(z, y) would be one which depends only on y, for then we could
solve the dominating equation explicitly by a quadrature. But clearly the
smallest function g(y) which satisfies (a) and (b) of Theorem 2, and depends
on y alone, is

P(y) = max | f(z, s)|

the maximum being taken over the rectangle 0 < z < g, —|y| < s < |y
For this particular ¢(y), an equation which dominates the given equation

¥ = f(z,v), y(0) = 0, is
Y'(x) = ¢(Y(2))

¥(0) = 0

whose solution is given implicitly by

fY(m) dt
—_— = .
o o)

It follows that the point (x, Y(x)) will leave the rectangle 0 < z < a,
Jyl < ¢ when either z > a or
‘dy
o ¢(%)

< b =min (a, fciy—)
o @(¥)

we can be sure that (z, Y(2)), and therefore (z, y(z)) also, lies in this
rectangle. Therefore we have

x >

Hence, if
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Theorem 3.7 If f (%, y) satisfies the hypotheses of Theorem 1 in the rectangle

e — 2l =a, ly—yl=c
and we define

(26) @(y) = max|f(=z, s)over |z — zp| < a, Yo — |yl =s=yo+ Iyl

then there is a unique solution of the equation y’ = f(x, ¥), y(x,) = y,, at least
in the interval
. ¢ dy
27 %= v = x5+ min {a, | —].
o ¢(y)
Returning to the example (21), we find
Ply) =max|s?| Jzl<a 1—lyl=s<1+1
= (1 + Iy
and (27) gives the interval

nggmin(a, ¢ )
c+1

Again, to make this as large as possible we take a = ¢/(c + 1), and there-
fore the solution exists in 0 < z < ¢/(c + 1) forevery ¢ > 0,i.e.,in0 = 2 <
1 — 6 for every 8 > 0, which is best possible. The unusual accuracy of the
estimate in this particular case is, of course, traceable to the fact that the
function f(z, ¥) depends only on ¥.

5.5 NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

When all else fails, and the solution of a certain equation, or system of
equations, must be found, recourse must be had to numerical methods,
which we now discuss. Because of the enormity of the subject (books have
been written on the numerical solution of ordinary differential equations),
we shall attempt here to confine the discussion to some of the fundamental
principles rather than to explore the variety of individual techniques.

We treat the (by now familiar) initial value problem

(28) :y () =f(= )

¥(%0) = %o
and suppose that a preliminary analysis has shown the existence and unigue-
ness of the solution in some interval. Our remarks will, virtually without
exception, carry over to systems

{yil(x) —’=f;(.’l$, yl(x)’ cer yn(z))

yz(xo) = Yo (i =1,2,..., n)
t Wintner [1].
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merely by formally regarding the letters / and y in (28) as n-dimensional
vectors.

We suppose that a number /4 > 0, the mesh spacing, is chosen, and we
choose points z, (n = 0, 1, 2, .. .) with spacing A, starting from =, i.e.,

z, = x, + nh n=01,2,..).

Our objective now is to calculate the values of the unknown function y(x)
at the points zg, z,, . . ., i.e., the numbers

(29 Ya=9yx) (=012..)
but we shall not attain this objective. In fact, we obtain only a sequence of
numbers uy, ¥, 4y, . . . , and the relations

=7, (1=0,1,2..)

will hold only if (i) the function y(x) belongs to a certain class of functions
for which our numerical integration formulas are exact and (ii) the calcula-
tions are carried out with infinite precision, that is, with infinitely many
decimal places. In general, we know only that

(30) Y, =u,+T,+ R, (n=0,1,2,..)

where T, the truncation error, results from the nonfulfillment of condition
(i), and R,, the round off error, from that of condition (ii). The central
problem of the whole theory comes simply to this: given € > 0, and N;
find a numerical integration method such that with the computing machinery
available, we shall surely have

Iyn—'unl=lTn+RnI§ €

forn=0,1,2,...,N.

A numerical integration formula is any relation which permits the re-
cursive calculation of u, from u, ;, #, 5, ..., ¥, and the differential
equation, in such a way that if (i) y(«) belongs to a certain class &% of
functions, and (ii) 4y, = Yo, Uy = Y1, - - - » U3 = Yn_y, and (iil) the calcula-
tions are performed with infinite precision, then u, = y, also.

Perhaps the simplest nontrivial example of such a formula is Euler’s
method

31 Upq = U, + hf(z,, u,)

which arises by expanding %(z) in a Taylor’s series about z,,

h2
yn+1=yn+hyn’+3yn”+"'
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and discarding all but the first two terms on theright. The class of functions
for which (31) is exact is clearly the class of polynomials of degree <1, i.e.,
linear functions. Another example is the trapezoidal rule

(32) un+1 = un + g {f(xm u'n) +f(xn+1’ un+1)}

which differs from (31) in the important respect that the unknown #,,,
appears on both sides of (32). This means, in practice, that we first guess
u,,, by some means, such as (31), substitute the guess on the right side of
(32) and get a new guess, continuing to iterate until convergence occurs.
Such a formula is called implicit, whereas a noniterative formula like (31)
is explicit. A common feature of (31) and (32) is that in both cases #,,
was calculated from u, alone, the preceding values u,_;, u, ,, . . . being
ignored. Hence each of these is called a two-point formula. In general, a
p-point formula involves u, ., Uy, U, 4, ..., U, ,o. Anexample of a three
point formula is

(33) Upiy = Uy + 2hf(,, u,).

All the formulas so far discussed have in common the fact that u,,,; is
obtained as a linear combination of u,, wu, ,;,... and f(z,,, 4,.9),
f(x,, u,),.... Any such formula will be called Lagrangian. The most
general Lagrangian formula is
(34) u,,H_l = aou" + a_lun_]_ + e + ll__pun_p

+ h{blf (xn+1a un+1) + bOf s un)
+ o+ b Sz, un—m)}

where A is the mesh spacing, and a, ..., a_,, by, . . ., b_, are given constants.
We see that (34) is a (p + 2)-point formula which is implicit if b, # 0,
explicit if 5, = 0.

Because of their ready adaptability to automatic computing machinery,
Lagrangian methods are among the most widely used of all integration
formulas. Formerly, such methods were sometimes written in terms of
differences because of the convenience of that notation for hand calculation,
but for high speed electronic computation it is best to rearrange such
formulas in the form (34), and we will not employ the difference notation
here.

In the general formula (34) there appear 2p + 3 preassigned constants
ag, Ay, ..., a_p by, by, ..., b_, which may be chosen to satisfy 2p + 3
conditions of exactness. For example, the constants could be chosen so as
to make (34) exact for polynomials of degree0,1,2, ..., 2p + 2. This, how-
ever may be undesirable for a variety of reasons. Among the more obvious
are that we may insist that b, = 0 to avoid iteration or we may want the
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constants to be simple rational numbers for ease in hand calculations (this
is of no importance to a digital computer). Actually, as we shall see
presently, the main reason is neither of the above but, roughly speaking, is
that we lose control over the nature of the propagation of round off errors,
that is, the rapidity with which they build up, if we impose too many condi-
tions of exactness. We may say, in fact, that the requirements of low
truncation error and of low round off amplification are opposing conditions,
and compromises must be made.

5.6 TRUNCATION ERROR

With reference to the general Lagrangian formula (34), suppose that the
backward values are exact, that is

Uy =Yps Upg = Yp-1-++5 Upp = Ypp
Then the difference
(35) Tn = Yn+1 — Uppa

is called the single-step truncation of the formula. Clearly this error
depends on the unknown function y(x) and on n. We wish to derive an
explicit formula for the truncation error in terms of the derivatives of y(x)
if they exist. Let y(z) have continuous derivatives to order #» + 1 in the
interval [a, ). Then Taylor’s formula is

36) ¥(2) = 9@ + (@ — (@) + - + (””—;,“’— 4(a) + R,

where the remainder R, has the integral form

x
37) R, = % f ()@ — 5)" ds.
Now in terms of the function
t" t=0

38 J () = { =
(38) ® 0 t <0
we have
(39) R, = l' f Y5\ (x — s) ds

n: Ja
and observe that
(40) :—xJn(x — )= nJ,_(x — 3).

Now, suppose that the coefficients ay, . . ., d_,, by, by, . . ., b_, in (34)
have been determined so that (34) is exact if y(z) is a polynomial of degree
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0,1,2,...,k, that (34) is not exact for polynomials y(x) of degree =k + 1,
and that k¥ = 2. Finally, let £, ¢(x) denote the result of performing the
operation on the right side of (34) to the function g(x), that is,

(41) g z(p(x) = ao‘P(‘”n) + e + a—ﬂ¢(x-n—p)
+ b9 (@) 4+ 0+ b9 (2, L))
Then, if a < =,_,, from (36),

@) v = P + L [y — 9 ds
where Py(z) is a polynomial of degree k. Applying the operator %,

(43) e?:1::‘/("17) = gmpk(x) + ;{1_' fwy(k+l)(s)$z-]k(x - S) dS

= Pz + h) + %f y* () L J(x — s)ds

since %, is exact on Py(z). Replacing z by = + h in (42) and subtracting
(43), we find for the truncation error

(44) T(z + h) =y(z + h) — Ly

= % fwy“‘”’(s){Jk(z +h—5)— L Jx—5s)}ds
== | "0 96) ds

where .

45) G(s) = Jfz + h — 5) — L Ji(x — 3).

Now for s = x + A, Gy(s) vanishes, since both terms on the right of (45)
vanish separately. If s < = — ph, then at each of the values of « at which
the operator %, requires the evaluation of Ji(x — ), its argument, z — s,
will be positive, J(z — s) will equal (2 — s)¥, the operator %, will produce
exact results, and G,(s) will again vanish. Hence G,(s) vanishes outside the
interval x — ph < s < x 4 h. Itis convenient to choose = 0, therefore,
and define
(46) GO =Jh—5)— L& —9heo (—ph=s=h
the characteristic function of the Lagrangian formula (34).

Now if Gy(s) does not change sign, we may invoke the mean value
theorem in (44), getting

@7 Th) = % f "y (5)Gy(s) ds

(k+1) R
O g5 as
k' J-m

= (const.)y** V()
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where —ph < & < h, and the constant is independent of the function y(z),
depending only on the Lagrangian formula used.
A formula for which G,(s) does not change sign is called definite.

Theorem 4. The single-step truncation error of a definite Lagrangian formula
which is exact for 1, z, . . ., 2* but not for *1 is

(48) T = (const.) y'®t1(&)

where & lies in the range of points included in the formula, y(z) is any (k + 1)-
times continuously differentiable function, and the constant does not depend

on y(x).
We illustrate this result with the trapezoidal rule

h r ’?
(49) Yr+1 = Ya + i [yn + yn+1]
where k = 2, p = 0. From (46), if 0 < s << h, Jy(h — 5) = (h — 5)? and
k|l @ 0
L2 = )]a=o = Jo(—5) + 7| = Joz — 5) + —Jo(z — 9)
2 ax =0 a.’lt x=nh,

=0+-Z[O+2(h—s)]=h(h—s).
Hence
(50) Gy(s) = (h — $)* — h(h — 5)
=s(s — k) O<s=h)

is the characteristic function of (49), and it does not change sign in [0, A].
Hence (49) is definite and (48) holds. From (47) the constant in (48) has
the value

5 3
lf(s2—hs)ds=—_—h—.
21 Je 12

and we may complete (49) by writing

h I ’ h3 K "
(51) Yni1 = Yn + 5 Lvn" + Ynead — oY (%)

(z, <& < @p4y)
One sees, for instance, that if the mesh size is cut in half, the truncation
error is reduced by a factor of eight.

5.7 PREDICTOR-CORRECTOR FORMULAS
If the Lagrangian formula

(52) Upi1l = Aoty + a_jUny +- 4 A pln_p
+ h{blf(xrﬁl’ Tpy) + 0+ b f @y ”n—p)}
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is implicit (b, # 0), we have already remarked that u,,,, must, in general, be
found by iteration. In such cases it is desirable to use another formula, the
predictor, to predict, or guess, the value u,,, to substitute this value in the
right side of (52), getting a new value of u,,,, and continue iterating to
convergence. The predictor formula will of course be explicit and will
normally be somewhat less accurate than the corrector formula, for it only
provides a guess which is ultimately forgotten. The predictor should be
reasonably accurate, however, or else a prohibitive number of iterations
may be required for satisfactory convergence.

To study the iterative process, let ("} ; denote the rth iterated value of
Uy, ), being given from the predictor formula. Then

(r+1) __ N
(53) Upty = Goly + A1,y + ta iy p

d + h{blf(zn+1’ u(vz-:-l) + e + b—wf(xn—p’ un—ﬂ)}
an

(54 Upry = Gy + @i, 3 + 2+ a_ju,
+ h{blf(xn+1’ Upiy) + 00+ b (@ un—p)}
whence by subtraction,

(55) ”;T:ll) —Up1 = hbl{f(zn+1’ uiﬁu — @i un+])}'

We can now prove

Theorem 5. Let f(z, y) satisfy a Lipschitz condition
/@ 8 —fl,nl < L|E—q
on a line segment x = %4, |y — u, 1| = c. Suppose further that
1
|by] L
and that the point (,,, u),) is on the segment referred to. Then the itera-

tive process (53) converges to a solution, u,_,, of (54).
Proof. Puty, = |ul",, — u,,,|. By hypothesis, y, < c¢. From (55),

(56) h<

57 v = Iu;r:ll) — tpial = Bby| 1f(@pi1 s — f(@pr1 Upa)
R by Liufky =ty
= h|by| Ly,
provided (z,,,, #3,,) is on the segment. This is true for r = 0, and (57)

with r = 0 shows that y, < (h{b,| LYy, < ¢; hence it is true for r = 1,
etc., for r = 0. But then, from (57),

Y» = (1B L)y,

hence y, — 0 as r — oo, i.e., u{").; — u,,,,, which was to be shown.

A
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This result brings to light an interesting computational aspect of the use
of predictor-corrector formulas. Suppose we wish to integrate an initial-
value problem over the range 0 < x =< R, where R is thought of as large.
Let a certain predictor-corrector pair be specified to carry out the integra-
tion, and let T(#) denote the total computation time required to get from
x = 0 to x = R if a mesh spacing # is used, R being fixed.

Clearly T(k) — 4 co as A — 0t because the total number of points in the
integration is [R/h]. On the other hand, there is an A, such that T(k) — + oo
as h — hy~ for, if A is too large, the iterative process will fail to converge.

Since T(4) > 0 always, it follows that there is an optimal value of 4 for
which the computation time is least. Naturally this optimal # may be un-
satisfactory for other reasons, such as truncation or round off error buildup.

In the case of simultaneous equations considerations of convergence
become more complicated. If we temporarily use subscripts to index the
unknown functions, consider the /inear system

(58) Y’ = any + apYy + -+ apnyn

1

Yy = am¥r + ane¥s + 0 + aynyn

where the a,; are constants.
The analogue of (55) is clearly

yir+1)(xn+1) — y(%n41)

yf\;-*-l)(xn + 1) — yN(xn + 1)

a a e oa
n 12 N ?/Y)(xnﬂ) — (% 1)
Ay Qg " "t dgy
= hb,
y%)(xn+1) — Yn(Zns1)
ay: A4ye " dnny

or, with obvious abbreviations,
E, ., = hbAE,.

For convergence, then, it is necessary and sufficient that the matrix

(hbyA)" — 0 (r - o).
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Referring to Theorem 30 of Chapter 1, we need the eigenvalues of hb A to
lie in the unit circle. But these eigenvalues are Ab; 4, . . ., hb;Ay,, where the
eigenvalues of 4 are ,,..., Ay. Hence for convergence

hby) A < 1 (i=12,...,N)
and we have
Theorem 6. [n order that the Lagrangian corrector formula (52), when
applied to (58), should be convergent, it is necessary and sufficient that
_ L
1B1] | Amax]

where 1, is the dominant eigenvalue of A.
For the general nonlinear system

?/,(CL) =f;(7;’ yl (x)’ RECE ] y;\-’(x)) (I = ls 25 L) N)

it is easy to see that if one takes for a;; any numbers such that the partial
Lipschitz conditions

(5% h <

If;(xa yla cery yj—l: E; yj+1: vy yN) __fL(‘Ta yl’ sy yj—ls 77, yj+15 “evy yx\’)'
<a,|E—1n (G.j=12,...,N)
are satisfied in a suitable domain, then (59) gives a sufficient condition for

convergence, the proof being the obvious generalization of that of Theorem
5.

5.8 STABILITY

We begin our discussion of stability with a very specific example. Let us
suppose that the equation

, 1
XTr)= — —
(60) Y@ ==17¥® (1~ const. > 0),
9(0) =1
whose solution is
(61) y(x) = e~*L,

is to be numerically integrated with the formula

4h
(62) Upyyp = Upy-3 + ? {2f(xn: un) _f(xn—l’ un—l) + 2f(x‘n—2’ un—Z)}'
This is an explicit Lagrangian formula whose truncation error

) T, = j—f) Ky (),
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is quite low, i.e., (62) is quite a good formula from the point of view of
accuracy. Now, putting f(z, y) = —y/L in (62) we find

4
(64) e = 2 {=2y + g = 2 g} F i,
where we have set y = h/L. We see that (64) is simply a recurrence relation
for the numbers u,. From Section 4.8 of the preceding chapter we know

that the solution of (64) is of the form
(65) U, = o + " + g™ + oy

where ry, 1y, 13, 1y are the roots of the equation

8y 4y 8y

66 4L L Ly —1=0.
(66) 3 3 3
If ¥ = 0, the roots of (66) are at 1, —1, i, —i. Since these are distinct, it
follows that the roots are analytic functions of y for sufficiently small y and
therefore that we may develop the roots in convergent power series in y.

Consider the root r; which is 1 when y = 0. If we substitute the expan-
sion

67) n=1+oy+uy+- -
into (66), we find easily that
y_7
(68) r1=1_y+_2_!_3_!+.
agrees with the series for 77 through terms of order y*. Similarly, we find
5y 2
(69) "2=—1—§'+0(‘}’) (y —>0),
(70) n=i=lit00h) -0,
(7) rn=—i+2i+00%) @0

Since #, is an approximation to e~?, r;" is an approximation to
1 1

—ny __ ,—nk{L __ ,—a,/L
e — L — o ,./’

the exact solution (61). Hence the first term in (65) is a good approximation
to (61). The remaining terms in (65) have no significance as far as the
differential equation (61) is concerned. They are, so to speak, the price we
pay for having such an excellent approximation to e, in r,. Ideally,
therefore, we would want the three extra terms in (65), the so-called “para-
sitic solutions,” to damp out as n — oo more rapidly than the first term.
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This is far from being the case, however, since it is clear from (69) that for
all sufficiently small y (i.e., for all sufficiently small /) r, is actually outside
the unit circle, and therefore the second term in (65) grows in magnitude as
n — oo, while the desirable first term and the true solution (61) decrease.
Hence, even though the initial data will make ¢, in (65) large compared
to ¢,, ¢35, €4, as the calculation proceeds the parasitic solution ¢y, will
surely eventually dominate, leading to useless results. Furthermore, the
introduction of round-off error will at any step tend to be magnified as »
increases rather than to be damped out, and for large », the numerical
“solution’” may be expected to consist mostly of round off error accumula-
tion and parasitic solutions of exponential growth. The situation cannot be
saved by taking a smaller mesh width A, for r, lies outside the unit circle and
hence dominates r,, for every fixed # > 0. The difficulty is fundamental
and lies with the choice of the formula (62), which, we shall say, is unstable.
We now study the result of applying the general Lagrangian formula

(72) Uppy = Golty, + A8y + 0 +a_u, ,
+ h{blf(xn+17 un+1) + 4+ b——pf(xn—p! un—p)}
to the same differential equation (60). Then

Upsr = Golhy 0 A+ a_u,_,

or
(73) (U + ybuyyy = (@ — ybo)u, + -+ - + (a_, — vb_, )un—h

where, again, y = h/L.
The solution is again of the form

(74) Uy =CF "+ s

the r; being the roots of

(5 plr,y) = + yb)r** —(ag — ybo)r® — - —(a_, — yb_,) = 0.
Now

(76) p1,0)=1—ay— -+ —a_,

which, as can be seen by putting f(x, ) = O in (72), vanishes if the
Lagrangian formula (72) is exact for constant y(x). Hence (75) has a root
r = 1wheny = 0. For y 7 0 but small, the principal root of (75) will be
that root which moves into r = 1 when y = 0. We call the principal root
ry; then

(17 rn=1+ol) (y—0).
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Next,

ow(r,
(78) M =(p+ 1D —pagg—(—Da_y—"""—a_,.

ar 7=1,y=0
To evaluate the right side, suppose (72) is exact for linear functions y(x)
also. Putting f(z, ¥) = 1, y(z) = =, in (72), there follows

Ty = Gy + A y@py + F @, + by + - + b}
or

Zy+ (n+ Dh = ayzy+nh) + -+ a_ (@, + (n — p)h) + h{by + - -+ + b_,}.

The terms independent of A vanish because (76) is zero. The coefficient of £
must also vanish, which gives

n+l=nay+- - +@—pha,+ b+ +b}

=m—pla,+—p+la,,+- - +@—p+pha
+ {by+ -+ by}

=(n—.p)(a~—p+a—p+1+"'+ao)+a—p+1+"' + pay
+{by+ - +b_}

=@m—pta,ut-tpat+ Gt +by)

and therefore

ptl=a,u+-+pa+b+-+b,

Comparing with (78), we find

Theorem 7. Let the formula (72) be exact for linear functions of x. Then
ry = 1 is a simple root of (75) with y = 0, if and only if

77 byt + b, 0.

If (77) is satisfied, then the root r; = r(y) will be an analytic function of
y for all sufficiently small y, and therefore the expansion

(78) n=1+ouy+oay’+- -

will converge. If one substitutes (78) into (75), it is not hard to see that (78)
agrees with e through terms of order y* where k is the largest integer such
that (72) correctly integrates the equation y(z) = ka1, as we saw in (68).
Hence ry(y) is the “desirable” root, the others being parasitic. For
stability, we want the parasitic roots to be smaller, in modulus, than r,(y),
for all small enough y. Since ry(0) = 1, this will surely be the case if the
other roots of 9(r, 0) = 0 lie strictly interior to the unit circle.
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Hence a conservative definition of stability is

Definition 1. We say that the Lagrangian formula (72) is stable if the roots
of the polynomial equation

wr,0) " —agt —---—a_, 0

r—1 r—1

(79

lie in the circle |2| = 1.

Definition 2. The radius of stability, A, of (72) is the largest value of
= h/L for which
(80) r=nk)  (G=23....,p+ 1),

Let us recall from the test equation (60), that the number L is the so-called
relaxation length of the solution, i.e., the distance over which the solution
drops by a factor of e. Hence to say that y is small is to say that the mesh
spacing / is small compared to the distance over which the true solution is
changing appreciably. Furthermore, since the notion of stability was
defined only with reference to the special equation (60), one should not
expect stable formulas to behave well in all sitnations. Nonetheless,
because many of the equations arising in practice have solutions which are,
at Jeast locally, of exponential character, (60) is perhaps the natural choice

of a criterion for stability.

Examples of stable formulas are provided by the Adams-Bashforth
family, which are uniquely determined by the conditions that (i) a, = 1,
(i)a_, ="' = a_, =0, and (iii) they are exact for 1, «, . . ., 7*1. Indeed,
with such a formula, (79) is simply

P 0) _ "t — "

r—1 r—1
whose roots are all at the origin. The two-point Adams-Bashforth formula
is the trapezoidal rule. The three-point formula is

(81) un+1 = un + h{l%f(x'rwl’ un+1) + %f(xm un) - 112f(xn—-15 un—l)}

etc. A four-point formula which is stable and which has a somewhat more
favorable truncation error than the four-point Adams-Bashforth formula is

Hamming’s method

=r'p=0,

(82) Uy4y = fu, — FUp_y + % {f(@pe1s Unsr)
+ 2f(xm un) _f(x'n—li un—l)}'

In conclusion we remark that the choice of an integration formula in-

volves a compromise between truncation (accuracy), stability, cost (compu-
tation time), and round off error. The accuracy and cost both increase
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with the number of points in the formula. For fixed p, stability decreases
with increasing accuracy. As the mesh h is decreased, cost and accuracy
increase while round off increases. At the present state of knowledge, the
best choice is perhaps more of an art than a science. For additional detail
the interested reader is referred to any of the excellent books listed at the
end of the chapter.

59 LINEAR EQUATIONS OF THE SECOND ORDER
We consider now an equation of the form
(83) y'@ + PEY'@ + @y =0
y@) = %5 ¥'@) =%’

where it is assumed that 2, lies in a region £ of the complex plane in which
P(2), O(2) are analytic except for finitely many poles.

Definition 1. z,is an ordinary point of (83) if P(z) and Q(z) are regular in a
neighborhood of z,.

Definition 2. 2, is a regular point of (83) if P(z), Q(z) have poles at z, of
order at most one and two, respectively, i.e., if

(84a) P(z) = O(&z — 2)™) (z—2)
(84b) Q@) =0 —2)? (7).

Definition 3. z, is an irregular point of (83) if it is neither an ordinary
point nor a regular point.

Theorem 8. Let z, be an ordinary point of (83). Then there is a unique
Sfunction y(z) which satisfies (83) and is analytic in the largest circle centered
at zy in which P(2) and Q(z) are analytic.

The proof will be recognized as a simple variant of that of Picard’s
theorem.
Proof. We may suppose, without loss of generality, that z, = 0. In (83),
put

(85) o) = o2 exp {3 | Pe0) at)
It then takes the form

(86) v"(z) + HRwE) =0
where

@7 Hz) = 0(2) — $P'(2) — 1PR).
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Define, recursively, the functions

(88) vo2) = o + Pz

@ w@=[ O OE =12,

where « and § are constants to be determined later.

Now, let G be a circle centered at z = 0 in which P(z), Q(z) are regular,
and put

(90) M = max [H(z)|
zin@
m = max |« + fz|.
Zin @

Then we claim that, throughout G,

|27L

©1) 10, < mm EL

(n=01,...).
n!

Indeed, this is clear when n = 0. If true for n =0,1,...,k — 1, then

@) = | [ €~ D0 a dz‘
k-1 [zl
< l),f 1L — 2| M g3
mM* %2
=w—nt" 'f dz
mM* 2|2
T (k=D 2k —1
kalZ‘zk
<— >
k!

the path of integration being the straight line joining O and z, and (91) is
established. Hence, if p is the radius of G,

lon(2)| = Mjf’z—)

and the series of analytic functions
0

92) u2) = 2 v,()

7n=0
is absolutely and uniformly convergent, by the Weierstrass M-test, in G.
Hence »(?) is analytic in G, and summing both sides of (89) from n = 1
to co,

©93) o) = vo(2) + f (L= DHQW) 4,
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and differentiating twice, (86) follows. In addition, from (93), v(0) = «,
v'(0) = B, while from (85), ¥(0) = v(0), ¥'(0) = v'(0) — 1P(0)v(0). There-
fore, if we take « = y,, f = y," + 3P(0)y,, the function (85) is a solution
of (83) with the required properties. If #(z) is another analytic solution of
(86), then @(z) = v(2) — ¥(z) satisfies

o4 ¢'(2) + HR)p(x) =0

%) #0) = ¢'(0) = 0.

But these imply ¢”(0) = 0, and by differentiating (94) repeatedly and putting
z =0, that ¢®(0) = O foreach k = 0, 1,.... Hence ¢(z) = 0, and v(z),

and therefore y(2), is unique.

5.10 SOLUTION NEAR A REGULAR POINT

If the point 2, is a regular point of the equation, then, in general, there do
not exist solutions analytic in a neighborhood of z,. Rather, we usually
will find a solution with a branch point atz,. We suppose again thatz, = 0.
Then we may muitiply (83) through by 2% and get

(96) 29'@) + WPEW @ + 20@Y() = 0
where

7 2P@) =po + pz +p2F + -
(98) 20@) = go + g2 + g2 £+ - -

the expansions converging in some circle [z| < p, p > 0. Let us look fora
solution in the form

99 y@) =21 + ag + a2’ + -}
where the index A and coefficients a;, a5, . . . are to be found.
Formal substitution of (99) into (96) yields
(100) AMAA—D+ > an+D(n+ 41— 1)z">
n=1
+ z‘{zP(z)}{;t + X a,(n+ A‘.)z"}
n=1

+ z‘{zzQ(z)}‘l + 721 anz"} = 0.

If we next substitute (97), (98) into (100), carry out the multiplications of
series indicated, and set the coefficient of each power of z to equal to zero,
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we obtain the formulas

(101) B+(po—Di+g,=0

(102) &g+ @— DA+ D+ A+ 1D+ 2p, +¢ =0

etc., the general equation being

(103) {(n + 1* + (po — D(n + ) + go}a,

n—1
+ 21 o {(n+ 2 — K+ aq} + Ap, +9,=0
Z
n=1,2,...).

Equation (101) is a quadratic equation in 4, the so-called indicial equation,
and determines two (possibly equal) values of A, say A;, 4,. If one of these
values is chosen, the succeeding equations (103) determine a;, a,, as, . . .
recursively, provided that the coefficient of a,, in (103) is never zero.

But this coefficient is just (A 4 n), where @(4) is the left-hand side of
(101). If 2 = 1, the root of (101) with larger real part, then, clearly,
@(A; + n) £ 0, and all the g, can be found. For 1 = 4,, to say that
@(A;, + n) = 0 is to say that 4, + » = 1, i.e,, that 4, — A, is an integer.
We may summarize by saying that (96) is satisfied by two different formal
power series of the type (99) if the roots of (101) do not differ by an integer
(=0,1,2,...), with only one formal solution of that type otherwise,
corresponding to the root 4; with larger real part.

5.11 CONVERGENCE OF THE FORMAL SOLUTION

To justify the formal procedure of the preceding section it is enough to
show that the series in (99) converges in some circle of positive radius,
centered at the origin, to an analytic function. Again,let1;, 2,, Rel; = Rel,
be the solutions of the indicial equation ¢(1) = 0. If 4, — 2, = o, then

(104) o +m =@ +m’+(po— Dh+n) +g
= (A2 + (po — DAy + q0) + 24 + py — Dn + n?
=n{n+ 24 +p,— 1}
= n(n + o).

Next, by Cauchy’s inequality, there is a number M > 1 such that
M M M
(105) Ipnléﬁ; Iqﬂléﬁ; |21Pn+qn|§;; (n=0,1,2,...)

for all small enough r.
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Now, take 1 = 4,, and let the numbers @, a,, ... be recursively calculated

from (103). We claim that
(106) la,| = (M—) .

r
Indeed, forn = 1,

_ |t A;
lay) =
P(h + 1)
< M
ril + o]
<M
r
since Re 0 = 0. Inductively, suppose (106) true forn =1,2, ..
Then
k-1 .
21 ae~[(A + k — v]p, + 4,] + Mpr + 4
a| ==
[axl ot B
i)
é vy + v a -V
el PACT RIS

k-1
+ 21 (k - "-’)lak—vl |pv| + M'lpk + qlcl}

1 [k 1M Mk v k-1 Mk M M}
= — + k— -+
klk + ol V=1 70 z ( iy T SO L
Mk {k—l 1 }
= k —
P DIy Z k=2 =it yp
M* { k(k — 1) }
£—k—-1D+—=4+1
r'klk + of ( ) 2 +
_ (kt D) (M)
2k|1 + ofk|

%
ket (M)
2k r

(5

where we have used the fact that Re o > Oimplies |1 + o/k|

iA

k-1

= 1,and (106)

is proved for every n. By comparison with the geometric series, then, the
series in (99) converges uniformly for |z| < r/M, and therefore the function
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y(2) in (99) is analytic in that circle aside from a branch point atz = 0 if 4;
is not an integer.

The same analysis can be made for the smaller exponent with the same
result if ¢ is not a positive integer.

Theorem 9. Ifz = 0 is a regular point of (96) and A, A, Re (3; — 2,) = 0
are the roots of (101), then there are either one or two solutions of (96) in the
Jform (99), depending on whether A, — 1 is or is not a non-negative integer,
respectively. A solution so obtained is analytic in a circle about z = 0 except
for a branch point at the origin if A is not an integer.

5.12 A SECOND SOLUTION IN THE EXCEPTIONAL CASE

Suppose now that A; — A, is a non-negative integer n. The method of the
preceding section then gives us one solution, (), corresponding to 4.
Returning to (96),

2y (@) + 2=P@)y' () + Q@) =0
put

(107a) Y(2) = y(Du(z)

where y,(2) is the solution already found. Then the equation satisfied by
u(z) is

(107b) u'(z) + {P(z) +2 le(z))} W@ =0

Yz

which is of the first order in «'(z), and hence easily solved. The solution is

(107¢) u(z2) = o + f j 2(7)exp{ fcp(z,:') d'g'} dt

=cy+ clfz 0 exp{ fg[%o +p+ :| d{’} dg

=cy+c f ;ZQ‘GXP{ f[p1+pzl+ ]dC}

=Gt clf z[gh (1 +€a—;+ YA {—f T+ pt
)it

=t o RO
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where we have written

¢
108) A =[1+ il + 1% exp |~ [Tou + pa + - 2at)

which is andfytic in any circle centered at the origin in which 2P(z) is
regular. Now, suppose

(109) )=1+3hl
v=1
and recall that p, 4+ 24, = 1 + 4, — 4, =n + 1. Then (107) gives, ifn # 0,

u(z) = ¢y + clfzﬁ_("“’ [1 +é):lhv§'} di

— 1 "t hv v-n h 1
SRS b

+ 3 b

v Zv_"}.
v=n+1? — N

Referring back to the substitution (107), our second solution is

Y(z) = n(Du(z)
= oty (?) + 2”1 + azp + -+ ]

1 nlop
Xij——=—=3 ——2"""+ h,logz
nz" yv=in—vw
- hv zv—n}
v=n+l? — R

= coi(2) + (@b, log 2
+ o[l +az+az2+ - ]{—
< hv zv+lg}

v=a+1l¥V — A

1 o
= ¢y(2) + cy(@)h, logz + 31212{_ " + > szv}-

v=1

If n = 0, the same calculation shows

Theorem 10. If the roots of the indicial equation differ by an integer n, the
general solution of (96) is of the form

(110) Y(2) = coya(®) + c1{hayi(2) log 2 + 22y(2)}
if n 7= 0, where y(2) is analytic and p(0) = —1/n. If n = 0, the solution is
11y 9(2) = coyy(2) + ¢, {y1(2) log z + 2hy(2)}

where y(z) is analytic and (0) = 0.
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513 THE GAMMA FUNCTION

As before, let

112) y=1im{1+%+---+l—logn}
n— n
denote Euler’s constant, and consider the product
(113) P& =TI {(1 + i)e-zm}.
n=1 n

‘We claim that this product converges, for every 2, uniformly in any finite
circle. Indeed, let N be a fixed integer, suppose 2| = N/2, and thatn > N.

Then
log (1 + i) -~z
n n

Now

and therefore the series

converges absolutely and uniformly for || < NJ2. Hence so does the series
(114) S {'log (1 + 3) — 5}
n=1 n n
converge to a function which is analytic for |2] < N/2. Therefore the
exponential of (114), namely,
(115) TI {(1 + E)e—z/n},
n=1 n
is also analytic for |z| = N/2. But N was arbitrary; hence the product in
(113) converges everywhere and so represents an entire function. We define
the Gamma function I'(z) by
116 —— = z¢"” {(1 + —)e“z/"}
(116) I'(z) nI;Il n
and we have proved
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Theorem 10.  The function 1/T'(z), defined by (116), is an entire function.

It follows that I'(z) itself is analytic except at the points where 1/I'(2) is
zero. From (116), these points are clearlyatz = 0, —1, —2, —3, ..., and
we have

Theorem 11.  The function Y'(2) itself is regular everywhere except at z = 0,
—1, =2, ... where it has simple poles.

The product in (116) is the Weierstrass product for 1/I'(z). Another
product representation for this function is due to Euler and is obtained
from (116) as follows:

From (112) and (116),

(117)
i~ I 5

=z{1im exp[1+l+---+—1——logN]z}
2 N

N—wo

{m T1[ (1+ %))

. 1 1 4 2\ —un
=z lim {exp |1+ =+ -+ =—=1log Nz I] {l1 +=]e
2 N n

N-w n=1

. 1 1 N z
=z lim expzl+—+-~-+ﬁ—-logN IT 1 +=
J n

N-ow 2 n=1

2 N.

N z
=z lim {e_ZIOgN]_—_[ (1 + —)]
n=1 n

N-w

N z
=z lim {N'ZH (1 +—)}
N—oow n=1 n

However, from the identity

(e =asn(te)fvd) - (e )
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(117) gives

or

i ot

which is Euler’s result.
We next derive the functional equation of I'(z).

Theorem 12. If z is not a negative integer, then
(119) I'z + 1) = 2I'().
Proof. In (118), replace z by z + 1, and divide, getting

AT

TG) 2+ L asw ﬁ[(H;)z(Hg)—l}
= n n

_ N 1) n+z }

—z-l-l nl;Il( n+142
] M )

z+1N—»oo 242412243 N z4+4N+1

I {(N+1)(Z+1)}

24+ 1 N-w z+ N+ 1

. N+1
=z lim

_'V-'aoZ+N+1

= z.

Theorem 13. If n is a positive integer, ['(n) = (n — 1)!

Proof. From (118) it is obvious that I'(1) = 1. If the result has been

provedforn=1,2,...,k, then 'k + 1) = kI'(k) = k(k — 1)! = k!
Next we have a formula for reflecting I'(2) in the line Rez = .

Theorem 14. If z is not an integer,

(120) ' — 2) =

Sn7TZ
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Proof. From (116),
[ee} -1
rorcs = - 5 1 {(1+ 2o (1 -2
2 n=1 n n=1 n
1 e 22 -1
- - L1 (-5

NN[’—-

— e
8 1
I 8
it
—_
ok

w
=m| L)
S—
——

-

I
|
Nw =
— e
@
=
3
n
——
)
Il
|
B |

7wz z sin w2

Now (119) gives
T'(l —2) = —2I'(—2)
and the result follows.
Also-due to Euler is

Theorem 15. IfzisnotQ, —1, =2, ..., then

s 1:2--(n—=1
(121) F(z)—flbl—r»?n :z(z+1)---(z+n——1)n}'
Proof. We have

lim{ 1:2--(mn—1) nz}
nmw Zz+ 1) - (z4+n~—1)

=lim{ 1:2--+(m—1) 2_3_

z+ 1) (z4+n—1)172*%
limlﬁ{L(ﬁ""l)z}

n=w & v=1 Z+‘V v
© z -1
STy
Zv=1 V V.
=I'(z)

by (118).
Next we have an integral representation in

Theorem 16. If Rez > 0, then
(122) I'(z) =f e ' dr

0
where t*~\ means exp {(z — 1) log #}.
To prove this we shall need two preliminary results.

Lemmal. For0<t=<nnz=2 wehave

==

A
Nl

§5.13

ol

z

n
(n — 1y

|
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Proof. For,

vy _1-t

(1) Tn—t’
hence '(¢) vanishes only at £ = 1. The maximum of y(?) is the largest of
the three numbers 9(0) =1, p(1) = e(1 — 1/n)" L, w(n) =0. Hence
pO=pl)Z ef2forn= 2.

Lemma?2. For0<t<n nz= 2 wehave

n 2
(123) 0<e?t— (1 - 5) < :‘:-ie—t.
n n
Proof. Let
Pty =e""— (1 - t—)
n
Then
t ¢ n—1
w0+ o =" (1 -4
n n
and
-t [t n—1
0] =e—f Tef(1 - I) dr
n Jo n
it 1 t
=2 f Ty(r) dr
n Jo
-t t
= ¢ ¢ f Tdr
n 2Jo
2
= EE— e_t
4n
by Lemma 1.
Proof of Theorem 16.
Let
(124) H(2) = f (1 ~ ’—) £1 g
0 n

1
= n’fo 1 — y)"y*dy.
Integrating by parts repeatedly,

1 a1 1 , 1 n {1 1 s
A=y ldy=|-y1-»"| +-)0—9""'ydy
0 z y=0 zZ Jo

n! 1n+z—1
= yrrt T dy
2z4+ 1) - (z4+n—1)Jo
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and therefore

n! .
(125) Hn(z)—z(z+ DG+ n)n .
By (121), then,
(126) lim H,(z) = I'(2)

= lim (1 —1) #7141,
n—o V0 n

Define, for Rez > 0,
T'(z) =f e~ dt,
0

and we will show that I'(z) = I'(z). Indeed, subtracting from (126),

') —I'z) = i:n; U:t"l[e‘t — (1 - %ﬂ dt + J.:)e"tt”"l dt}

= lim {O(n"lf:tz”e"’dt) + 0(1)}
= lim {O(n™Y) + o(1)} =0,

n—* oo

completing the proof.

Next, let us take the logarithm of (116)'and differentiate with respect to z,
getting

I'(z) 1, . 2 (1 1 )
127 — 2= —y—>+4 lim — - .

(127) I'(z) ¥ z n-»oomz=1 m z4+m
The function on the left is frequently denoted by (z). If z is an integer,
say z = p, the series on the right telescopes,

1 1 1 1 1
= — ——+1im{1+—+"'+———— ———— }
v(p) v P oo 2 n p+1 p+n
1 . 1 1 1 1
= — __+hm(1+_+...+____ ..... }
14 P noo 2 p n+1 n+p
1 1
=—y+1l+=+-+—
4 2 p—1
and
1 L |

1
(128) y(p+g —pp) ==+ "+ ——m=3F —.
Y ¥ p p+g—1 Jisop+j

This last relation is often valuable in dealing with finite sums of the kind
occurring on the right side, when used in conjunction with tables of the
y-function. We have also encountered the y-function in the previous
chapter, (95), (96), in connection with asymptotic expansions.
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Finally, we note a few special values of the Gamma function.

putting z = % in (120), we have
(129) I‘(%) = /.
Then the functional equation yields

(130) P@+%) ————QLZQJ (n=1,2,...).

2n
Next, (120) gives
1 1
(I
5 n n+ > (="
and from (130),
(=2yr

(n=1,2,...).

(131) I‘(% - n) =135 - @2n—1)

On the imaginary axis, let 2 = it, where ¢ is real. Then from

@I —2) =TE{—A(-2)} =

sin 7z
we find by putting z = it,
THT(—if) = ——— = (T (i)
t sinh zt
=TI,
and therefore
w
(132) IT(it)] =A/t sinh mt (¢ real).

5.14 BESSEL FUNCTIONS

We consider now the differential equation

d*y
2 2 —
d2+xd + (& —py=0

known as Bessel’s equation. This is of the form (83), with

(133)

P
(134) P() = 1 0w =1-%,

179
First,

and we see that every point is an ordinary point of (133) except z = 0, which
is a regular point. To solve (133) by the method of Frobenius, we first have

equations (97), (98) in the form
(135) 2Py =1
(136) 20@) = —p* + 2*
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whence po =1, p; = 0(j = 1), 4o = —p% g1 =0, o = 1, g, = 0(j = 3).
The indicial equation (101) is

(137) 22— p2=0

so the indices are 4, = p, 4, = —p, and we are sure of one solution corre-
sponding to A, = p, whereas the exceptional case when 4, — 4, = 2pisan
integer will have to be studied separately.

To get the solution corresponding to 4, = p, the recurrence (103) is in
this case

s—1
[+ o = pas + 3 ails +p = Bpi + 6] + ppo + 4, =0
—=
s=12...)
and putting in the values of the p;, ¢,
(138) s2p+ s, +a s +pp+4,=0 (=2

Now these equations can be satisfied by taking a, arbitrary, g; = 0, and
determining the succeeding coefficients recursively. However, it is clear
that we shall find @; = a; = a; = + - - = 0, and only the even-indexed co-
efficients remain, With s = 2,

1+ a,
a2 = -7,
4r+1)
while for s > 2, (138) is simply
. as—9
s2p +5)
From these it is easy to see that
(@ + 1)
(139) ay, = (—1)* k=1,2,...).
S TP R )
Since
Fp+k+1
P+DP+2 - +h)=—FT—""—
) I'(p + 1)

we have found a solution of (133) in the form

@© (_l)kx2k+p
oK Tk+p+1)
N G V)

=271 + a)T'(p + 1)];::0 TG+ D

(140) 9(@) = (1 + a)l'(p + l)k

= (const.) J (%)
where

I o VG
(141) T(=) —k2=:0 KIT(k +p+ 1)
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is the Bessel function of the first kind, of order p. Itis easy to see that, for p
fixed, the series in (141) has radius of convergence 4 o and therefore
represents a function of « which is everywhere regular except, if p is notan
integer, for a branch point at the origin. On the other hand, if x is fixed,
we know that [I'(2)]! is an entire function and therefore, considered as a
function of p, (141) is a uniformly convergent series of analytic functions
and is therefore anaiytic. We state this as

Theorem 17. The function z~*J(2) is, for fixed p, an entire function of =z,
and for fixed z, an entire function of p.

If p is not an integer, the procedure yields another solution corresponding
to A, = —p, which is
© (_l)k(x/2)2k—p

(142 T-5(2) =k§o KIT(k —p+1)

and the general solution of (133), when p is not an integer, is therefore
Y(@) = aly(®) + cJ_,(2).

If p = 0, (141) and (142) are obviously identical, whereas, if p is a positive
integer, recalling that [I'(2)]~! vanishes at the negative integers, we see that
thetermsk = 0,1, ..., p — 1 do not contribute in (142), and we have, for
integer p > 0,
© -1 k, x/2 2k—p
=ok!T(k+1—p)
_ < (=D Hf2)®e
e k!'Ttk+p+ 1)
= (—1)"J ().
Hence, for such values of p(p = 0, 1, 2, . . ), the two solutions so far found
are manifestly not independent. We omit the computational details,these
being tedious but straightforward, and present, instead, the second in-
dependent solution of Bessel’s equation in the form

cos prd (x) — J_ (%)

(144) Y, (x) = lim 2
p-n sin pm
when nis 0,1,2,.... We do not record the full expansion of Y, (x),

except to note that, as we expect from (110), ¥, (=) is not regular at z = 0,
but is of the form

(145) Y, (x) = 2 log  J () + ™ "A(=)

where A(z) is entire.
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In the small space allotted we cannot hope to do justice to the many
facets of the theory of Bessel functions. In making a choice of subjects to
discuss we were therefore guided by the topics which are of interest from the
Junction-theoretic point of view. These are (a) analytic character, (b) rate of
growth or asymptotic behavior and, (c) location of zeros. The first of these
has already been settled in Theorem 17.

Next, consider the function e**(*-1/8_ This is, for fixed 2, a function of ¢
which is regular in any annulus 0 << p; < [f| = p,. It therefore admits a
Laurent series expansion

(146) exp |:»§—z(t - %)] = 3 @)t
The coefficients ¢,(2) are, as usual, given by the integral
1 a1 1
(147) p()=— 11 exp |iz|t — =] | dt
2mido t

where the contour encloses the origin. Putting r = 2u/z,

(2) = L (E)H.[ u " lexp [u — Ez—:l du
Pn 2mi \2/ Je 4u ’

where C may be taken as the unit circle. Expanding the exponential,
< (_ 1y n+2r
Pa(2) = L p Gl (E) fu_”_”le” du.
2miz=0 ¥l \2 c

The residue of the integrand at u = 0, i.e., the coefficient of #~* in the
expansion of u~"~"le* in a Laurent series, is obviously[(n + !, ifn + r
is zero or a positive integer, and zero otherwise.

Hence by the residue theorem, we find

Theorem 18. For t 5% 0 we have
(148) exp [%z(t - tl” = 3 L@

n=—cC

Further, if we put t = ¢ in (147), we find

(149) J,,(z)=2i f " exp(—inf + izsin ) df
T —r

0 el
_L{f +J.}exp(—in6+izsin6)d9
- 0

T o

= i{ {”exp(inﬂ — izsin 8) df +J‘lexp(—~in0 + izsin 6) d6
0

2mlig
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or finally

(150) J(2) = f cos (n — z sin 6) d6

which is Bessel’s integral formula.

Now, exactly as in exercise 10 of the preceding chapter, the method of
stationary phase yields

Theorem 19. We have as x — oo, n fixed,

(151) J (%) = \J2[mx cos (z - ';—” — ’Z’) + 0(z) %
Proof. Equation (150) is
(152) J (x) = lRef”exp [i(nf — x sin 6)] d6

w 0

which is of the form considered in the method of stationary phase with
h(0) = n6 — xsin 6,
Now,.4’(£) = 0 at the point
£=cos 12
xr

lying between 0 and =, and not elsewhere in that interval. Handling the
endpoints just as in the exercise referred to, we find from (114) of the previous
chapter,

cos (71 +ncost 2 — /a2 — n2)

x

: O(z~%).
(x?._nZ)A + 0(="")

(@) = 2=

However, as z — oo, # being fixed,

1§

n cos 7—7 + o(1)

d

\/ @ —n*= 2z + o(1)
(22 — n?)*t =\/x+ o(1)
and the result follows.
Since J,(—2) = (—1)"J,(x) when « is an integer, the expansion (151)
holds also for # — — oo if z is replaced by |z|, and (—1)” inserted in front.
Now, the positive real axis is decidedly not the direction in which J,(z)
grows most rapidly. Indeed, from inspection of the power series (141) it is
evident that when z is purely imaginary, all the terms have like sign, and
maximum rate of growth is therefore achieved as z — J-jco.
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To find this rate of growth, put z = i, ¢ real, in (150), getting
(153) 7.(it) = 1 f {eineetsinﬂ 4 e—inﬂe—tsine} 6.
27 Jo

If we regard ¢ as large and positive, then, since sin § = 0 in the range
considered, the second term under the integral sign in (153) surely remains
bounded as t — oo. For the first term we use Laplace’s method (equation
(109) of the preceding chapter) and find

1 f"einee tsin0 go _ 1 etf”eineet(sine-—l) a6
2m Jo 2r o

Niete(imrﬂ)\/zT/t (t — )
2m

n

" e
NG

Hence .

(154) T (it) ~ \/lz_met (t > o)

so that J,(z) grows exponentially along the positive imaginary axis, and
this is the line of most rapid growth.

If z is fixed, the power series expansion of J,(z) is an asymptotic expansion
for large », and we find

(155) 1@~ 1+ 5 (g) (v — o).

Next we propose to show that the zeros of J,(2) are all real provided the
order v is suitably restricted. First, we need an identity involving an
integral of the product of J,(az) and J,(Bz). Let

u(z) = Jy(2)

v(z) = J,(f2)
where «, 8 are fixed complex numbers. Then Bessel’s differential equation
reads

2
(156) w" 4+ u + (oc2 — %)zu =

2
(157) 2" + v + (ﬂ2 - %)zv =
Z

Multiplying (156) by v(2), (157) by u(z) and subtracting, we get
2u'v — v"u) + (W'v — v'u) = (% — «Pauv

or equivalently, i

(158) - {e(u'v — uv")} = (B* — o®euv.
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Now, near the origin,
u@z=0@) (z—>0)

WD) = 0@  (z—0)
and therefore
2u(@v(z) = 0 (z—0).

It follows that we may integrate (158) from z = 0 to z = 1 provided
2y + 1> —1,1i.e.,if v > —1. Hence, if v > —1, we obtain

(159) [ o) de = " 0/ @I0) — 1B
0 B —«

Now suppose « is a complex zero of J,(2), and that » > —1. From the
power series (141) it is evident that « cannot be purely imaginary. Thus if
we put f = & in (159), then §% — o2 34 0, and also J(&) = 0, since J,(2)
has real coefficients. Then (159) gives

flzj Sz} (azx) dz =0
0

= fli Sfox)d (ax) dx
- Yo

1
=jl z |J (ax)|? dx
0
which is patently impossible. Thus we have

Theorem 19. Let v > —1. Then the zeros of J(z) are all real. Further,
if z,, denotes the nth positive zero of J(z), arranged in increasing order of
size, then, for v fixed, we have

(160) %,, ~ NI (n — c0)
and
(161) Tyl — Lyn ™~ T (n - CD)

The last two assertions follow at once from the asymptotic expansion (151),
since we must have

which is (160).
Additional information about the zeros of J (2) can be obtained from the
recurrence formulas

(162) 2;"Jn(oc) = Jos(®) + Jor(2)

(163) 20, (%) = Jpoo(%) — J 1 y()

whose derivation is left as an exercise.
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If we add (162), (163) and divide by 2, we get

(164) I por(®) = an(x) + J,/(2)

while subtracting and dividing by 2 yields

(165) Tuss@) = 2T @) = J/@)
The last two relations can be written as

(166) (@ (=) = a"J,_y(x)

(167) @I @) = —a (@)

and we have

Lemma 4. Between consecutive positive zeros of J,(x) there is at least one
zero of J,4(2).

Proof. By Rolle’s theorem, the derivative of z—*J,(x) must vanish between
its zeros, and the result is clear from (167).

Lemma 5. Between consecutive positive zeros of J (%) there is at least one
zero of J,_,(x).
Proof. Same reasoning applied to (166).

Theorem20. The zeros of J () and of J,, (%) are interlaced, that is, between
consecutive positive zeros of one there is one and only one zero of the other.
Proof. From Lemma 4, J,, (%) has at least one zero between consecutive
zeros of J,(z) and from Lemma 5, J(z) has at least one zero between
consecutive zeros of J,,,(x). It follows that between consecutive zeros of
either, there is one and only one of the other, which was to be shown.
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Exercises

1.

Which of the hypotheses of Theorem 1 is not satisfied in (5)-(6)? in (7)?
in (8)? Prove your answers.

2. The solution of the equation

y'(x) = eov'd
y(1) =1
y@) =z

insomeinterval l <2< 1 4+ 8.

satisfies

3. For the system

,

y = —2ay*
%(0) =1

find, by Theorem 1 and then by Theorem 3, a neighborhood of the origin in
which a solution exists. What is the actual neighborhood? Can you
explain the large discrepancy ?

4. Write down the conditions on the coefficients of a Lagrangian formula in

order that it should be exact for 1, z, 22, . . . , =%,

5. We have already seen, in a previous chapter, an expression in closed form

for the error involved in using the trapezoidal rule over n steps. Where?

6. (a) Parameterize all possible stable three-point formulas which are exact

for 1 and =.
(b) What is the largest integer & such that there exists a stable three-point
formula which is exact for 1, z, . . ., z*?
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7. Determine the rate of growth of I'(z) on the linez = } + ir. (Hint. Follow
the argument leading to (132).)

8. A polynomial with only negative real zeros which is positive at the origin
has positive coefficients, obviously. The function [2T'(2)]"! has only negative
real zeros and is positive at the origin. Does it have positive Taylor coeffi-
cients?

9. Show that

Va © (vl + 1) vy + 1)
7 -1 { v+ } '

v=1

2
J (=) =A/7T—xsinx .

¥
S{t—1/t)
e2

10. Show that

11. (@) By multiplying eg(t—llt)

and
show that
Jo@ + ) = J(@Joy) — 2h(@ (1) + 2T o) - - -
(b) From the result of part (a), show that
1 =JHx) + 2J%=x) + 2J,%(x) + - -+

and therefore that for z real, [Jo@)| < 1, [J,@)| < 1/V2,forn = 1,2,...



chﬂter 6

Con—fo}mal mapping

6.1 INTRODUCTION

The study of conformal mapping is that of the mapping properties of
analytic functions. For a physical scientist the subject derives its usefulness
from the possibility of transforming a problem which naturally occurs in
a rather difficult geometric setting into another in which the geometry is
simpler. Fora mathematician much of the interest of this subject arises from
the study of the relationships between the analytical and the geometrical
properties of analytic functions.

The aims of these two kinds of workers are apparently divergent, the first
being primarily interested in constructing a map having certain desired
properties, the second, in the function-theoretic restrictions which are
imposed on classes of functions with certain broadly defined mapping
properties. It must be remarked, however, that any detailed consideration
of one of these kinds of questions can scarcely avoid involvement with the
other.

In this chapter we are concerned, for the most part, with the study of
broad classes of mapping functions rather than with details of technique.
First we discuss some basic ideas and definitions and then proceed to the
question of the kind of mapping that can be carried out by means of analytic
functions. The fundamental theorem dealing with this question, the Rie-
mann mapping theorem, will then be proved.

Following this we will consider a very general method for carrying out a
mapping of one set onto another and then certain more special methods
for accomplishing this object under more restrictive conditions. Some

189
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applications to physical problems follow. We conclude with a study of a
few of the more interesting particular classes of mapping functions.

6.2 CONFORMAL MAPPING

We say that a set D in the complex plane is connected if any two of its
points can be joined by a simple (i.e., not self-intersecting) continuous arc
(Jordan arc). D is simply connected if for every Jordan curve C (closed
Jordan arc) lying in D, the interior of C also lies in D. A connected set
which is not simply connected is called multiply connected. A domain is a
connected open set.

Now, let us visualize two complex planes, which we shall call, respectively,
the z-plane and the w-plane.f Let D be a domain in the z-plane, and let f(2)
be a function which is regular in D. With each point zin D we associate the
point w = f(z) in the w-plane. The set of all points so obtained is called the
image set, D', of D under the mapping f(z), and we sometimes write,
symbolically, D" = f(D). It should be noticed that some values w in D’
may be the images of several points of D, i.e., there may be distinct points
of D, z, 2y, . . ., 2, say, such that

J@) =fz) =" =[lz,).

We will say that such a point w is n-times covered by the map w = f(z) and
that D’ is n-times covered if this is true of every point win D’. Forinstance,
the map
w = 2"
carries the unit circle |z] < 1 onto the n-times covered unit circle |w| < 1.

Now, let D be a domainin the z-plane, and let C;, C, be two differentiable
arcs lying in D and intersecting at a point P of D. If f(2) is a function
regular in D, then, clearly, f(C,), f(C,) are differentiable arcs lying in
D’ = f(D) and intersecting at a point P’ = f(P). We say that the mapping
w == f(2) is conformal at P if, for every such pair of arcs, the angle between
C, and C, at P is equal to the angle between f(C,) and f(C,) at f(P). The
mapping is conformal in D if it is conformal at each point in D.

Theorem 1. For the map w = f(z) to be conformal at P, it is necessary and
sufficient that f'(P) # 0.
Proof. First we show that the condition is sufficient. Let the arcs C;, C,
be given parametrically by

7 = @(1)

2y = () 0=r=s1

t This designation seems to have originated with the German words zahl (number)
and wert (value).
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Figure 6.1

and suppose 2y, 2, are points on C;, C, at a distance d from P. Then
7 — P=de®, z,—P=de"

2, — P
2y — P

— ez‘(r)—sf)

Hence the angle between the chords E and I_’?Z isn — & As d— 0, then,
this must approach the angle y between the curves. That is

2y — P}
z, — P )
For the angle y’ between f(Cy) and f(Cy) at f(P), we have, similarly,

y = lim arg{

a-0

. f(z) — f(P)
vi=lmare {f(zo —f(P)}
[ f(z) — £(P) ]
— lim arg 29— P 2, — P|
1| fz) —f(P) s — P
t #—P
o WC5) z
= ‘111_1'1; arg {f’(P)} + igr; arg -
=0+y=y

since we supposed f'(P) # 0.
Conversely, we claim the condition f'(P) # 0 is necessary, for suppose it
fails. Then, say

fi(P)=f"(P) =+ =fa1(P)=0
for some ¢ = 2, whereas f@(P) # 0. Then, near P, we have

f@=fP)+ 0k —2)" (2—2)
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and therefore

9" = lim arg

lf( 2) — f(P)}

a0 f(z) — f(P)
. (4
= lim arg { oz — PV + }
a0 afz; — Py +
= lim arg {( )
-0
=g lim ar, =
q o g 2 — P qy

which shows that the angle is magnified by ¢, and therefore the map is not
conformal.

6.3 UNIVALENT FUNCTIONS

For a given domain D in the 2-plane we are now in possession of two
properties of an analytic function f(z) which are “nice” to have, namely,
(i) /() should yield a conformal map of D and (ii) f(2) should take no value
twice in D, so that f(D) is only once covered.

A function f(z), regular in a domain D, which takes no value twice in D
is said to be univalent in D. An alternate definition is that

22— 2

Z, %2 1n D,

If /(z) is univalent in D, then f(D) is once covered and is called a schlicht
domain. Sometimes one speaks of a schlicht function as equivalent to a
univalent function, but we reserve the word “univalent” for functions and
“schlicht” for domains.

Now, suppose f(z) is regular and univalent in D; then we claim that
f'(®) # 0 in D. For, suppose the contrary; then f'(z,) = 0 for some z,
in D. Then near 2,

@ 1@ = f(zo) +f—"(2z—°)<z — 2l +

and f(2) — f(z,) has a double zero at z = z,, that is, f(z) assumes the value
f(zy) twice at z;, contradicting the assumption of univalence. Actually, (2)
shows that near z,, f(z) — f(z,) behaves like (z — z,)* and therefore assumes
all values in a neighborhood of f(z,) at least twice.

Consequently, we have shown that a univalent map is conformal. The
converse of this proposition is false, as can be seen, for instance, from the
functiorr

3) f@ =0 +2"—1
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whose derivative clearly vanishes nowhere in the unit circle |z| < 1, but
which takes the value f(z,) at each of the points wz, — (1 — ), where wis
any one of the nth roots of unity. It is easy to see that several of these
points can lie in the unit circle, so that this function is not univalent in
|z] << 1. The property of univalence is considerably more sophisticated
than that of conformality.

Theorem 2. If f(z) is regular and univalent in D, then f(z) maps D con-
Jormally onto the schiicht domain f(D), the converse being false, in general.

6.4 FAMILIES OF FUNCTIONS REGULAR ON A DOMAIN

The purpose of this section is to generalize the well-known classical
theorem which asserts that a continuous function defined on a compact set
attains its maximum value at a point of the set. Our objective is a theorem
about families of analytic functions to the effect that if we have a functional
defined on a family of such functions, that is, a rule which assigns a number
to each function in the family, then that functional attains its maximum
value on a certain function of the family. Clearly we need first to generalize
the notion of compactness to such situations.

Definition 1. Let F be a family of functions defined and regular on a
domain D. The family F is locally uniformly bounded if for each point {
of D, we can find a number M and a neighborhood U of {, such that

/@&l = M
for all z in U and all f(2) in F.
Definition 2. The family Fis said to be equicontinuous if for every compact
subdomain G of D and ¢ > 0 we can find é > 0, such that

[f(z) — fz)] < e

if {2, — 25 << 6, 2, 2, in G, for every function f(2) in F.
Definition 3. The family F is called a Montel family of functions in D if
(i) in any sequence f(2), f5(2), . . . of functions in F one can find a sub-
sequence f; (2), f,(2), . . . which is uniformly convergent in every compact
subdomain of D.
(i) every convergent sequence of functions of F has a limit in F.

Definitions 1 and 2 are simply definitions of bounded functions and con-
tinuous functions with the added proviso that the choices of the parameters
can be made uniformly for all members of the family. Definition 3 is
obviously a generalization of the idea of a compact set, where (i) is
essentially a boundedness condition and (ii) a closure condition.

Now let Fbe a given family. A functional H[ f]on Fis simply a rule which
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attaches a real number to each member of F. For instance, if Fis the family
of functions f(z) defined and regular in |z| < 1 and satisfying there

/@I =1

then we may assign to each fin F the number

2r
His) = = [“1raen a0
A functional H[f] is continuous if
lim £,(2) = £(2)

where f;, f5, . . ., fare all in F, implies
lim H[f,(2)] = H[f].

n=rw

We can now prove

Theorem 3.t A continuous functional defined on a Montel family F attains
its maximum modulus on a function f(2) in F.
Proof. Let L denote the least upper bound of |H[f]| as f ranges over F.
Then there is a sequence {f,(z),™ of functions of F such that

lim |H[f,)]| = L.
Since F is a Montel family, there is a subsequence {f,, (2)};2; which con-
verges to a function f(2) in F. Then

IHLf@]I = }cim [HL /@]
=L
which shows, first, that L < co and, second, that H[ f] attains its maximum
on f(z), proving the theorem.

Now, in the definition of a Montel family the condition (i) is rather
difficult to verify, in particular cases, as it stands. Thus we require certain
other, more accessible properties of families of functions which will imply
that a convergent subsequence can be extracted from every infinite sequence.

This more accessible property will turn out to be that of local uniform
boundedness. We need first a2 few introductory results.

Lemma 1. Let the family F be locally uniformly bounded in D. Then the
same is true of the family F’ of derivatives of functions of F.

Proof. Let { be a fixed point of D. Then there is a number M and a
neighborhood U of { such that |f(2)] < M for allzin U, fin F. In U,
centered at {, draw two concentric circles C,, C, of radii 4, 20, respectively.

T Montel [1].
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Then for |z — | < 6 we have

1 Jm)dn
e = (21 c:(n — 2)?
§lM- 47d
27 6%
_m
0

Hence with the point £ we associate the neighborhood U’: |z — {| < dand
the bound M’ = 2M/8, and the lemma is proved.
Lemma 2. Let the family F be locally uniformly bounded in D. Then Fis
equicontinuous in D.
Proof. Let G be a closed subdomain of D. By Lemma 1, |f'(z)| < M,
where M does not depend on f (), throughout G; for otherwise there would
be a sequence of points {z,},” converging to a point { of G, and a sequence
{f,(2)},” of functions of F such that | f,'(2,)|>_; is unbounded. But then F’
would not be uniformly bounded at £.

Thus, for fixed 2, in G and all z, near z,

1f(z) — f(z)| =

[rea
= Mz — 2z

which can be made less than ¢ for all fin F by keeping z, close enough to z,
the phrase “close enough” being independent of the particular f chosen.
Lemma3. Let {f,(2)},” be a locally uniformly bounded sequence of ana-
Iytic functions in D, and suppose the sequence converges at a set of points
which is dense in D. Then the sequence is uniformly convergent on every
compact subdomain G of D.

Proof. Let e >0 be given. Around each point { of G draw a circle of
small enough radius so that

[fa(®)-— f(D] < &

for all z in the circle and for all #. This can be done because, by Lemma 2,
the family is equicontinuous. Since these circles cover G and G is compact,
we can, by the Heine-Borel theorem, extract a finite number of these circles,
Cy, . . ., Cy, say, which cover G. Since the sequence converges at a dense
set of points, there is in each circle C; a point {; at which it converges.
Since there are only m circles, it follows that for p and » large enough,

B —fll <& (j=12,...,m)
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Now, let z be any point of G. We claim the sequence converges at z.
Indeed, 2 is in some circle, say C,, centered at ;. Then

[fa2) — @] = | fa®) — fu(n3) + fu(ny) — fu(L))
+ f2(&) — &) + 18 — fo(n)
+ fo(n5) — [
= @) — Ll + | fa(ms) — fo(L)]
+ | ful8) = flED| + 11D — ()]
+ 15(n5) — £

The first two and the last two terms are <& because of the construction of
the original circles. The third term is < e because the sequence converges
at {;. This shows that the sequence converges at all points of G. To show
uniform convergence it is only necessary to observe that the size of p and n
large enough to make | f,(z) — f,(2)| small does not depend on which point
z in the circle C; was chosen. Since there are only finitely many circles, the
largest p and # occurring in any of them will work uniformly for all points
of G.

Theorem 4. (Montel’s Theorem). Let F be a family of functions regular in a
domain D and satisfying (i) F is locally uniformly bounded in D and (ii) every
convergent sequence of functions in F has a limit in F. Then F is a Montel
JSamily, and therefore every continuous functional defined on F assumes its
maximum modulus on a function of F.

Proof. Referring to the definition of a Montel family, what we have to
prove is that every infinite sequence of functions of F has a convergent
subsequence.

Let 2, 25, . . . be a sequence of points which is dense in D, for instance,
the set of all points whose real and imaginary parts are rational numbers
and which lie in D, and let f;(2), f5(2), f5(2), . . . be an infinite sequence of
functions of F.

For the point z; we can, by hypothesis, find a number M; such that
| f2(z)] = M, for all n. But this means that the sequence of numbers
fi(z), fo(z), . . . all lie in a finite circle, so there must be a subsequence of
these numbers, say

.flcl(zl)’ /0 N
which converges, that is, the sequence of functions
) AR AC NS

converges at the point z;,. Passing to the point z,, we consider the functions
(4) as before, and they must have a subsequence

&) fll(z)a fzz(z)’ ce
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which converges at z, and z, also. We continue this process, passing
successively to zg, 24, . . ., each time refining the sequence further.

Now we exhibit a single sequence which converges at all the points
2y, 29, . . . at once. The first function of this sequence is the first function
in (4), the second function is the second function in (5), . . ., the nth function
is the nth function in the list of those surviving after point z,,, etc. We claim
this sequence converges at each of z, 2,, . . ., for let z, be any fixed one of
these points. Then every term in our sequence beyond the gth was also
contained in the sequence of functions which remained after treating z,.
But that sequence converged at z,; hence so does the refined sequence.
Since the points z;, 2, . . . are dense, our theorem is proved by Lemma 3.

\

6.5 THE RIEMANN MAPPING THEOREM

We are now in possession of sufficient apparatus to deal with the central
problem of the theory of conformal mapping: Given domains D, D/, is
there an analytic function which maps D onto D’? ‘We restrict attention to
the cases where D, D’ are schlicht and simply connected.

Suppose D consists of the entire closed plane with the exception of a
single point z, and that D’ is the interior of the unit circle. We claim that
there is no analytic function which maps D onto D’. For, suppose f(z)
were such a function; then f(z) is regular everywhere in the plane except at
z, and satisfies | f(2)] = 1. But then

£@) =f( )

z—1

1s regular throughout the finite plane and satisfies
lg@] = 1

everywhere; hence, by Liouville’s theorem, g(z) is a constant, which is
impossible. Consequently, no such mapping exists. We may say then that
a domain with just one boundary point is not conformally equivalent to the
unit circle.

Now let D, D’ be given schlicht simply connected domains. Suppose that
each of the domains D, D’ is conformally equivalent to the unit circle.
Then we claim that they are conformally equivalent to each other. Indeed,
if

wy = f1(2)

maps D 1-1 onto |w;] < 1 and
wp = fo(2)
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maps D’ 1-1 onto |wy| << 1, then, since f5(2) is univalent in I, the inverse
function f,1(w,) is well defined and regular in the unit circle |w,| < 1 and
maps it onto D’. Hence the function

w=f@)=f,(h(z) (zin D)
maps D 1-1 onto D', as required. We are now ready to state

Theorem 5. (The Riemann Mapping Theorem). Let D, D' be schlicht,
simply connected domains, each with more than one boundary point. Then
there is a function f(z), regular and univalent in D, which maps D 1-1
conformally onto D'.

The effect of the remarks preceding the theorem is that, first, the hypoth-
esis concerning boundary points cannot be relaxed and, second, that in
order to prove the theorem, it is enough to show that a domain D satisfying
the conditions in the theorem can be mapped 1-1 onto the unit circle
|wl < 1.

For the proof of Theorem 5 we need four preliminary results—three of
which will be proved here—the fourth being a standard result in the theory
of functions whose proof may be found in any text on the subject.

Lemma4. (Hurwitz). Every zero of the limit function f(2) of a convergent
sequence of analytic functions is a limit point of zeros of the members of
the sequence. Precisely, if {f,(2)},” are regular in a domain D and converge
to a nonconstant function f(z) regular in D, then for every { in D at which
J(&) = 0, and every circle |« — {| < 6 about [, there is a zero of each £,(2),
for n > N, in the circle.

Proof. By reducing 4, if necessary, we may suppose that f(z) vanishes, in
|z — | = 9, only at [, since f(z) is not constant. Then on the circumference
|z — | = & we have, first, | f(2)] > u > 0and, second, |f,(a) — f)| < y,
for all large enough #, and some number u.

Now, write

S = f(@) + fu(z) - f(2)
and observe that on [z — {| = § we have
|f(2) — f@)] <[f(2)
and therefore, by Rouché’s theorem, £, (z) and f(2) have the same number
of zeros inside |z — {| < 6, namely, at least one, which was to be shown.

Lemma 5. Let F be the family of all functions regular and univalent in a
domain D. Suppose Fis locally uniformly bounded in D and that thereis a
point « in D and a number § > 0 such that

If' (=0
for all f(2) in F. Then F is a Montel family in D.
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Proof. Inview of Theorem 4, what we have to show is that a convergent
sequence of functions of F has a limit in F. Suppose f,(z), fo(2), . . . is such
a sequence, and let f(2) denote the limit function. Suppose f(z) is not
univalent in D. Then there exist z, in D, z, in D, 2z, % z, such that

S() = f(z2)

Then the sequence of functions £,(2) — f,(2,) vanishes nowhere except at z;,
while the limit function f(z) — f(2,) vanishes also at z,, contradicting
Lemma 4 unless f(2) is a constant. But this possibility is ruled out by the
hypothesis | f,/(0)] = 6 > 0(n = 1,2,...), proving the lemma.

Lemma 6. The mapping

©) = - ) am<p

maps the unit circle onto itself.
Proof. Since w is regular in |z| = 1 it is enough to show for |z| = 1 we
have |w| = 1. Butifz = €?,
|1 —fel = 11— fe| = |e — B
= |e* — f]
=z — Bl

An easy calculation shows that the mapping is univalent.

Lemma 1 (The Monodromy Theorem). Let f(2) be regular in a circle
|z — 25| = 4. Let D be a simply connected domain containing z, and having
the property that if 2, is any point of D, then f(z) can be analytically con-
tinued from z, to z,, along every path joining z, to z; and lying in D. Then
the value obtained for the continued function at z, is independent of the
particular path chosen for the continuation, so that the original functional
element centered at z, generates a uniquely defined analytic function
throughout D.
Proof. We do not prove the monodromy theorem here, for this is done in
most books on analytic function theory. We remark that the proof is quite
deep, necessarily involving the topological properties of self-intersecting
polygons quite intimately, and therefore many of the proofs given are not
quite complete. A second comment is that sometimes the theorem is stated
quite briefly as **a function regular in a simply connected domain is single-
valued there,” but this author takes the view that a function is by definition
single valued, which forces the considerably longer statement given above.
We proceed now to the proof of the Riemann mapping theorem, suppos-
ing that a schlicht domain D is given and that it is desired to construct a
function f(z) mapping D 1-1 conformally onto |w| < 1.
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Since D has at least two boundary points, we may suppose z,, z,, 2, 7 2,
are both boundary points of D.
Consider the function

©6) W) = | =2
2 — 2

defined for z in D. The meaning of the function (6) is that we choose any
particular determination of the square root at one point of D, and define
h{z) throughout D by analytic continuation from that point. The mono-
dromy theorem assures that we will not “step on our own toes” in the
process and that A(z) is thereby well defined and regular in D. Itis trivial to
see, by assuming the contrary, that A(z) is univalent in D.

Next, we claim that if w is a point in A(D) then —w is not, for suppose
W) = w, h(n) = —w, then

s_l—m_n—n

{—2 n—2

w

which implies { = 7.

Now, since A(D) is a domain, it is in particular an open set. Hence, if w,
is in A(D), so is a neighborhood |w — wy| < d in A(D). Thus the negatives
of all the numbers in that neighborhood are not in A(D), i.e., the numbers w
in [w + wg| < & are not values of h(z). We therefore have |h(z) + wo| = 6
for all z in D. It follows that for the function

me) = —>—

h(z) + wo
we have |h;(z)] =< 1 for all zin D, so we have constructed a function which
maps D 1-1 into (not onto) the unit circle |w| < 1.

Next, let F denote the family of all functions f(z) regular and univalent
in D and satisfyingin D: (i) |f(z)| = l and (i) | f'(0)| = |A'({)|, { being a
fixed point of D. By Lemma 5, Fis a Montel family in D and is surely
nonempty because 4y(2) is in F.

It follows that the continuous functional

Hf]1 =1

assumes its maximum value on a function fy(2) of F, that is, there is a
function fy(z) in F such that

LDl = /D

for every f(2) in F. We claim that this function f(2) is the function we seek,
and it maps D 1-1 conformally onto |w| < 1. Indeed, since fy(z) is in F,
we already know that it is univalent in D and maps D into [w| < 1; we
have only to show that f(z) omits no value win |w| < 1.
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Thus, suppose fy(z) does omit the value w,, where |wy| << 1. Then we will
construct a function f,(2) in F for which | f,/(0)] > | fo'(D), contradicting
the extremal property of fy(2). In fact, if we write

_ wo — fol2)
Y 10 = [P

2z
1 fl(Z)fl( )
then we claim that f,(2) is such a function. For, first, f3(2) is in F since fy(2)
was in F, and the transformations (7), (8) do not disturb the univalence or
the boundedness, according to Lemma 6. Next, we calculate the derivative

of fy(z) at z = {. To do this let us first show that f({) = 0. For consider
the function

fo(z);fo(g) ]
1 — fo(Dfe(®

For this function, which belongs to F, we have

[1 — /Dfu@1fs @ + [fo2) — DI/ (2)
[1 — foOfe@ ]

[L = fDF1f' @
[1 — IA6DPF

__ o
1= 1fDP

If fo(0) were not zero, we would have |¢'({)| > |f,'({)|, contradicting the
extremal property of fy(z). Hence f({) = 0. Now, from (8),

y(z) =

Yi(z) =

and therefore

p'({) =

. A
9 =_J15)
) 10 RIS
whereas from (7), o
A = \/!Wo
’ 'WOI
10 1 C =
(10) A 5 \/ - 5.
Substituting (10) into (9), we find
fy = -1l gy

2J/wo
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Hence
15501 =3 3'%' £ Q)
AN AR TG
> | fo (DI

where we have used the fact thatz + 1/x > 2for0 <<« < 1. Theassumption
that f(2) omits some value in |w| << 1 has therefore led to a contradiction
and the theorem is proved.

6.6 A CONSTRUCTIVE APPROACH

The proof of the Riemann mapping theorem given in the preceding
section was not constructive in that the existence of the desired mapping
function was proved withoutexhibiting the function explicitly or even giving
an algorithm for calculating it. Yet the argument does contain the germ of
such a constructive procedure, which is readily adapted to automatic
computation methods.

Indeed, the key step in arriving at a contradiction was the demonstration
that if £(z) omitted some value on |w| < 1, then the successive transforma-
tions (7), (8) would increase | f'({)|. One may suppose that the iteration of
the process (7), (8) starting from any function fy(2) satisfying | f(2)| < 1and
Jfo(0) = 0 will continually increase | f'({)| and so will converge to the desired
mapping function. The proof that this is in fact the case is sufficiently
similar to what has already been shown to be omitted. We content our-
selves with an explicit statement of the algorithm in question, the method of
Koebe image-domains. T

Given a simply connected domain D with two boundary points (at least),
215 Zp,

(@) take fy(2) to be the function

which maps D into |w| < 1.
(b) Having determined fy(2), f1(2), . . ., fo.(2), let z = a be the boundary
point of f;,(D) which lies nearest the origin. Define

an Fonri®) = Jf‘T’;%
- 2n

f2n+1(z) - on+1(€)
12 - ea(2) = =0,1,2,...
1 = e )

T Koebe [1].
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then

lim f,,(2) = f(2)
is the desired mapping function, mapping D 1-1 conformally onto
wi < 1.

6.7 THE SCHWARZ-CHRISTOFFEL MAPPING

In certain cases where the given domain D has a particularly simple
shape, the desired mapping function can be written down at once. One of
these situations arises when D is a polygon.

Let C be a Jordan arc in the z-plane and f(z) a function which is regular
in some domain containing C. Let &, % be vectors tangent to C and f(C),
respectively, at the points P, f(P). Then we have

. Az
13 = lim —
43) : Azl-»o|Az|

. Aw
14 = lim —
a4 K Aw—o |Aw|

the limits being taken through points P + Az, f(P) + Aw which lie on C,
f(C), respectively. Further, if we regard &, # as the complex numbers (13),
(14), then at P,
. Aw
‘(?) = lim —
A% Azl—>0 Az
. ( Aw [Aw
=lim |— | —
az—0 \JAw| | Az

=77 f'@)|

ﬁ)
|Az]

and we have, clearly,

(15) arg f'()) = arg n — arg £.

In the particular case where C is a portion of the real axis, arg & = 0,
arg f'(z) = arg n, and we see that the slope of the image curve at a point

f(P) is simply arg f'(2).
f(®) K

p ¢ f(C)

z
-
Figure 6.2
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Now, let
G <a<---<a,

be points of the real axis, and consider the function f(z) whose derivative is

(16) f®) =Bz — ay™(z — a) ™2 -+ (z — a,)
For this function we have
(17) argf'(x) =argB — kjarg(z —a;) — -+ — k,arg (z — a,).

Now, visualize the point z as moving from left to right along the real axis,
starting to the left of the point 4;. When z <C a;, we have

arg(z —ay) =arg(z —a,) =+ - =arg(z —a,) =7

whereas for a; <z < a,, arg (z — a;) = 0, the others remaining at =.
Hence, as z crosses a, from lefttoright, arg f”(z) increases by k7. Itremains
constant for g, < z < a, and increases by k,7 as 2 crosses a,, etc. In view
of the remark following (15), then, the image of the segment — 0 <z < a,
is a straight line, the image of a; <z < a, is another whose argument
exceeds that of the first by k;7, and so on.

If we constrain the numbers &y, &, . . ., k,, to lic between —1 and 1,
then the increments in the argument of f”(z) will lie between —m and .
Further, fork, < 1,k, < 1, ..., k, < litis obvious that the function f(z)
whose derivative is (16) is actually continuous at each of the points a,,
ay, . . ., a,, and therefore the image of the moving point z will be a po-
lygonal line.

The sum of the exterior angles of this polygonal line is

kyr + ko + -0 + ko
If this is 27, i.e., if

(18) ki +k++k, =2
the polygon will be closed. If all k; > 0, the polygon will be convex.

ay a3 | a3 .- @Qn

Figure 6.3 -
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Integrating (16), we have the result that the function

19 16 =B[ @ —a) ¢ — e —a) M 4 C

maps the z-axis onto a polygonal line which is closed if (18) holds. The
mapping (19) is the Schwarz-Christoffel transformation.

6.8 APPLICATIONS OF CONFORMAL MAPPING

The utility of conformal mapping methods in the physical sciences
results principally from the fact that, roughly speaking, a harmonic function
of a harmonic function is harmonic.

More precisely, let g(u, v) be harmonic in a region D’ of the u, v plane,
that is

Py Do
Vig=—""L+_—TL=0

Y= e o
holds for all (u, v) in D’. Suppose the mapping

u = u(z, y)
v = oz, 9)
maps a region D in the z-y plane 1-1 onto D' and that u(z, ¥), v(z, ¥)
are conjugate harmonic functions in D. We claim that the function
O(z, y) = @(u(=, y), v(=, ¥))

is harmonic in D. Indeed, for z, ¥, in D,

@, = 9,4, + @0,
Q, = pu, + ¢,
Dpp = Pulle + UpPrz + Polaz + VoPuz
= Qulhgs + U(Pushe + Pusls) T Polug + 0Pouths + Prubs)
Q,, = gty + U (@uaity + Quuts) + P04 + 0@ty + PuDy)-
Hence
VED(2,y) = @uter + 1) + @t + 97 + Pty + 1,0,)
+ @uVas + Vy) + Poutn + v4) + @07 + 07
= @7 + 10 + 20,00, + up) + 07 +0,7).
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However, by the Cauchy-Riemann equations,

U, = v,

this becomes

(20) VZ(D(Q;’ y) = (ua:2 + u’yz)((Puu + (p'zm) + 2‘puv(l7acvy - Uzvzl)
= 0.

Theorem 6. Let ¢(u, v) be harmonic in a region D’ of the w-plane, and let
w = f(2) map a region D of the z-plane 1-1 onto D'. Then O(x,y) =
@ (Re f(2), Im f(2)}) is harmonic in D.

This simple result enables one to transform problems in difficult geometry
into simple geometry, solve them, and transform the answer back again.

As an illustration of the method, as well as of the Schwarz-Christoffel
transformation, we consider the following problem: Find a function
@(, ¥) which is harmonic in the half-strip

D: —Z<az<I y>o0
2 2

of the 2-y plane and satisfies on the boundary of D the conditions

h{—gw)=0=¢6}ﬁ (y>0)

| ¢(=,0) =1 (—f<x<f.
| 2

2
Now, suppose it has been shown that the successive mappings
21 w; = sin z
-1
2 w = log &
(22) g1

map D onto the upper half of the wy-plane, and then onto the horizontal
strip

(23) D" 0<Imw<m

of the w-plane, in the manner shown in Figure 6.4.

If this be granted, for the moment, then we see that the side BC.D which
carries the boundary condition ¢ = 1 is mapped onto the line Im w = =,
while both of the sides carrying the condition ¢ = 0 are carried into
Im w = 0. Hence we need only find a function harmonic in the strip D",
vanishing on the lower boundary, having the value unity on the upper
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Figure 6.4

boundary, and then map it back to the z-plane. The required function is
evidently
24 1 Imw

ks

which is clearly harmonic and assumes the correct values on the boundary.
We now proceed to unravel the mappings.
If (u, v), (uy, v,) are the real and imaginary parts of w, w;, respectively,

then from (22),
w1 ‘ + itan™! {—-——201 }
w; + 1 Ut 4+ v — 1

w = log
and the function (24) is

(25) 1ian— {2—2”12—}
T Uy +oy" — 1
which is harmonic in D’, by Theorem 6. Continuing, (21) gives
u; = sin z coshy
vy = cosz sinhy
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and substituting in (25), the solution of our problem is

N2 [cos |
(26) o(x, y) = - tan ls—inh ” J

It remains to show that the functions (21), (22) have the mapping proper-
ties claimed for them. We show this for (21), leaving (22) as an exercise.
Rather than merely verifying that (21) does carry D into D', we will pretend
not to know the answer and use the Schwarz-Christoffe] formula to find the
function which maps the upper half-plane onto the region D in the w-plane;
and then the inverse of that function will be the one we seek.

Now, consider this strip D as a limiting form of the triangle ABC shown
below as the point C tends to #/2 4+ joo. The exterior angles have the
limiting values

7'rk1=71 ke =— wky=m
2
and the transformation (19) has the form

f@) = B_ra +2)7 M@ — 1) %dr + C,

where, in accordance with the labeling of points in Figure 6-4, we have

chosen q; = —1, @, = 1, a3 = co. Performing the integration
z dzl
z) = iBf —+C
10 =iB) e+ G
= iBsin"lz + C,.

If the constants are fixed so that f(—1) = —=n/2, (1) = #/2, we find
f(z) = sin"1z

as required.

/
s
k3 (/
~c
s
7
e
/
s
/s
7
s
// ko
A7 B
gt g ™
2
z k1 2

Figure 6.5
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6.9 ANALYTICAL AND GEOMETRIC FUNCTION THEORY

We conclude this chapter with a short discussion of the interplay between
the geometric and analytic properties of mapping functions in general.
Our first result concerns functions which map the unit circle into itself.

Theorem 7 (Schwarz’ Lemma). Let f(2) be regular in |2| < 1 and let it
satisfy the conditions: (i) f(0) = 0 and (i) |f(z)| <1 for |2| < 1. Then,
actually,

27 If@ = lel (2l <1).
Proof. The function g(2) = f(2)/z is also regular in |z| < 1. Hence, in the

circle (2| = p, g(2) attains its maximum modulus on the circumference
|z| = p. Thatis, for |z| < p,

lg(x)|

i

max |g(z)|
lzl=p

T max 1f )|

P z|=p

which says that for |2| =< p,

Making p — 1, we have (27).

Next, we introduce the important idea of subordination. Roughly speak-
ing, if we have two functions f(z), g(z) defined in a domain D, g(2) is
subordinate to /() if g(D) is contained entirely within /(D). More precisely,
suppose f(z) is regular and univalent in D, that g(z) is regular in D and that
every value taken by g(z) in D is also taken by f(z). Then we say that g(z)
is subordinate to f(z) in D.

Theorem 8.F Let f(2) and g(z) be regular in |2| < 1, and suppose
D=f(d <1

is a convex, schlicht domain. Further, suppose g(2) is subordinate to f(z) in
|z < 1, and that f(2), g(z) have the expansions

f&=3ax

g(z) = b2
v=1
t Lowner [1].
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Then
(28) bl < lal (=12,...).

Proof. This result states, roughly, that geometric dominance is manifested
in coefficient dominance in the power series expansions. Note, however,
the key hypothesis that f(]z] < 1) is convex and schlicht, without which the
theorem is false.

Proceeding with the proof, since g(|z| < 1) is contained in f(|z| < 1), the
inverse function of /(2), f~1(z) (the function mapping D onto [z| < 1)is well
defined at the point g(z), for any |z| < 1. Hence the function

h(2) = " (g(2))
al
isregularin |2| < 1, satisfies |A(2)| < 1 there, and clearly #(0) = 0. Accord-
ing to Schwarz’s lemma, |#(z)] = |z|; but this obviously requires

(29) by =1
4
which is (28) with » = 1. Now, suppose that #;, %, . . ., #,, are the m mth
roots of unity, and consider the function
G() == Z g™
mg=
1 < < v, V m
= z b’z !
mrr=1v=1
1 @

m
(z ) vim
mv= 1 k=1

= b2 + by + by, 22 + -

Now G(2) is the center of gravity of the points g(#,2/™), . . ., g(1n,2™),
all of which lie in g(|z] < 1) and, therefore, also in f(|z] << 1) = D. Since D
is convex, the center of gravity lies in D, that is, G(2) is subordinate to f(2).
Then (29) applied to G(2), f(z) gives

|b‘m| é Iall (n1 = 1: 2, < ')
which was to be shown.

Two applications of this theorem are immediate.

Theorem 9.f Let the function

SO =z +ag+ -
Tt Gronwall [1}, Lowner [1}].



§6.9 CONFORMAL MAPPING 211
map the unit circle onto a convex, schlicht domain. Then

30 la,] <1 n=12...).

Proof. Take g(z) = f(2) in the previous theorem.

Theorem 10. Let the function
f(z)=%+alz+a222+---
map the unit circle into the right half plane (i.e., suppose f(2) has positive real
part in the unit circle). Then
(3D la,| <1 n=12..)).
Proof. The function

fl)=—"— =2t 2+ P+
1—2z2

maps the unit circle onto the schlicht convex domain Re w > — 1. The
function f(z) — }is subordinate to f(2), and the result follows by Theorem 8.

Theorem 11.1  Let the function
(32) @& =2+ azt+ -

be regular in the unit circle, and suppose the coefficients a,, as, . . . are real.
Suppose, further, that f(2) is not real if z is not real. Then

33) la,l =n  (n=2,3,4,...).
Proof. We have for r < 1,
f(re®) = u(r, 6) + iv(r, 6)
— z anrneino
whence "

o0
o(r, 0) =Y a,r"sin nf.
n=1
Solving for the coefficients of this Fourier series,

(34) =2 f"u(r, G)sinnddd (n=1,2,...).

T Y0

T Rogosinski [1]
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Now our hypotheses state that ¥(r, ) does not change sign when
0 < 6 < m. Hence

. = |2 f o(r, 6) sin nf d6

T V0

_ |2 f "u(r, 6) sin 6 3010 d@/
T V0 sin

(35) < 2" "(r, 6) sin 6 d6

b 0

= na,r

= nr

where we have used the inequality

sin nf

(36) =n (O<O<m).

sin 8
The result follows by letting r — 1 in (35).
Theorem 12. Let the function

J@ =z+ag+ -

be regular and univalent in |2| <1, and suppose the coefficients a,, ay, . . . are
real. Then

37 la ) <=n  (m=1,2,..).

Proof. We claim that this function satisfies the conditions of the previous
theorem. For, if not, f(z,) would be real for some 2, which is not real, and
we would have

o) = fo) = fGy)

contradicting the univalence of f(z) and proving the theorem.
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Exercises

1. What are the images of the unit circle |2] < 1 under the mappings

2z

@ e
14z
®) w=1—-

2. Show that the above functions are univalent in [z| < 1.

3. Let g(2) be univalent in D and f(z) univalent in g(D). Then f(g(2)) is
univalent in D.

4. The function

fA=0+2"~1

is surely not univalent in |z| <1 if n = 6, even though f'(z) # 0 there.
In fact, f(2) takes the same value at some two points of the circle

2| <

(Hint. Apply (37) to f(R2)).

. Show that the function (22) has the mapping property claimed for it.

. Find a function which maps the unit circle onto the strip |Re w| < /2.

7. Using the result of exercises 1, 2, show that (30), (31) would be false if the
number 1 were replaced by any smaller number.

8. Similarly, show that (33), (34) would be false if n were replaced by anything
smaller.

9. Does the function

f(z)=3+z+7Z2+4z3+4z4+...

n—1"

[« %]

have positive real part in the unit circle?
10. The maximum modulus of a certain function

[ =z4az22+ -
on the circle |z| = r < 1is #/(1 — r)*, the a; being real.
(@) Can f(|z] < 1) be convex?

() Can f(Jz| < 1) be schlicht?
(¢) Can f(2) take a real value off the real axis in |z| < 17?
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11. A function ¢(x, y) is subharmonic in a region D of the z-y plane if
Vip(z,y) >0

for all points of D. Is this property invariant under a conformal mapping?
12. Among all functions regular and univalent in the upper half-plane and
mapping it onto the unit circle, find the one for which | £(2)| is largest.



chapter 7

Extremum problems

7.1 INTRODUCTION

In this chapter we study certain kinds of maximum-minimum problems
which lend themselves to solution. In its most general setting (though we
study only specific ones), an extremum problem consists of a set of objects
together with a rule which assigns a number to each object in the set. Itis
then required to find che largest (smallest) number assigned by the rule to
any member of the set and to describe the members, if any, for which the
maximum is attained.

Example 1. Let n be given, and let & be the set of all polynomials of degree n
whose highest coefficient is unity. To any f(z) in &, assign the number

H[f] = max |f(z)|.
—1=z=<1
What is the minimum value taken by H[f]? What polynomial gives HIf] its
minimum value?

Example 2. Down which curve joining the points (0, 1), (1, 0) will a ball roll
in the shortest possible elapsed time? The set here is the set of all continuous
curves joining the given points. Assigned to each such curve C is a number T[C]
which is the time of descent.

Example 3. Let & denote the set of all functions
fO=2z+a2%+ -

regular in |z] < 1, and univalent there. To each such f(z) assign the number |ag|.
What is the maximum value of this functional ?

215
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Example 4. What is the shortest possible way, starting from Washington D.C.,
to visit each state capitol exactly once and return home? The reader may

supply the set and rule in question.

Example 5.1 How badly can one err by calculating the reciprocal of the
average of a function instead of the average of the reciprocal? Precisely, in the
set & of all decreasing, concave functions joining (0, «) to (1, §) which one
maximizes the functional

HIf] = { fo oy L ' }%}_17

These examples were chosen primarily to display the diversity of possible
extremum problems. A rather wide range of difficulty is also shown. In-
deed, in Example 3 the answer is unknown. In Example 4 there are only
finitely many possibilities, so that, in principle, the problem is trivial; in
fact, however, since 50! is rather a large number, the practical question of
solvability turns on the efficiency of any proposed algorithm, and in that
sense the problem is unsolved. The other three examples have yielded to
more or less difficult analyses, and the answers are known.

The first question that arises concerns, of course, the existence of a maxi-
mum rather than merely a least upper bound (possibly infinite). In physical
applications this is not ordinarily an over-riding consideration, the existence
being intuitively clear. Yet, in the final analysis, settling the question of
existence normally involves establishing the continuity of the functional and
the compactness of the set &#. The first of these is ordinarily obvious,
although the second can be quite troublesome, as we saw in the previous
chapter. Since the question of compactness was considered at length in
that chapter, we are here disposed to relegate it to the background and to
concentrate on methods for finding the maxima, when they exist.

7.2 FUNCTIONS OF REAL VARIABLES

To start with a simple situation, suppose there is given a continuously
differentiable function f(z) defined on the finite, closed, real interval [a, b].
Suppose we know that at a certain point £ of that interval we have f'(£) = 0.
Then we may, with absolute confidence, assert that at the point & the func-
tion has either a local maximum, a local minimum, or neither, the three
possibilities being illustrated, respectively, by —a?, 2% a®atz = £ = 0. In
other words, we know no more than previously.

To put a converse problem, suppose the point # = & gives an absolute
maximum to the function f(z) on the interval [@, b]. Isf'(£§) = 0? That the
answer is again in the negative can be seen by considering f(z) = z~! on the

1 Wilkins [1].
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interval [2, 3]. By way of review we summarize the positive assertions
which can be made in this case.

Theorem 1. Let f(x) be twice continuously differentiable on the finite interval
[a, B]. Let &y, ..., &, be the interior points of (a, b) at which ['(x) vanishes.
Then the absolute maximum (minimum) of f(x) on the interval [a, b] is among

the numbers f@, f(&),s -« -, f(E), f(B).

Further, if at &, we have f"(£,) < 0(>0), then the point x = &, gives to the
Sunction f(x) a local maximum (minimum). Finally, at any local minimum or
maximum & of f(x) which lies interior to (a, b), we have f'(£) = 0.

The situation in two variables (z, ) is more complicated. Indeed, let
f(=, y) be defined in a region G of the z-y plane, and suppose all second
partial derivatives of f(z, y) exist and are continuous throughout G. Now,
suppose that at a certain interior point (£, 1) of G we have

of (=, ¥) - of (z, y) =0
dz  lew dy e

Then at the point (&, 1), f(z, ¥) may or may not have a local extremum.
To distinguish the various possibilities one has in this case the matrix

F i (fa:a: fa:y)
f(c!l f’ll’ll

which plays a role analogous to the second derivative in the one-dimensional
case. If Fis strictly positive definite, (&, #) is a local minimum; if strictly
negative definite, a local maximum. If F is non-negative or nonpositive
definite there is a possibility of an extremum which must be explored by
looking at higher derivatives. Finally, if F is strictly indefinite, we have a
situation with no parallel in the one-dimensional situation, where, say
f(x, n) has a local maximum, while (&, ¥) has a local minimum, or con-
versely. In the last case, (&, %) is called a saddle-point of the function
f(z, ), the name arising in an obvious way from the geometrical picture.

The purpose of the foregoing remarks has been not so much to explain
the theory of multidimensional extremum problems as to point out that if
the theory is already so complex in n-dimensions, it will be even more so in
some of the problems to be considered, and the answers even less clearcut.

7.3 THE METHOD OF LAGRANGE MULTIPLIERS

Let f(x,, %5, ..., 2,) be a function of » variables defined throughout
space, and possessing n continuous first partial derivatives. It is desired to
find the maximum value of f, where, however, we do not have complete



218 MATHEMATICS FOR THE PHYSICAL SCIENCES §7.3

freedom in the choice of #;, . . . , 2, but, instead, the variables 2, . . . , 2,
are “‘constrained” by side conditions of the form

(1) [ $yzy, .., 2) =0
bo(®y, ..., 2,) =0

.¢m(xls L} xn) = 0.

In other words, among all the points (zy, . . . , #,) which satisfy (1) we are
to find the points that give to f(z,, . . ., #,) a maximum value.

The “straightforward’™ approach to such a problem would consist in
eliminating m of the variables, say zy, . . . , #,, by expressing them in terms
of the remaining n — m variables through (1). One could then maximize
f(zy, . .., x,) considered as a function of n — m variables in the usual way.

The drawbacks of such a procedure are at once evident and to a certain
extent, cannot be overcome with any “gadget” if the functions ¢ (zy, ..., %,
are very complicated. Nonetheless, the method of Lagrange, to be presented
below, invariably can claim one distinction, which is that it does not disturb
the symmetry of a given problem by making arbitrary choices of variables
to be eliminated. In many cases this is quite important.

We illustrate the method in the case n = 4, m = 2. Thus, suppose it is
desired to maximize

f(zb Zg, T3, z4)
subject to the conditions

@) 1(y, 2, T3, 7g) = 0
(3) (ﬁZ(‘xl, x25 .’233, 1'4) = 0
If we suppose

a(q)la (Pz)

A 2 LR 2 Yy

0(z3 ,z,)

where the symbol denotes the usual Jacobian determinant, then we can
solve (2), (3) for

4 zy = a(zy, )
% zy = B2y, 2,).

This being done, substitute (4), (5) into the function f(x;, %,, x5, 2,), and
the problem is then to maximize the function of two variables

f(xl’ Zg, (7'('7717 .’I?2), ﬂ(xlv xz))
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with no constraints. The conditions 9f/0z; = 0f]0z, = 0 yield
(©) f-"’1 +f;’sa’”1 +-f“”}1ﬁz1 =0
) f“tz +-f;’3a“2 +f”4ﬂ°’2 =0.
On the other hand, since
Pu(@y, 2y, (g, Zp), B2y, ) = 0
by, Tg, 0y, Ta), By, 25)) = O
identically, we obtain by differentiation
®) Prz, + P10, %, + P12, /3:::1 =0
(9) ‘Pz,ml + (pz,maaml + ¢2,w4 5901 = 0
Regard (6), (8), and (9) as a system of linear homogeneous equations in
1, &, , . Then we have
(10) Jo Ja S
Pra; Prey Pra | =0

Pozy Pozs Po,oy
at a nontrivial solution z,, x,, %3, #,. Similarly regarding (7), (8), and (9),
we get
n Joo  Joy  Ja

P12 (pl,_a:g Pz, | = 0.

Po,z, Pozs  P2,a4

Conditions (2), (3), (10), and (11) are four conditions which determine all
the stationary points of the function f(z;, 2, x5, 2,).

With Lagrange’s method we would introduce two numbers 4, 4., the
Lagrange multipliers, and consider the function

(12) F(xlo x25 xas x4; }‘1’ ]’2) =f(x1a x23 273, il?4)

+ L @1(®1, %o, T, Tg) + Ao@a(Ty, To, T3, Ty)
as a function of six variables to be maximized with no constraints. Differ-
entiation with respect to the space variables yields

f:c1 + Al(pl,zl + }'2(}72,31 =0
Joy + }‘1‘771,12 + Azq’z,zz =0
Joy + }*1901,@3 + AZ‘FZ,E;‘ =0
Jo, T /Il(pl,:cd + 12%,24 =0.

If A, 4, are eliminated from the last two and the result substituted in the
first two, one obtains the relations (10), (11). Finally, the conditions
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F, = F,,=0are just (2), (3), and therefore the unconstrained problem
(12) has the same stationary points as the original problem with the con-
straints (2), (3). The general result is

Theorem 2 (Lagrange). 1t is required to find the extrema of a function
[y, ..., x,) subject to the conditions (1). Suppose the functionsf,é,,..., ¢,
have continuous first partial derivatives in a region G of space, and that
throughout G,

s Wb ba) 4 g

@y Ty -+ - » Ty,

where % , . . . , %, is some fixed choice from the variables %y, . . ., x,. Then
the extrema inG of the original problem, and of the function

(13) Fzp, gy .5 X3 Ao s ) = (20, ..., 2,) + levcﬁv(zl, cees T)

of n + m variables, are identical.
As an illustration, we find the extreme values of

f(x]_’xm‘"’ n)'— za;&vu v

Bm,y=1
subject to the condition

(14) (p(xla Loy e v v xn) = z xuz —1=0,
p=1
where a,, = a,,(u, v = 1, ..., n). Lagrange’s function is
Ky, ...,z ) =3 a,z,x, + 1(2 x,? — 1).
,v=1 =1
Then *

=2Ya,%, + 2z, =0 w=12,...,n)
3.1: u=1

or n
Yaur,=—ir, (u=12,...,n)

v=1
which, together with (14), determine 4, z;, . . . , ,. Naturally these equa-
tions tell us what we already knew—that any stationary point (zy, . . . , 7,,)
is an eigenvector of the given matrix.

7.4 THE FIRST PROBLEM OF THE CALCULUS OF VARIATIONS

We are given a function f(z, #, v) defined in a certain region G of (, u, v)
space. It is required to find the function y(x) which gives to the integral

13) HIy) = 1 o), v d
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a maximum value, in the class of all sufficiently smooth functions y(x) which
pass through two given points (a, ), (b, B).

The problem just posed is extremely difficult, and we will not be able to
solve it here. All we can do is give necessary conditions for a maximum or,
in other words, certain conditions which a maximizing function must satisfy.

Now, suppose that we have actually found the required maximizing arc
y(x). We suppose thaty(x)is twice continuously differentiable, that f(x, u, v)
is continuous, and that the first and second partial derivatives of fexist and
are continuous.

Since y(x) gives a local maximum to the integral (15), it follows that if we
“disturb” the function y(x) a bit, Hy] will decrease. The disturbance,
however, must not get us out of the class & of functions satisfying the given
end conditions l

(16) y@=o yb)=4.
Hence consider a disturbed function of the form
17 y(x) + en(x)

where 7(2) is differentiable on (a, ) and vanishes at the end points, and ¢ is
a small parameter. Such a function #(2) is called a variation, and one some-
times writes
dy(z) = en().
Now, consider the function of a single real variable
b
(18) @e) = H[y + en] =f S(z, y(z) + en(@), y'(z) + en'(2)) de.

This function has, by hypothesis, a local maximum at € = 0, and there-
fore ¢'(0) = 0. But,

v =] (L v+ my oo+ Leyrony + o)

and therefore,

19  0=gO)= f{af(”’y)(z)+af( 2D,y

a ’
_ ("= 9.9) of (%, y,9)1°
=L e n(z)dx + [n(w) T
of (%, 9,9
f d.'l:[ oy } (x) dx

[ -daho
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where we have integrated by parts, and used the relations n(a) = #%(b) = 0.
Now, (19) holds for every variation %(z), and it is therefore reasonable to
suspect that the quantity in braces must vanish identically. We have, in
fact,

Lemma 1. Let h(x) be a continuous function, and suppose that

fa h(em(@) do = 0

for every continuously differentiable function #(x) which vanishes at ¢ and
b. Then A(z) = 0 on (q, b).

Proof. Suppose h(£) # 0, where & is some point of (@, b). Since h(z) is
continuous, A(x) must remain positive in some neighborhood of &, say
o < z < fB. Then take

(x—)(z—pF asz<p

0 otherwise

7(x) = {

This function is clearly continuously differentiable everywhere, vanishes at
x = a, x = b, and is positive when « <« < 8. Thus

fbh(x)n(:c) da >0

for this n(z), contradicting the hypothesis. Hence A(x) is never positive and,
similarly, never negative, which was to be shown.
We have proved

Theorem 3.  If y(z) is a twice continuously differentiable function which gives
to the integral

(20) f f(z, y(z), y'(2)) d»

a local maximum or minimum value in the class of all such functions which
assume given values at x = a,x = b, and if, in addition, the function f(x, u, v)
has continuous second partial derivatives, then we have

o 4 ¥z Y2, ¥@) _ (zyl=)y'@) _
dz oy’ oy

fora<z<b.

Equation (21), normally a (nonlinear) differential equation of the second
order, is called the Euler equation for the problem of finding the extreme
values of (20) in the given class of functions. It gives only a necessary and
by no means a sufficient condition for an extremum.
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7.5 SOME EXAMPLES

The brachistochrone problem is that of determining the curve joining
two given points down which a ball will roll in least time. More precisely,
we are to find, in the class of all functions y(x) which are twice differentiable
on [0, 5], and which pass through the points (0, /), (b, 0), the function for
which the elapsed time

T[y] = J—lz—é f A+ vy de

is least. Ignoring the constant,

, 1 2%
f(x,y,y)=[ Y }
af(z,a?/,?/) - —%y_%'\/l + y'2

Yy
fyy) _ ¢
3y’ Vil + 9%

and Euler’s equation is

d ! _ e —
£ [——_—y ] = 3y W1 + 92
dz Lyl + y?)

Another example is that of finding the shortest distance between two
given points. In Euclidean space of two dimensions, we are to minimize

[/ —
fJ1 + y?%dx

in the class of all twice differentiable arcs of joining (a, y(a)), (b, y(b)),
where y(a), y(b) are given. In this case, f, = 0, and Euler’s equation is just

i{_y'_}=0
dz 1 4 y°

which integrates at once to

Yy = 01\/ 1+ y?
whence
2

&
y =
1—¢?
is constant, and the required curve is a straight line. In this problem the

existence of a minimizing curve was obvious (as was the answer). The
method generalizes to finding the shortest distance between two points on
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an arbitrary surface, the Euler equations then representing the differential
equations of geodesics on the surface.

Concerning the actual integration of Euler’s equation, three important
special cases arise rather frequently in practice.

(@) The function f(z, ¥, ¥') is independent of y'. Then the equation
reduces simply to
Ay _
9y

which determines the function y(x) implicitly, though no arbitrary constants

will be present. This means that the end conditions cannot be arbitrarily
prescribed.

(b) The function f(x, ¥, ¥) is independent of y. In this case (21) is

d=y)_,

dx oy
which integrates at once to

A y) _

oy’ !

We may now solve for

y'(@) = gz, c))
algebraically, and then

y(x) =fg(w, ¢p) d.
(¢) The function f(z, y, ¥') is independent of . In this case we have

di(y, . ¥) _ 4 y,))-= A y) 4 Y)
x

oy’ oy’ dz 0y
_¥wy),, U@y, _ y,{i of ?L}_
oy ay’ dz oy dy
Hence, for any solution of Euler’s equation we have
af }
———=f1r=0
dz { /
and thus
a 3 '
f(ay,y) 4, 9) = a.
We then find

Y =g, ¢)
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by algebraic means and have

— dy
The _f gy, ¢

as the solution.

7.6 DISTINGUISHING MAXIMA FROM MINIMA

In the preceding section we found an equation whose solution might be
either a Jocal maximum for the problem, a local minimum, or neither.
Although we shall never be able to resolve these cases completely, we can,
nonetheless, find an analogue of the conditions

f@ >0, f"(®<0
which distinguish maxima and minima for functions of a single real variable.

To do this, we return to the function ¢(¢) of (18) and calculate ¢"(0).
We have

#"(0) =fa {fymz(w) + 2f,, (=)' (%) +fyay'77’2(x)} dz

b , f;/y f;m’ 77(3:)
=£(n(x),n(x)) for Low @ dz.

Thus, suppose the matrix

f;n/ f;n/'
22 F =
@) fur o
is positive definite, the functions being evaluated at (z, y(z), ¥'(#)), where
y(z) is a solution of Euler’s equation, and the definiteness holds for all
a < z £ b. Then, clearly, ¢"(0) > 0, the function ¢(¢) having a local mini-
mum at ¢ = 0. Hence the function »(z) in question provides the integral

with a local minimum with respect to differentiable perturbations #(x).
In other words, sufficient conditions for a local minimum are

(23a) fyw >0

(23b) fwﬁ/'y’ - f;m’z >0
while sufficient conditions for a local maximum are
(24) fow <O

and (23b).

These conditions are very strong and are not necessary, only sufficient.
To get an idea of what is necessary, suppose we have a function y(z)
which gives a local minimum. Then ¢“(0) = 0 for every choice of the
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variation n(«). We choose a particular 7(x) which is zero except for a small
interval around a point £ in (a, b).
For instance,

7 |z — EI}
h{l — x— & < h
= s
0 e — & >h
Then, for |z — &| < &, #*(x) = 1/h and by substitution,

¢"(0) = J;b{fwn2(x) + 2 (@' (@) + fyyn *(@)} d

- -5
= h[l - a1 ==, Uy
B e e e Lt A [
= { max 17,100 +2| max i jomn +1 [ s (10)
lz—¢&l<n lz—&l<n hie—n

= o(1) + 2f,, (&, y(©), ' (§))  (h—0).
Since ¢"(0) = 0, we see by making 2 — 0 that f,..(& (&), ¥'(¥)) = 0.
Since & was arbitrary, we must have
(25) fow 2z 0
throughout (g, b).
Theorem 4. Let y(x) satisfy Euler’s differential equation. For y(z) to pro-
vide a local minimum with respect to differentiable variations, it is necessary

that (25) hold, and sufficient that (23) hold, for a < x < b.
The requirement (25) is called Legendre’s condition.

7.7 PROBLEMS WITH SIDE CONDITIONS

In the problem already considered, the class of admissible functions
consisted of all those differentiable functions which pass through two given
points. We consider now problems with additional side conditions.

An example of such a problem is that of finding among all curves with
given perimeter (arc length) the one which encloses the greatest area. This
is the classical isoperimetric problem, and it is formulated by asking for the
function y(x) which maximizes the functional

H[y] =f by(x) dz

in the class of all functions y(z) satisfying y(a) = y;, y(b) = y,, with

b
f J1+ y2ds = given.
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Hence we pose the general question of finding the extreme values of

(26) H[y] =.£ f(xy, y)da

subject to the conditions y(a) = ¥;, y(b) = y, and

b
@7 f 8,9, y)dz =K
where K is given. ’

As before, suppose we have found a function y(z) which gives a stationary
value to Hly]. We wish to disturb y(z) again so as to find the analytical
conditions for the extremum. Yet the disturbance must be carried out in
such a way that the perturbed functions remain always inside the class of
functions being considered. This means that functions like

y(@) + enx)
will no longer do, even if n(a) = 7n(b) = 0, for (27) will not, in general, be
satisfied identically in &. We consider then the function
Y(@) + emila) + emy(@)

where 7,(x), 75(*) each vanish at the endpoints, and the parameters ¢,, ¢,
are not independent, but are connected by the condition

b

(28)  w(ey, &) =f g(x, y + ey + e, ¥* + a4 £m,") dx = K.

a

Our problem then is that the function

b
(29) P&y, &) =f S@, Y+ em + e ¥ + ey’ + ey)) do
is to be stationary at & = &, = 0 with respect to values of ¢;, &, which
satisfy (28).
The problem is now reduced to one of extremizing a function of two real

variables with a side condition. We know from the theory of Lagrange
multipliers (Theorem 2) that for some number A, we have

0
8? {‘P(Sb &) + Ay(ey, 82)}£1=eg=0 =0
1
0
g {‘P(b‘lv &) + Apley, 82)}sl=52=0 = 0.
2
The first of these gives

f {fn(@ + fym' (@) + Agm(x) + Agmy' (=)} dw =0
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and the second gives

b
f {fna(®) + fyme (%) + Agno(x) + Ag,my' ()} dz = 0.

Integrating by parts,
b
[th 11+ 2e, - gm@ dz =0

b
f {Lf, — fi] + g, — g ]ine(2) dz = 0.
If g, # g, then the first of these states that 1 is independent of 7,(z), and

the second shows that

f;/ _fz/c + A(gy - g;’) =0
or

(30) (f + 7g), — ;f— (/ + ig), =O.
x

This is the Euler equation of the problem. The three constants ¢;, ¢,, 4
introduced by the solution of the equation and the Lagrange multiplier are
determined by the end conditions y(a) = ¥, ¥(b) = y,, and (27).

As an illustration, we find the curve of length L which joins the points
{0, 0), (1, 0), and encloses the maximum area between itself and the z-axis.
Hence we wish to maximize

1
[v@ ax
0
in the class of all differentiable arcs y(x) satisfying %(0) = »(1) = 0 and

J‘\/l + y'%dx = L.
0
Equation (30) becomes, after putting

fHig=y+ W1 +y?
the differential equation

dz \J1 + y?
After differentiation this reads,
yll _l

which says that the radius of curvature is constant, the required extremal is
an arc of a circle, and 4 is the radius.
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7.8 SEVERAL UNKNOWN FUNCTIONS OR INDEPENDENT
VARIABLES

Suppose it is desired to find functions uy(%), . . . , u,(z), which give to the
integral

fbf(x, u(@), . .., uy(X), u(®), . .., u,/'(x) de

extreme values, where u(a), u(b) (k = 1, . .., n) are given. Just as before
we introduce variations 7,(z), . . ., n,(2) and consider

b
(P(El, Egs v v s Ep) =f f@ou +emy, . u, + Enllns
a
ull + 81771’! LR ] u'n.l + 87»"71;') dx

The requirement that this function be stationaryate, = gg=---=¢, =0,
regardless of the choice of 9y(%), . . ., 1,(2), leads in a straightforward way
to the Euler equations

4o o o2, .

31 =
(31 dxz ou,  du,

In general, we now have to solve a system of n coupled ordinary differential
equations of the second order, in # unknown functions.
In a similar way, if it is desired to find the extrema of

ffRf (=, y, u(z, ¥), v(@, 9), u(Z, Y), L2, ), u,(z, ), v,(=, ¥)) de dy

where u(z, y), v(z, y) have boundary values given around the boundary C
of the region R of the z-y plane, the Euler equations take the form

2 (o), 2 (%) ¥

oz \dv, Oy \dv, o’
These are two partial differential equations of the second order which, with
the given boundary values, will normally determine the required functions.
We omit the derivation of these equations, which is perfectly straight-
forward except for integration by parts in two dimensions, which results
from an integral theorem of Gauss. Generalizations to more than two

functions are obvious, and as usual, the conditions are only necessary, the
question of sufficiency being quite difficult.
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7.9 THE VARIATIONAL NOTATION

We have already remarked that if y(x) is an arbitrary function, and #(x)
a variation, then we write, symbolically,

(3%) y(@) + en(x) = y(x) + dy(2)
oy(z) = en(=).

Further, on replacing y(x) by y(x) + sn(x), a given function f(z ¥, y¥")
changes to

flz,y+eny +en)=f(x,y,9)+ sg—fyn + a%n’ + 0(e?)
=1 )+ Loy + L sy + o)
oy dy'
=f+ 0+ 0@
where
(36) sf=Lsy+ XL sy
oy oy’

We note that if y changes to y + ¢n, then y’ changes to 3’ + &, whence
oy') = en' = (en) = (Oy)’

that is, the symbols d/dz, 6 commute with each other. The usual formal
rules of calculus have analogues here, such as

ouv) = u dv + v u
o(u + v)y = ou + dv

6(2) =v6u—udu

v v?

all of which can be verified by recourse to the definitions. In variational
notation, a “proof™ of the necessity of Euler’s equation look like this:

0H[y] =0 = 6fbf(x, ¥, y)de
=f of (%, v, y') dx

=J:(f” — fy) 8y du.
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Such arguments are often quite useful as indicators of the direction in which
the truth lies but are not in themselves proofs, for nothing was assumed and
nothing proved.

As an illustration of a situation in which the variational notation con-
siderably reduces the amount of labor involved, we consider a problem
which is, in a sense, inverse to the ones we have been so far considering.
We ask: Of what variational problem is the differential equation

4

37 o

(a@ j—i) + b@)y + @)y = 0

y(xy) = y(z) =0
the Euler equation?
To answer this, multiply both sides of (37) by a variation dy(x) and

integrate over (%, ,), getting
o1 d dy
dzidy — |a(z) =] + b(x)y oy + Ac(x)y dy; = 0.
N dx dx
Now, using the relation

y 0y = $0(y?)
and integrating the first term by parts, we find

s —a@ Y (syy + BB sp 4 2@ 5ol
Lndx{ a(z)dx(éy) + 5 oy® + 5 6y}—-0.

Now, since
d I 4 I ' z '
29 b9y = y'(0y) = y' Sy’ = 1oy
dx

we have

jwlé{—a(x)y’z(x) + [b(z) + Ac(x)]¥*(2)} dz =0

or equivalently,

Zélec(x)yz(x) dz — 5]21{a(x)y’2(x) — b(z)y*(x)} dx = 0.

o

Hence, if we write

Hy[y] = f * 2)y() dx

Hiv] =" ey — e de

then we have found that
0(H, — AH) =0
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This would be the variational condition for finding the maximum value of
H, subject to the side condition H; = 1. If we omit the normalization
H, =1, we can say, equivalently, that the function satisfying (37) is an
extremal of the problem of finding the stationary values of the ratio

&

[ ey — b o

i

(3%) A= 4, »
= [“ o o
o
A rigorous proof can now be supplied by starting with (38) and working
back to (37), the result being that the eigenvalues of the problem (37) are
the stationary values of the ratio (38).

This technique is particularly useful in some branches of physics, where
it is known as constructing a “variational principle.”” As an illustration of
the utility of such a procedure, consider the question of determining the
eigenvalues of the problem

yll + Aﬂ.y — 0
(39)

y0)=y»(1) =0

which are readily found, analytically, to be #%, 472, 9%, . ... According
to (38) these eigenvalues are the stationary values of the ratio

1
( y'? dx
«0

-
f y* dx
0

The smallest eigenvalue of the problem is then the least value of the ratio,
so that if we choose any trial function satisfying the boundary conditions,

say
41 Yo(x) = 2(1 — 2)(1 + o)
then we shall have
1
f Y dz
< 0

= M
f ¥, dx
0

92 2 k: 1
150" — 30 4 3

—38? + tha + 5o
for any value of «. The next step would be to differentiate this expression
and find the optimal choice of «. We leave it simply with the remark that,
even with o = O, the right side of (42) is 10, which is already fairly close to
m=987....

(40) A=

(42) lmin
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710 THE MAXIMIZATION OF LINEAR FUNCTIONS WITH
CONSTRAINTS

We begin with a simple example, the so-called “vitamin problem.”
Suppose there are two foods, say I and 11. Food I contains one unit of
vitamin A per pound, four units of vitamin B per pound, and costs three
dollars per pound. For food II, the corresponding numbers are 1, 1, 2. If
the minimum requirements of vitamins A and B are one unit and two units,
respectively, the problem is to buy, at least cost, the required amount of
each vitamin.

If the amounts of foods I and II bought are  and y, respectively, the
total cost is

(43) C=3z+2y.

This is to be minimized subject to the side conditions
(44) z+y=z1

(45) de+y=2

(46) r=20, y=0.

The restrictions (44) through (46) delineate a certain admissible portion
of the z-y plane, which is sketched below.

Also shown in the figure is a line of constant cost 3z + 2y = C. Geo-
metrically, the problem is to find the line of constant cost with the least
value of C, which still has a point in common with the shaded region. So
stated, the answer is obvious: one simply draws theline 3z + 2y = C which
passes through the vertex of the shaded region, since, clearly, no smaller
value of C meets the requirements. This vertex is at (}, %), and the line is

7
3z + 2y = —
y 3

\/ B+2y=C
2

—

dx 4+ y=2- //
%K 2\ x

Figure 7.1
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The solution of our problem, then, is to buy % pound of food I and %
pound of food II, the minimum cost being $2.33.
The most general problem of the type just considered is to maximize

47) P=Cg + -+ Cga,

subject to the conditions

(48) > o < B (i=1,2,...,m)
i=1
(49) =0 (i=1,2,...,n).
In matrix form, we have to maximize (c, x), subject to
(50) AXx=Db
(51 x = 0.

Geometrically, the constraints (50), (51) normally define a polyhedron K
inn-space; the function to be maximized is a hyperplane in that space; and
we wish to determine the “highest” position of the hyperplane which still
intersects K.

We remark that X is invariably a convex polyhedron, for, suppose the
points z; = (2, . . ., Ty,), ¥y = (g, . . . , Ty,) both belong to X (i.e., satisfy
(50), (51)). If ¢ is any number in 0 < ¢ < 1, we have

Atzy + (1 + Dzy) = tAz, + (1 — DAz,
=th+(1—-0b
=b

and, clearly,
ty + (1 — )z, = 0.

Hence, if the points z,, #, belong to K, so does the line segment joining
to x,, and K is convex.

An extreme point of a convex set K is a point z of K such that = does not
lie on any line segment of positive length which lies in K. More precisely, «
is an extreme point of X if the conditions

@D z=1tr; + (1 — Dz,
Gg) O0<r<l1 :
(iii) =y, x5, zin K

imply that
(iv) =z, ==

If X is a polyhedron, the extreme points of K are just its vertices.
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Now, suppose that the convex set K defined by (48), (49) is nonempty and
bounded (i.e., contained in some sphere). Then, by Weierstrass® theorem,
the linear function P attains its maximum at a point of K (or possibly at
several).

We claim that among the points at which P attains its maximum value
there is an extreme point of X, so that, in searching for the maximum, it is
enough to restrict attention to the vertices of K.

To prove this, suppose K’ is the set of all points of K at which P(z)
assumes its maximum value M. We have to show that in K’ there is a
vertex of K. Now K’ is a convex set, for, if #,, z, are in K’, we have

P(te, + (1 — fzy) = tP(z) + (1 — DP(x,)
=M+ (1 —-HM
=M

by linearity of P(z), forevery 0 = 7 < 1. Hence, let z* be any vertex of K'.
We claim z* is also a vertex of K, for, if not, we could write

(52) a* =1z, + (1 — )z,
for some 0 < ¢ < 1, #;, @, in K. Then we would have
Px*) =M

= tP(zy) + (1 — )P(zy).

Thus P(z*) lies between the smaller and larger of the numbers P(z,), P(z,).
Since P(z*) is a maximum, it follows that P(z;) = P(x,) = P(z*) = M.
Hence #;, x, are in K’, but then (52) contradicts the assertion that x* is a
vertex of K', completing the proof.

Theorem 5. The inequalities (48), (49) define a convex subset K of n-
dimensional Euclidean space. If K is nonempty and bounded, then P(x) of (47)
assumes its maximum value in K at a vertex of K.

711 THE SIMPLEX ALGORITHM

In order to solve the problem of maximizing a linear function subject to
inequalities, we have seen that it is enough to examine only the vertices of
the polyhedron in question. The Simplex method is, in essence, just a
systematic procedure for examining these vertices in such a way that one
continually passes from a given vertex to another at which the desired
function has a larger value. Furthermore, the choice of the next veriex is,
in a sense, optimal in that the function value increases as much as it could
possibly by any single step to an adjacent vertex.
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Given the problem

maximize P(x) = Cz; + Cyzy + -+ + C,x,

subject to
(53) - Ea”,z i (i=1,...,m)
z, 20 (=1,...,m
the first step is to introduce additional variables z,,, ..., z,,, which

“take up the slack”™ in the inequalities and so are referred to as slack vari-
ables. In terms of these, the problem becomes

(54) maximize Cyx; + - -+ C.x,

subject to

(55) L = (i=1...,m)

(56) 0 (i=12,...,n4+ m).

It is clear that this new problem in n + m variables, in which the in-
equalities (53) have been transformed into equalities, is entirely equivalent
to the original problem. There is, however, no point in distinguishing
between the “slack’ variables and the original variables, and so we rephrase
the problem in the symmetric form (with new names for the variables)

'M=

J 1

IIV

(57) maximize Cyz; + Cozy + + -+ + C,z,
subject to

(58) Z = (i=1,...,m)
(59) Tazo a=1....m

The next step is to find any vertex of the problem whatever. This means
that we must find a point (2, =,, . . ., z,) in which exactly m of the z; are
positive, n — m are zero, and (58), (59) are satisfied. This step can be
mechanized, but we will not discuss the mechanization here, for quite often
a choice of such a point will be obvious.

Let us now exhibit the matrix of coefficients of (58) in the form

Uy Qe %y By

Uy Ogy " Koy P
(60)

Xm1 Em2 Lmn ‘Bm
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and we note that the given constraints (58) are independent, so that the
rank of the matrix in (60) is exactly m. Regarding the columns of this
matrix as column vectors P, ..., P,, P,

Oy;5 ﬂl
®3; B2
P, = ; P0 =

O("mJ ﬂm
suppose the variables are so numbered that the vertex which we have found
is described by #; > 0, ...,z, > 0,2,,, =+ =z, = 0. Then (58), in
vector form, is
(61) lel + $2P2 +t mem = PO'

If 2, denotes the value of the function (57) to be maximized, at this point,
we have

(62) zg=Cyx; + - + C,z,.

Since the vectors Py, . . . , P,, are linearly independent, we can express each
of the vectors Py, P, . .., P, as linear combinations of them,

(63) P, =y, + 7B + - + VP (=L....,n

and we define, finally,

(64) ¢;=Cy;+ Cyas+ -+ Cpyms (=12,...,0).
Now, suppose there is a particular value of j for which

(65) C;> ¢

Then we shall find another vertex at which the value of z is larger than the
value (62). Indeed, let us multiply (63) by a positive number 6 and subtract
from (61). There results

(66) (2 — 0p1)Py + (% — 6y2 )Py + -+ + (x,, — Oy )P, + OP; = Py,
Next, multiply (64) by § and subtract from (62), getting
(67) (@, — Oy)Ci+ +* + (@ — 0y )Cp + 0C; =20 + 6(C; — ¢)).

Equation (66) asserts that the constraints will be satisfied if we change
the values «;,...,2,,0,...,0, to ¢, — Oy, ..., x, — 0y,,0,...,0,

* “Ums

6,0,...,0 for any 6 such that all these quantities are non-negative.
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Equation (67) states that by so changing the values of the z;, the value of
the function we seek to maximize will increase (see (65)) from z, to

zg + HC; — &)

It follows that the optimum choice of 6 is, for the given j, the largest
possible consistent with the conditions

z,— 0y, =20 (i=1,...,m)

that is, the value
(68) b= min(ﬁ) (i > 0)

T Wi
which is a possible choice provided that at least one y,; is >0. Further-
more, since there may be several values of j for which (65) holds, the best
choice of # at each stage is the one which maximizes the increase in z,
i.e., the one for which
(69) {min(ﬁ)}(cj — 4

o\
is as large as possible. Hence we first choose j to maximize (69), then ¢
according to (68). Having done so, it is clear that one, at least, of the
numbers

Ty = 0y15, @ — Oyay, o ., By — Oy,

is zero, and we have eliminated that variable and introduced the new vari-
able z; with the value 6. In other words, we have moved to the best
possible adjacent vertex. We explicitly assume that no more than one of
the above numbers is zero, referring the interested reader to the bibliography
for the treatment of degenerate cases.

At this stage we are confronted with exactly the same situation with
which we started, and the entire process can be repeated, with the result
that one of the variables will be eliminated and another introduced, in such
a way that z, will increase still more. The process must terminate after
finitely many iterations because, since z always increases, no vertex will be
encountered twice, and there are only a finite number of vertices.

The process terminates when either

(@) For some j, all y,; £ 0,
or
(6) foralij, C; = ¢,

Suppose the first alternative holds. By inspection of (66) it is clear that the
variables remain non-negative for arbitrarily large values of 6. This means
that the admissible polyhedron is unbounded, and the solution of our
problem is 4 co. This case is exceptional in practice.
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Next, suppose that alternative (b) holds, so that the process terminated
because (65) was not fulfilled for any j. We claim that the current values of
the variables at that time give the complete solution of the problem, i.c.,
for no other values of the variables can the current z; be increased.

To prove this, suppose ¥, %, . . ., ¥, denote any other values of the
variables which satisfy the constraints of the problem

(703) y1P1 +y2P2 + +ynPn=P0
(70b) Cyp+CGye+ -+ Gy, =2
(70c) h=0,...,y,=0.

We will show that 2, the value of z for the point already found, is not less
than z,. Since C; = ¢, for all j (this is why the algorithm stopped), we see
from (70b), (70c) that

(71) n= gttt Pl
Now, substitute the definition (64) of ¢, in (71), getting

72 % g;gly"%

Next, we substitute the expansion (63) of P; into (70a) and find

(73) P, = Z Py

$af3yun

?/
{ Z ylkyk]P,.

Since the vectors Py, . . ., P, were assumed independent, the coefficients of
the expansions (73) and (61) must agree, whence

& =2 Vi (=1...,m
and substituting in (72),

LM F]

l

m
2 = lec,_ =2z
1=1

which was to be shown.
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We have proved

Theorem 6.7 The Simplex algorithm will halt after a certain stage if and
only if (a) the given inequalities were nonrestrictive and the solution is
z = o or (b) the desired maximum is finite and has been found.

7.12 ON BEST APPROXIMATION BY POLYNOMIALS

We conclude our study of extremum problems with some remarks about
the approximation of given functions by polynomials in the “best possible”
way.

Suppose there is given a continuous function f(z) defined on a closed
interval, which we suppose to be [0, 1]. We ask, first, whether such a
function can be approximated arbitrarily well by polynomials, and, second,
whether, if the degree n of the polynomial is specified, we can find a poly-
nomial which does a better job than any other, in a sense to be specified.

The first question is completely settled by

Theorem 7. (Weierstrass Approximation Theorem). Let f(x) be continuous
on [0, 1]. For any € > O there is a polynomial P(x) such that

74) [f@) —Pl) <e (O==z=<1)

Proof. First, we claim that it is enough to prove the theorem when

f(©) = f(1) = 0, for if that has been proved, then for any f(z), define
g(®@) = f@) — f(0) — ={f(1) — f(0)}.

Then g(0) = g(1) = 0, whence g(x) can be approximated as required, hence
so can f(x).

Supposing, then, that f(0) = f(1) = 0, we define f(x) outside [0, 1] to be
identically zero. Then f(z) is everywhere continuous.

Consider the polynomials

(75) P(2) = {2—(2n+1) M!}(l — 2?)" m=1,2..)

nt?

which are so normalized that

1
(76) f pr)de =1 n=1,2,...).
-1

Now, by Stirling’s formula,

—ten+n 20 + D! n
9~ wn ( (n|_—)2) NA/W (n— o)

t Dantzig [1].
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whence, on the interval 6 < |2| < 1
Pu(®) = O(Wn (1 — Y  (n— )

and therefore @, (x) approaches zero uniformly on 6 < |z} < 1.
We claim that the polynomial

1
an Px) = f_{(x + Y)eay) dy
meets the conditions of the problem, if n is large enough. First, P(x) is a

polynomial, since, recalling that f(z) vanishes outside [0, 1],

1-z

P(z) = _ S+ Doey)dy

1
- f I OpE — ) d

the last expression being obviously a polynomial.
Since f(x) is uniformly continuous, we can, for the given ¢, find d such
that for |2, — x| << 6,

&
[f(z) — f(®)] < 5
Further, since a continuous function on a compact set is bounded, we have

for all z, @) < A.
Then, for all z in [0, 1],

|P(z) — f(2)| = f_{(w + 9ey) dy — f(x)

1 1
= [+ v v = 10,00 a0

= |[Tr+ v — rnp |

<[ 156 + 9 - @ n@ dy
-1+
< 2Af__15 Pu(y) dy + ff_: Puv) dy + 2Af:<pn(y) dy

= 240(/n(1 — &) + 5

<e
if n is sufficiently large, proving the theorem.
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E(x)

Q
o
B

Figure 7.2

Having shown that approximating polynomials exist (indeed, the proof
actually constructed them), we propose next to search for the best one of
given degree. A natural criterion for the “best” one consists in looking at
the error curve
(78) E(@) = f(z) — P,(2)
where f(2) is given, and P,(x) is a polynomial, on the relevant interval
[a, ], and asking that the maximum error be as small as possible.

Our problem, then, is precisely this: A continuous function f(x) is given
on an interval [a, b), and an integer n is fixed. It is required to find a poly-
nomial P,(x) of degree n for which

max |f(z) — P,(x)|

asT<d
is least.

A short intuitive argument will point the way to the solution. Indeed,
suppose for a certain polynomial P,(z), the error curve E(z) had the appear-
ance shown above. One would then have a feeling that a better choice of
P,(x) could be made, which would “push down” the maxima and the mini-
mum so that they were more nearly equal. Carrying this feeling to its
logical conclusion, one might conjecture that the best possible approxima-
tion P,(x) would result in an error curve in which the maxima and minima
all had the same absolute value, and alternated with each other, as is indeed
the case.

Theorem 8. Let f(x) be continuous on [a, b], and let the integer n be given.
Then

(@) there is a polynomial P (x) of degree n for which
(79) max [f(z) — P ()|

esrsh
is least.

(b) for P (x) to have this property, it is necessary and sufficient that
E(x) = f(z) — P,(x) attain its maximum absolute value M at at least n + 2
points of [a, bl, and that the maxima of E(x) alternate with its minima.

(¢} the polynomial P, () is unique.
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Proof. To show the existence of a minimizing polynomial, first let g,(x)
be any fixed polynomial of degree #, and put
Mo = max |f(z) — g.(=)].

asz=
Then, in seeking the minimum of (79), we may confine attention to the
class of polynomials of degree n for which (79) is =M,. Since f(z) is
bounded on [g, b], say |f(x)| = A there, we have for any polynomial P(x)

in this class, and z in [q, 5],

[P(@)| — /(@) = [f(z) — P(2)]

<
= max |f(z) — P(2)|

= M,.
Hence
[P@)| = M, + 4
for all P(z) in the class considered.
Therefore, if
Py=cy+cx 4+ c2°
is one of these, choose # + 1 points z,, 2y, . . ., @, which are distinct and
lie in [a, b]. Regard the equations
¢+ ez, + ezl + o+ oz = Px,) (i=0,1,...,n

as linear equations in ¢y, . . ., ¢,. Since the matrix of coefficients is non-
singular, we may solve for the c; as linear combinations of the values P(z,),

G = zoyijp(xj) (i=0,1,...,n)
i
and .
le,| = Zolyi:i, |P(z))|
i<

= (M, + A)Zolyijl (i=0,1,...,n)
i=

the bound on the right being independent of the particular polynomial
chosen. Hence we are seeking the minimum of a continuous function
@(Cgs €15 - -+ » C) = MaAX [f(x) — g — ¢y — - -+ — 2"
aLz=h
of n 4 1 variables in a compact subset of » 4 1 dimensional space, and
therefore the minimum is surely attained, and P (x) exists.

Next we prove the sufficiency of condition (&), for, suppose P,(z) is a
polynomial such that f(z) — P,(x) attains its maximum modulus M, with
alternating signs, at » 4+ 2 points of [a, b]. If @,(x) is any other poly-
nomial of degree n, we cannot have | f(x) — Q,(x)] < M throughout [a, b]
because then the polynomial

Q,(®) — P,(x) = [f(®) — P,(»)] — [f(®) — Qu(=))]
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would be of alternating sign at the n 4+ 2 points in question, and therefore
would vanish at n 4 1 points, which is impossible.

Next we show that the condition is necessary, for suppose the maximum
error M is attained at fewer than » + 2 points. Then the interval [a, 5] can
be divided into » 4 1 subintervals, in each of which we have one or the
other of the inequalities

—M=fl@)—P)<M—¢ or =M+e<fl@x)—Pl)= M
where ¢ is a positive number. (This can be done by taking each subinterval
to include one extremum of f(x) — P,(x).) Let Q,(x) be a polynomial
which vanishes only at the # points common to two of these subintervals.
Then Q,(x) is of constant sign inside each subinterval, and therefore, for
some choice of the parameter %, we will have

|f(@) = Pu(x) = nQu()] < M
contradicting the extremal property of P, ().

Finally, concerning uniqueness, suppose P, (x), 0,(z), P (x) # Q,(x) are
both extremals of our problem. Then, so is

Ry(2) = % {P.(%) + 0u()}

but f(z) — R,(x) attains its extrema at fewer than »n <+ 2 points, which is
impossible.

We conclude with a remark about the “normal”” method of application
of this theorem. If it is required to approximate a differentiable function
f{(z) on [a, b] by a polynomial of degree # in the best way, let
(30) a=§& << << =b
be the n + 2 points referred to in the theorem. The equations
(81) M = P(§&) — f(&) = —[P(&) — f(&D]

== (=D"[P(p1) — [(Eria)]
82 PE)y—f(E)=0 (=12,...,n)
constitute 2n 4+ 2 equations in the n 4 1 coefficients of P(x), n points
&, . ... &, and M, which normally determine them uniquely if (80) is taken

into account.
As an example, we approximate f(z) = 22 on [0, 1] by a linear function

P(x) = a + bx.
Here (81), (82) have the form
M=ag=—[a+bf —E¥=a+b—1
b—28=0
& =0, &=1.



§7.12 EXTREMUM PROBLEMS 245

f(x) = P(x)

Gof

The solution

is readily found, the desired function being
Pi)=2— L.

The error curve has the appearance shown above.
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Exercises

1.

2.

10.

Find the maximum value of the function # + %2 on the closed triangle
whose vertices are (0, 0), (1, 0), (0, 1).

Among all polynomials of degree », find the one which best approximates
f@) in the least squares sense

1
f [f(z) — P()P dx = minimum
—1

on the interval [—1, 1].

. Among all polynomials

z+a2z2+-~'+anz"

of given degree » which are univalent in |2| < 1, find one which has the
largest possible |a,|.

. Let a be a given n-vector. Among all vectors x satisfying (a, x) =1,

minimize (x, x).

. Discuss the following problem:

Find a curve y(») connecting a point P and a given curve C such that the
mean value of its slope is least.

. How could you solve

fF (x, 9,9 dsz(x, ¥, ¥") dr = minimum?

. Write down the Euler equation for the following problem:

A ball rolls down a path of given length L joining P, and P,. Minimize the
time of descent. Find a first integral of the equations.

. Find the Euler equations for the extreme values of

b
f F(zx,y(x), y(x + h))dx

in the class of continuous functions y(z) defined on [, b + /).

. Maximize the function = -+ 2y subject to the conditions

@y—-x=1

b))y +ix=2

©y—3x=s3

@z<s

©z=20 y=0

Do this first geometrically, then by the Simplex method starting from the
vertex (£, 2).

Find the best linear approximation to &* on [0, 1].



Solutions
of the exercises

CHAPTER 1

1 [x +yP=x +y,x+¥ =% +xY) +Fx) + Y
=(x,x) +2Re(x,¥5) + ¥, V)
=% +2(x 9 +Gy)
<X % + 2V X, Y) + 0, )
= (V&% + VG, D))
= (Ix[ + lly[)?
2. Suppose Zc,x, = 0. Take the inner product of both sides with x,, and find
c,(x,,x,) =0, whencec, =0foreachp =1,2,....
3. Py(x) = const., Pi(x) = (const.) z, P, (x) = (const.) (32 — 1)
4 (@) (TH*T* =TT H*=I*=1]
(b) obvious from definition of adjoint operator.
5. (a) For any x,
x, Tx) =(T*x,x) = —(Tx,x) = —(x, Tx)
hence (x, Tx) is purely imaginary. If Tx = Ax, (x, Tx) = A(x, x) shows that 1 is
purely imaginary.
) S =S + 8% + LS — 5%
6. Not necessarily, unless 4 is nonsingular, for example
0 1\/1 2 0 I\N/5 6
(o o)ls 4 =5 o) )

247
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7. Bis clearly m x m. Further,
B* = (AA*)* = A**A* = AA* = B.

8. The eigenvalues are 4, = 4, = 0. The only eigenvector is (const.) (1, 0), so
A is not diagonalizable.
9. From A* = A we find b = ¢. From A% = 4 we get

a2+ b2 =q,bla+d =b b +d?=

With the exceptional case b =0, we find e =1 or 0, d =1 or 0. Otherwise,
a+d=1,a=1—~d b= +Vd(l —d). Hence 0 <d <1, and we may
write d = cos?0 for some 6. Then b = % sin6cosf, g = sin? 6. Finally, if
m = tan 0, we have found that all such matrices are

SRR R

A_IO_ 4 1 m?  4m
o 1) 14+ m\Em 1

The first projects on the null vector, the second on the z-axis, the third on the
y-axis, the fourth on the whole space, the last on the line y = mu.

10. From AA* = Iwefind,asin (9),a® + B2 =1, ac +bd =0, 2 +d% = 1.
Taking a =sin 6. b = cos 0, ¢ =siny, d = cos p, the second equation gives
cos (6 —y) =0, vy =0 + =2, and the matrix is

sinf cos6
A= .
—cos 0 sinf

11. () A = IAI? (i) If A = PBP71, then B = (P~)A(P)!
(i) If A = PBPY, B = QCQ™%, 4 = (PQ)C(PO)L.
12. A~AB~A=A~ADN~B= 4~B
n n n
13. Tr[A, B] = Z (4, Bl = > { 2 b — 2, bikaki}
= i=1lk=1 E=1
z Zkbkl akz ik = 0.
ik
3 ~1
14. 2 _64+8=0,0r841=6l—A4= -1 3
§ -3
and Al = (_ 1 3 )
8 8
15. The companion matrix is 11 2 -1
A=11 0 0
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The matrix
123 =23 11
A2 =| —11 2 -1
1 0 0

clearly has the required property.
16. If Ax = Ax then 4%x = A Ax = A%, - -, A"x = A"x, - - -. Hence
SAX ={cogl + A+ -+, A™X = (co + cih + - -+ + cpd™x = f(Dx

17. Since the eigenvalues of 4 separate those of 4 at most one negative eigen-
value is introduced by the bordering process. Writing (108) in the form

n )2
El(uyxz)l _}‘ +LX =0

4y =35

i=
we see that just to the left of the smallest eigenvalue 4,, of 4, ¢(4) is large and
negative. To avoid introducing a negative ejgenvalue the graph of ¢(4) must
cross the Z-axis again between 2 =0, and A = ;. The condition for this is
simply #(0) = 0, or

Z | (u, x,)|?

=1 M

IA

o,

To put this in more manageable form, expand u in the x,,

u=(ux)x; + - + (U X)X,
Then
(u, x,) (u, X,)
A lu =A—11x1 Zn" X,
-1 g I(u’ xi)|2 . .
and therefore (u, A~u) = > ———— . The necessary and sufficient condition
is thus = A

@, A7) <o

18. (a) (x, (A4 + B)x) = (x, Ax) + (x, Bx) > 0. Yes.

(b) The eigenvalues of 4% are 4,2,..., 4,2 all > 0. Yes.

(¢) As in (b), if and only if the numbers f(4,), . . ., f(4,) are positive.
19. Let x be a vector of E,,. Then

(x, A4*x) = (A*x, A*x) > 0.
20. A is negative definite if and only if —A4 is positive definite. Watching the
signs of the discriminants, the conditions are
A, <0,4, >0, <O, ...
21. A,, = det 4,, = product of eigenvalues of 4,, = real.
22. If A = UAU*, 3; > 0, define VA = UVAU*. Then
VAV A = UVAU*UVAU* = UAU* = A.
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For each of the » elements of A we can choose either sign for the square root.
We find 2% square roots in this way, one of which is positive definite.

23. (@) Z n—s = 2 E
N
—sm—.s‘
g
»
= > n%Ccostlogn
mm=1
+ isin t log mym~%(cos t log m -+ isin t log m)
N
= 3 m .
mmn=1
()] @y = cos (tlog m — ¢t log n) = cos (t log m) cos (¢ log n)
+sin (tlog m)sin (tlogn) = f, fr + gmgn
Thus A =fiT + goT

and is plainly of rank two.
(0 AT =T +gg")T =4
(x, 4x) = (x, ({7 + ggT)x)
= (x, fi7x) + (x, ggTx)
= (fTx, fTx) + (g7x, g7x) = |(f, 0|2 + |(g, x)|2 = 0.
(d) If Ax = ix, then
x = Ax = (A7 + ggT)x = (f, x)f + (g, x)g.

Thus, if x is perpendicular to f and g and 4 =0, x is an eigenvector. This
accounts for N — 2 eigenvalues and eigenvectors. If 4 # 0, then x is a linear
combination of f and g. x = ¢,f + ¢c,g. Then

= (Acpf + (Aeg = {a(f, £) + co(f, @)} + {ci(e, D) + cx(8, 8))8.
Hence
(£, Dey + (F, 8)e, = Ay

(£, g)c; + (g, 8)ce = Acy
and the other two eigenvalues of 4 are the roots of
&H~1 G |_,
f.g) (2.2 -2 '
24. Let A be the given matrix. Express A4 in the form
A=D+A4 + A4+ + 4,

where D is diagonal, and each 4, is of rank one. One way of doing this is to put
the diagonal elements of A in D, the rest of the first column of 4 in 4,, the second
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column of 4 in A,, and so on. Since D' is known, find (D + 4;)", then
(D + A, + Ay, etc. from (118) terminating with 41, Each step uses about
2n2, multiplications, so about 2r® are needed altogether.

25. A = A*(A4%),

26. We have to show that there is a vector e, ; independent of e,,. . . , e,. Suppose
not. Then for every vector x the set ey, ..., e, x is dependent. Hence every x
is a linear combination of e, ..., e, ie., e, ... ,e, is a basis for E,, which is
absurd unless » = n. Thus vectors can be adjoined until there are n of them.

27. We know that for AB to be Hermitian we need [4, B] = 0. We will show
that this also insures the definiteness of AB. Indeed, 4 and B are simultaneously
diagonalizable:

A =UAU*; B=UANU*; A, >0; A,>0.
Hence, for any x # 0,
(x, ABx) = (x, UAN A U*x) = (U*x, A A U*x)
= (U*x, VA, VAAU*X)
= (VA A U*x, VA A, U*X)
> 0.

28. No. For example, if 4 and B are arbitrary, 4 — I, I — B but 4 « B may
be false.
29. First if A is diagonal,
1 f®

@@ ”2_m'f£(z1 s
is just r independent statements of the usual scalar Cauchy integral formula,
since 2] — A is also diagonal, and (zI — A);;* = (z — A;;) . Generally, if
A =PDP,

21—7”, % [(zI — PDP) Y () de = P 21_m § (zI — DY Y (z) dzP™!
= Pf(D)P' = f(A).

1 2
-1 G-Dk-2
30. (I — A= 1
0 z =2
Hence
1 (2)
[ = ﬁiﬁzf— 1 dz = f(1)
| A@d
S (Ds “milE-De =2 =2[f(2) - f(D)]
f(Ag =0

1 [ /@
[ =39 LD & =1
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In particular

ot — (et 2(e?t — e’))

Q ezt
31. x,A4-0x)=4—-B+B—0C)x)

=&, (4 — B)r) + (%, (B — O)x)

=0.
32. Suppose r(B) =r, A = PBPL. Letey,...,e, be a basis for Z(B). Itis
enough to show that Pe,,..., Pe, form a basis for #(4). First, these are

independent since if
coPey + - +c.Pe, =0

there follows P(c,e; + - -+ + ¢,e,) =0, but P is nonsingular, hence c,e; + - -+
+ce, =0, and ¢; = ¢, = - =c, = 0 since the e; are independent. Next,
these vectors span #(4), for let y be any vector in Z(A4). Theny = Ax for some x,
hence y = PBP~Ix = P(BP~x). But BP~x is clearly in #(B), and is therefore a
linear combination of e, . . ., e,. Thusy = P(BP~x) is a linear combination of
Pey, ..., Pe, which was to be shown.

33. The matrix of exercise 8 has nullity one, but a zero eigenvalue of multiplicity
two. If A is diagonalizable, A ~ D for some diagonal D. By exercise (32),
r(4) = r(D); by theorem 26, v(4) = »(D), which is clearly the multiplicity of
the zero eigenvalue.
34. The condition states that if dy, d,, . . ., d,, are arbitrary,

a;i(d; —d;) =0 (h,j=1,2,...,n).
Choosing d; # d;, a;; =0fori # j.
35. They are uu*, u being an arbitrary column vector.
36. Assume (I + uv*)? = I + oc,uv*, o, to be determined. Then (I + uv¥)*tl
= +uv¥)I + o uv*) =1 +[o, + (v,u)o, + IJuv* and ¢, ; =[1 + (v, w]o, + 1,

1

o, = 1. Hence, o, = o) {{l +(v,w” — 1}

37. If ey, . . ., e, are a basis for Z(B), Ade,, . . ., de, surely span Z(4B), though
they need not be independent. Hence r(4B) =< r(B). Next
H(AB) = r(AB)T) = r(BTAT) < r(4T) =r(4)  QED.
38. No. If[{4 B] =0, for in that case,
X /n
(4+By =3 |, |a*B"
F—o\k

and one finds e4ef = e4+2 by comparing the power series developments of both
sides.

39, I={p+Lp+2,...,0,J=41,2,...,p}

40. It is enough to show that if rows / and j are interchanged and columns i and j
are also interchanged, the reducibility of 4 is unaffected. Let 7 and J be the sets
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of integers which show that A4 is reducible. It is easy to see that interchanging
i and j in these two sets shows that the transformed matrix is still reducible.

CHAPTER 2

1. (a) Hy =f e =dr =r! r=0,1,2,...).
0

Thus the moments matrix is
My =up; =0+ j=012,...)
() $o(x) = 1; for n = 1, equation (8) is

Ko = —My

and therefore ay = — -2 = —1. Thus ¢;(z) = —1 + z; for n = 2, (8) reads

’ (o ) () == ()
()=~ ()

Solving, «y =2, 0; = —4 and ¢y(®) =2 — 4z + 2?
() p(w) =0atzx =1. ¢o(x) =0 at x =2 4 V2. These are real, distinct,
and lie in (0, o) as required.
2. This is merely the statement that the eigenvectors of the symmetric matrix J
are orthogonal (see Theorem 5 and (69)).
3. (@) det (=I — J)is zero when z is an eigenvalue of J, i.e., when z is a zero of
¢n(®). Hence the two polynomials of degree N, ¢y(x) and det (xI — J) have the
same zeros and therefore differ by at most a multiplicative constant, which
must be &y, as can be seen by matching the coefficients of the highest power of z.
(b) This is the Cayley-Hamilton Theorem (Theorem 19 of Chapter 1) for the
matrix J.
4. The zeros of ¢,,,(z) are the eigenvalues of the n X n symmetric matrix J,
bordered by a row and column to make J, ;. The result follows at once from
Theorem 21 of Chapter 1.
5. Putting z = %;, a zero of ¢,,,(2), in the recurrence relation (24), we find

or

kn _
¢n(xz) kg “ 2¢n——2(xz)
n—1
and ¢,(z;), ¢,_o(%;) must have opposite sign, as required.
6. (a) IfL,(x) = 4, L, (%), where L, () are normalized, we find, after substituting,
that

- .
"“ L@ — == L, y().

al (@) = @n + D) — :
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The normalization condition is

or

Thus 4, = An!, and the recurrence is

aL(@) = 2n + DL @) — (n + DLp@) — nL,_y(x)

_ 1 -1
e

Eigenvalues are roots of 22 — 44 4+ 2 = 0, as in problem Ic.

(¢) Here k,/k,.1 = n + 1, as can be seen by comparing the recurrence found
in (a) with (24) and changing the polynomials so that their highest coefficient is
positive. Along the right-hand sides of (47) the largest occurs wheni = N —2;

ky_ kn_
hence the zeros of Ly(x) are in the interval (0, Bn_s + kL?’ + kN 2) , namely,
—2 N-1

the interval (0, 4N — 6). _ _
(d) From problem 1, part (c), ¢, =2 — V2,2, =2 + V2. From (68),

oo ke 1
e ky Ly () Ly ()

oot 1L
2 key Li(z) Ly (25)

Instead of normalizing the polynomials, as is required in these formulas, we
calculate
H  LLy@) (1 —z)Qs —4) (1 + V2)2V2

i T = — =3 +2V2
Hy L)Ly (z) (1 —=z)Rx;—4) (V2 — D2V

w , 1 V2 1 V2
and Hy + H, =| e¢%dz =1. Solving, Hy =7 +——, Hy =7 ———. The
0 2 4 2 4

complete formula is
© 1 \/5) - (1 1/5) -
@) de = |z +—)fQ — vV2) + |5 - —=)f@2 + V2
foef(w)x(z )re-vy+ 15 -)fe+vo

which is exact for polynomials f(=) of degree <2-2 —1 = 3.
(e) The exact answer is 4! = 24. Approximately, we find

3t
=20

® V2 < V2 -
f e %zt dr o~ (1 2)(2 — V2 4 (1 __2)(2 + V)
0 2 4

the error being 167, in this case.
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7. (a) The recurrence is T,,,(%) = 22T, (x) — T, _,(%). The relation T, (z) =
cos (ncos™Xx) is plainly true for n =0 and n = 1. If true, inductively, for
n=0,1,...,N, then, writing x = cos 6, what we have to show is that

cos (N + 1) = 2 cos 8 cos N0 — cos (N — 1)6,

an easy identity.
(b) Tn(x) = 0 when cos (N cos™z) = 0, i.e., when

Ncosx = (k + D k=0,1,...).
Thus the zeros are

2y = cos (k +12~)% (k=0,1,...,N —1).
(c) First,
Ty_1(®p) = cos ((N — Dk + D %)

= cos (k + Pn cos (k + %—)% + sin (k + L) sin ((k + 3 %)

m
= (—=1)si 1) —
(~DFsin(k + 2)N
and
Nsin (N cos™ zpy)
V1 — =z,

Ty' () =

Nsin (k + Dr

Tsintk + DN N1

sin(k +3)#/N~

From (68), since k, = 2™, y, = 7—27,
2Y n 1
Hy =55=5 g
2 2 T4y Ty (@)
_ sin (k + 3)=/N
~ " (—DF [sin (k + PAININ) 1)
=% (k=1,2,...,N).
1 dx -
) f T (@) T() — =f T,.(cos 6) T,(cos ) d6
—1 '\/1 — SUZ —7

=f cos mf cos nf df
=0 (m # n).
(e) The identity is

il cos (N + 1)6 cos Ny — cos N6 cos (N + 1)y

1 + 2 0
2 n=1COS cosny = cos § — cosy
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8. (@) The formula is
1
fof (@) dz = Hy( f(z)) + f(=,).

Putting f(x) = 1, =, 2%, we find, successively,

Hy =3
%=%( + x,)
3 = 3@? + %)

with solution z, = (1 — V), @, = (1 + V1), which are in (, 1).

(b) Proceeding as above, we get for N =2, Hy =4, ; =0, %, =2. For

= 3, however, the points @, Z,, 73 turn out to be the three roots of the cubic
equation

22— 3% +3x -3 =0

which, as can be seen from a graph, has only one real root, and no such formula
exists.
9. This is merely a restatement of (69), using Theorem 5.
10. (a) The nth partial sum is
sin @2n + )x/2

2 sin 22
which clearly does not approach a limit as » — c, no matter what z is.

(b) The nth Féjér mean is

1 n—1
0na(®@) == 3 Sy@) =
ng—o

1 [sin nz/2\?

T 2n\ sin /2
If sin x/2 # 0, then, as n — o, the quantity in the parentheses remains
bounded, and hence o,,_;(x) — 0. At any point # where sin z/2 = 0, the quantity
in parentheses is n%, and o, _,(z) diverges to +c as n — co. Hence the series is

summable to zero except at the points z, = +2kn (k =0, 1,...).
(c) For the given a, we have

a [ —é )
lim f [0, () dt = limf f(@®)ou(8) dt +Tlim ( f +f ) f(@D)on(2) dt.
—a —a (4

n—c0 n—w n—o

(x)——+zco kx

2n sin zf2 = z sin (2 + 1) 2

The second limit vanishes, according to part (b), since 0,(¢) — 0 uniformly on
{—a, —d] and [J, a]. Hence the limit we seek is independent of the choice of a.
Next, since o,(f) = 0, we have

)

’) %)
min f(f) | o, dt éf Sf@® o () dt <max f (t)f o (1) dt.
(~5.6) -5 -5 (—8.,9) 5

But, by (115),

/2 8 w/zl
f o) dt =z = f o () dt + { f f o) dt.
—af2 - —7f2 (4 J
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Taking the limit, n — o,
s
lim | o(dt =
s

N—+0 o —

T
2

independent of 8. Hence, taking the limit in the preceding equation,

T min () < lim fa F@0u(t) dt < max fH)= .
2 —a (~8,6) 2

(—46,0) n~—>0
Since this is valid for arbitrary § > 0, we can make § — 0, and find

a

lim | f(Dou(0) dt == £(0)
n—w —a 2
as required.

CHAPTER 3

1. This matrix has the properties () @; #0 (j = 1,...,n) and (i) a5 ; # 0
(j=1,...,n—1). Suppose 4 is reducible, and let 7, J be the sets of integers
which show this. If i, is the largest integer in I, then by (ii), iy — 1 is not in J;
hence it is in I. Thus 7 consists of 1,2, . . ., iy and J consists of i, + 1, ..., n,
which is impossible, by (/). Hence 4 is irreducible.
2. (@) §(2) = ap + @y gz 0 F A"
11 1

()] ;—l,z—z,...,z—n

(¢) If R(ay, . . ., a,) is any of the upper bounds for the moduli of the zeros of
[f(2), then R(a,, . . ., a,) is an upper bound for the moduli of the zeros of g(2), i.e.

1 1
= = = Ray, . .., a
2y Imax zvlmin " o
or
|2l min = {R(, - . -, @} 2
Hence all the zeros of f(2) lie in the ring
{R(ay, ...,a0) L < |z| = Rlag, - - -, ay).

(d) By using Kojima’s bounds (21), all zeros of f(z) are in the ring
1<zl £2

The zeros of 1 — 2t

T+z+4+---+2"=

1 -z

are clearly the (n + 1)st roots of unity, and all lie on the circle |2 = 1.
3. Here

n 22
f:?n(z) = vgo(_l) 2!

and

2

@)

fnV2) = 2 (=17
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By using Fujiwara’s bound (20), the zeros of f,,( v ;) lie in
2| <2 max {2r)Q2n — 1), V2n2n — 1)2n — 2)2n — 3), ..., Cn)1in}
=4nQ2n — 1)
and therefore those of f;,(2) lie in
2] <2Vn@n — 1) ~2V2x.

4. (a) The triangle joining (0, 0), (0, 1), (1, 0).
(b) The whole complex plane.
5. We must show that if a point set S is contained in a circle, then so is its
convex hull. But the circle is a convex set containing S. The convex hull of S is
contained on every convex set containing S, and hence in the circle.
6. Suppose Budan’s theorem gives exact information on any interval (a, b).
Making @ = —®, b — ®, V(a) — V(b) —n; hence f(z) has n real zeros.
Conversely, let f(z) have « real zeros, and let (a, b) be given. Let z, be a point
where f?)(z,) = 0. Since, by Gauss-Lucas’ theorem f{*~1)(z) has only real zeros
f"(x) must be positive at its maxima and negative at its minima. In either
case clearly, f7(xg)f PH(zs) < 0, for f{P+l(x) is the second derivative of
[ (). Hence the sequence

[, ... ,f(“)(x)
is in this case a Sturm sequence and therefore gives exact information on every
interval. This argument ignores certain possible degeneracies, which are easily
dealt with by taking limits through nondegenerate cases.
7. This is just a rephrasing of exercise 5 of Chapter 2.
8. As in the proof of Theorem 8, ¥(2) is unaffected by the zeros of members of
the Sturm sequence other than P(z) itself. At any zero of P(z) we make the table

Left of x, Right of z,
P(x) Q@) P(z) O(x)
+ + - +
+ — - —_
. - + + +
— — + —_

and observe that ¥(z) increases by one if P(z)/Q(x) changes from + 0 to —c0,
and decreases by one otherwise. Hence F(«) — V(—) is the excess of
“plus-to-minus™ points over “minus-to-plus”’ points, which was to be shown.

The phrase “combining these results™ refers to the following operation: On
the interval (&, + ¢, &, — ),

Aarg f(z) = 2[5 W(Eery — €) — sgn (&, + o).
Furthermore, on (— o, & — &),

8 arg f@) = 5 sgn vl —2)
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since &, is the smallest zero of f(z), and f(x) cannot change sign in (— o, & ~ ¢).
Similarly, in (£, + &, ©),

Aarg @) = — 2 sgn vl(Em + o)
Adding all these,

m—1

Apargf(z) = g{ D [sgn 9(&yy — ©) — sgn (&, + o)

k=1
-+ sgny(§; — &) — sgn (&, +¢)

_ S fsgny(é — &) —sgnw(éy + ¢)
-3 . |

k=1
as claimed.

9, We have
fp2) = ag +azpz + - - + a2

Replacing g, by p'a; in (16), the zeros of f(pz), which are the zeros of f(2) divided
by p, lie in the circle

an—i i

=]

n

2] <1 +max{

and the result follows.
10. If f(2) = P(2) + iQ(z), P(z), Q(2) are real, then f(z) =0, z real, imply
P(z) = O(2) = 0. Hence the real zeros of f(z) are the zeros of the real polynomial
g(2), which is the highest common factor of P(z) and Q(z). This highest common
factor can be found in the usual way from the negative-remainder division
algorithm, and the number of zeros of g(2) in (g, b) in the usual way from
Sturm’s theorem for real polynomials.
11. The number of zeros of f(z) in |2| < R is the number of zeros of f(Rz) in
|2| < 1. Now the mapping

1+-2

1 -z

w

maps the unit circle onto the right half-plane. Hence the number of zeros of
f(R2) in |z| < 1 is the number of zeros of

w—1
R
f ( w + 1)
in the right half-plane. This is not a polynomial, but
¥ f w+1

is, and has the same zeros. Rotating by 90° and replacing w by z, we deduce
that f(2) has precisely as many zeros in |2| < R as

- - Rl + iz
g =1 —i)*f =1
has in the upper half-plane.
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For the particular f(z) given, we find

1 +iz

The Sturm sequence is
B 4z,2% -3, —4z,3

and the required number of zeros is

P=34+iV(+ + — ) —FV(—, +, +, )

=3+1-}
= 2.
CHAPTER 4
1. (@) False V22 +1~V2 (x> )
(b) True
(¢) True

(d) True, since
1\Vn 1\»
(1+-) §(1+-) <e.
n n

2. Though
22 + x ~ 22 (x — )

it is not true that
ettt ~ g7t (# - ).
However, if
f@ =g +0o(1) (z— x)

then
of(®@) = pala)+o(1)

= g9(x)go(1)

~ 9@ (x — ©).
3. We have
log f(z) — log g(=)

f@
£(x)

—logl (x — )

= log

=0.
4. Regarding = as a parameter, put
z - 2
oY) = e
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in the restricted form of the Euler-MacLaurin sum formula. Then

oy " x lz ”

2 e =f e dy wet 45 e +j (v~ Iyl — D@ ay.
1 1

Making n — oo,

@

z 2 ©x fy2 1 *© ’
2 5o = . a7 dy +3ze® +| (v — [yl — D@ dy.
1

p=1"
Now

fl - —De@ay

o R 22
L (Y — Tyl — Pe=lv (y% - l)y—3 dy,

vz - ”
f (ﬁ - [l/f] - 1)e—ﬁ(t2 —1)2tdt
0 t t 2

vz
< const. 28— dr

i
= 0(1) (z — )

Hence
o x _ I . o0 x —ai?
D e U = —em iy + 0(1) (x> )
n=17 1 Y
v
= wa e~ dr + 0Q)
0
- o0 N - 2]
= \/xf e T dt — \/xf e~ dt + 0Q).
0 vz
Finally,
_ [ _ o — _
\/xf e~ dr < \/xf e~tdt = Vze=V2 =0o(1) (@ o)
vz vz
completing the proof.
5. Since
1 fz\® (=1)*(=/2)
Inl®) = F(ﬁ) DN i Sy sy
we have
\/‘ 7 g i %
V) = i(—") > (— E)i <
nt\ 2 /0N Hklmn+1)---(n+k)

and the result follows from Stirling’s formula (72).
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6. First, from (45), it is clear that

@2 ~1 (n— x)
and from (50),

2
By ~ (—=1)*t(2n)! G (n — )

whence the result follows from Stirling’s formula (72).
7. A direct application of the Euler-MacLaurin formula to f(z) = »~ gives

1+1+"'+1~logn+y+-!——‘8—2—-f}i — (n — )
2 n 2n  2n* At :
8. First,
1-3-5---Qn—1) @n — 1)
2-4---@2n) 201 Q-4---(2n —2)
(2n — 1)!
T 2 Il (n — 1)1
2n)! — (2nNE(  — [(n\P) 2
= 451(—’1)')2 ~4_"{\/41m(-;) }{\/27”1(;)}
1
=vn_” (n - ).
Therefore
1:3:5---Q2n -1} 1
( 2-4--2n )Nn_ﬂ- (n = )
and

GomS = ~tlogn  (n— )
"o o g
according to exercise 14.
9. Suppose first that 4 = 1. If ¢ > 0 is given, choose d such that

f@ =fOl s e

forl —d<r<1. Then

1 1-6 1
f (1) dt =f "f(0) dt +f "f () dt.
0 0 1-46

But
1-6 1-8
f (2 dt éMf ™ dt
0 0
1 -6 n+1
n+1
=o(rl) (n— )
and

1 1 1
() - e)f " dt §f (O dt < (f(1) + e)f " dt
1-6 1~6 1—6
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or
f -2 [ £ + 26
/T < n <t
for all sufficiently large », and the result follows. The general problem can be
reduced to the case A = 1 by letting t = At’ in the integral.

10. First,
1 [
Jo(z') _ ___f ezzsmedg
27?' 0

which is of the form (118) with ¢(6) = sin 6. This function has two stationary
points, at 7/2, 3=/2, and its’second derivative vanishes at 0, «, violating one of the
hypothesis of Theorem 5. Hence we must consider

2w —0 2w -8
{f J‘ f f }eiz sin 0 49.
27 2r—8

The first and third of these integrals each contain one stationary point, and
$"(0) is of constant sign in each of them. Therefore, by (118),

1 T—8 L —Z(‘Ir/4)-r’£1’
o ) em:smedg__m_i_o(x %) (x — )
and
1 276 . e“"/‘*) iz
5 Arsint g 72___ + O@%) (z — o).
LR 7L

For the second of the four integrals, take A(y) = # siny in Lemma 3. Then, on
(@ — 6,7+ 6), || = |rcosy| = z|cos (= — 8)] = m. Thus, by Lemma 3,
keeping ¢ fixed, the second integral (and similarly the fourth) is O(x™)(x — ).
Hence

2
_1_ egxsing gg — {ei(a:——(wH)) + e—i(—r—(n/4))} + O(z’%) (x — )
27 Jo 2mz
and
2 - iy
Jox) = —cos @ — 7 + O(x~%) (x — o).
11. (a) It
) @,
f& =2 5
i v
o 2 (”) X
then efR) = Lt
y=0 v.
<o, + a,
=1+ 2 2
=1+ Z{f(z) - 1}
and

f@) =@ — e
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(b) The function f(z) clearly has a singularity at z = log 2, and this is, there-
fore, the radius of convergence of its power series. In other words,

Hence, if ¢ > 0 is given, for all sufficiently large n we have

oy 1/n 1
—= < tl— 4+
(n!) - (logZ )

n

1
o, <(log2+e) n! (n = ngy)

as required. If ¢ < 0, then for infinitely many r,

a,\ 1/n 1
_ > -
n! “log2

or

proving the second part.

12, If
a,
f@ = 2 =
011.
then
f¥@) = z ﬂ;y(v — 1)@ — k4 1)z
v=Q V-
o0 o0
v—k Gtk o
g "’—k)'z —vgo »! ?
Finally,
o0 aﬂzﬂ 0o
e¥’f(2) = 2 Z
=0 v=
=] » a,_ ”
= ZV ——
vgo e oﬂ'(” - !

v

13

234

o)

I
IIM8
s

13. The generating function is

7 0 xt 7

F() = f sin x dx
LA 1+e
=J;) eﬂsmxdx = m

7722 71-33 7 ”44
=2+7rt—2—§-i w—;t+2—ﬁ+mt+"'
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The coefficient of 2711 is

2 3 2n+1
.

@ + D @n + D!
n2nt3 ) g2nts
= (—=1™sin = 1y —1yth —
7_',2‘rL-|-3 77_2
=T 3)1{1 Tt dhenss T ]

Multiplying by (2r + 1)! and replacing 2z + 1 by r throughout, the result
follows for odd », and similarly for even #.

14. Since

.4
lim — =1
— 0 b”

if ¢ > 0 is given, there is an ny = ny(¢) such that for » = n,

a, 1l < £
h =3
ie.,
1 z b <a, |1 £ b >
—i y = 4y = +E (3 (11.__}10)
Now, for n > n,
n np—1 n 7
Sa,=2a +D a =Ke + Xa, say.
v=1] v=1 v=1 y=n,
Hence
n n
K(e)+(1——)z <> a §K(8)+(1+ )va
y=n v=1 y=n,
np—1 °
for n > ny, and if we put L(e) = b,
=1
£ n
K(e) —(1 — 5 )L +(1 - i)zlb”
n n
<>a, < K) — ( )L(E) +(1 + )2
v=1 v=1
Therefore,

e M@ _5% (1 + f) 4+ M)
< S)+

+ <
2 b,
v=1

n
2. b, b,
v=1 v=1
for n > n,, where we have put M, (c) = K(¢) — (1 + ¢/2)L(¢). Keeping ¢
fixed, by hypothesis III, for all large enough n the ratio in the middle will lie
between 1 — ¢ and 1 + &, which was to be shown.

IR\

1 -

NI
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CHAPTER 5

1. In all cases, no Lipschitz condition is satisfied in any open set containing the
initial data point. This is obvious in (5), (6). In (7) what we have to show is
that Vy satisfies no Lipschitz condition in an interval containing the origin.
Otherwise, however, there would be a constant L and an interval [0, 6], 6 > O,
such that - -
‘/?/2 - ‘/?/1 = Ly, — o)

for y,, ¥, in [0, 1. But then, with ¥, = 0, we have Vy, < Ly or L = y~¥ for
all ¥, in [0, d], which is absurd. The situation in (8) is identical.

2. Clearly y’(z) > 0 always; hence y(z) increases and is therefore always
positive. Thus e~*¥® < 1 always, and the given equation is dominated by
y'(x) = 1, y(1) = 1, whose solution is y(z) = .

3. Theorem 1 gives first M(a, ¢) = 2a(1 + ¢)®

. c 1
b =maxmin (o 25 5) =33
From Theorem 3 we find
o) =max|2es?  on ol Sa; 1~y ss=1+]yl
=2a(1 + ly|)?
and from equation (27) we may take

(o] )
b = max min {a, | —
(a,c>0) 09(®)

i c
= max min |a, -————
(a,c>0) ( 2a(c + 1))

then

c 1
’fff,‘«/z(c iy Ry
The true solution is y(z) = (1 + #)~1; hence, on the real axis, the solution is
everywhere nonsingular. That is, the best possible value of b is + . The
reason for the large discrepancy lies with the poles of y() on the imaginary axis.
Indeed, if f(», y) is analytic, Picards’s theorem goes through virtually unchanged,
to provide an existence theorem in the complex domain. Hence the number b
should be interpreted, in such cases, as an estimate of the radius of convergence
of the power series development of the solution.
4. In the general formula
Unyy = Golty, + *** + a_ gy p + hlbif@npy, iy} + -0 b_pf @y, U p)]
puta,  =h 2, =0, 2,y = ~hy ..., % , = —phu(@) =2, f(z,u) =rz",
Then B o=ay 0"+ +a_(—phy + kb + - +b_(—phy 1.

Cancelling 47, the condition is

P P
da—jy+r X b (—)yt=1 (r=01...,k 0=1).
ji=0 ] 1

7=
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5. Read the Euler-MacLaurin sum formula ((54), Chapter 4) from right to left.
It says

fnf(x) dr = 3(f(1) +f2) + (@) + fQ) + -+ + }(f(n — 1) + f(m))
1

—J; (z —[x] — P f' (@) dx.

6. (@) The general formula is
Unyy = Aoty + A_qitn_y + Wby f @5, 1) + bof (@n, tn) + b_yf (@1, tin_1)}
Imposing the first two exactness conditions of exercise 4,
ag+a_;=1, —a_;+b,+by+b =1
we take @y =1, a_y =1 —1¢, by =2 —t — (by + b_,), and the most general
formula exact for 1, z is
Uppq =ty + (1 — Dty + B{[2 — 1 — (by + b_))]

+ bof(xn, un) + b—lf(x'll—l’u’n.—l)‘
The stability condition is that the roots of

2—tr—(Q1 -t

Por—-0_ L g

r—1

should lie in |z| = §, which requires $ < r < §.
(b) The formula of part (a) contains three parameters, by, b_,, 1, the first two
being unrestricted, the last satisfying § < ¢ < 2. The conditions of exactness for

«%, «3, 2% are, after some simplifications,

t
b0+2b_1=2'—§

4 -2
by = —

b 2b, 2 o
o 20 = i

The last of these contradicts the first unless ¢ = 0, which is outside [%, £]. Hence
the largest k for which there is a stable formula exact for 1, z, ..., 2% is k = 3,
Taking ¢ as parameter and eliminating by, b_; from the first two equations above,
all such formulas are

1 !
Upyy =ty + (1 — Oup_y + h[(g + F,) S@nia, Uniy)

1+t 1 5
3 f(xm ”n) + (§ - E) f(xvn,—ls ”n—l)]

where } <t <
7. Putz =% +

3 A B il il
2 T\ T T GaaG ¥ i) coshat’

t in (120), getting

~. D8
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I‘l j
§+1t

= A/ cosh =t (¢ real).
8. Let ¢(2) = [zT'(®]X. Then

4@ = e IT [( 1+ S) e—ﬂ

n=1

hence

and clearly $(0) = 1. Logarithmic differentiation gives

#'(2) 3 1 1
9@ +n§1 n+z n
whence ¢'(0) = y. Differentiating once more,

(¢'(Z)) T $@¢(E —[$ P

9() [P
°° 1
- —nzl (n + 2)* '
Putting z = 0, this gives
21
$0) =2 — 2 =
n=1"

77.2
=7 -@=r-c.

Taylor series expansion of ¢(z) is

. 1/, =,
) = o P
#(2) +yz 5|V - o)+

in which the coefficient of 2 is negative.
9. Put z = § in (118), using (129).
10. We have, using (130),
2 \2¥ +1/2
ot

Tp@) =S ——L
]/2(1:) VZOV! F(V +1+ %)

2\2v+1/2
o (-1)”(5) 2+

ov11:3:5 -2 + 1)Var
z2v+1/2
- (—1)”(5) 20 +12vy

TS Ve + 1)

Z_x 0 (_l)vva
=A/? Eo @ + D!

2
= [—sinz.
wr
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11. (a) We find

o[- e -3)]
cor[52-3]

= i Jn(x +y)t"

f=—c

<0

= Y L@ Y T

7= —0a0 n=—c0

= Jo@Jo(y) — 25,1 (v) + 275@)5(y) — - -]
+ terms involving f.

(6) Puttingy = —z,
Jo0) =1 = Jy(@)Jo(—2) — 2Jy(@)J(~=) + - -
= Jo¥(x) + 2J%(x) + 21,4 =) + . ..

Naturally, each term is <1, since all are positive.

CHAPTER 6
1. (a) The question is: For what w does the equation
1
f@) =2 —(2 +;)z +1=0

have a root in the unit circle? Using the solution of exercise (11), Chapter 3,
the number of zeros of f(z) in the unit circle is the same as the number of zeros of

iz —1

£G) = (1 — RS (? * i")

1 1
=2"= +4 4=
W W

in the upper half-plane. But the zeros of g(2) are the numbers
+V —4w — 1

one of which must lie in the upper half-plane unless —4w — 1 is a positive real
number, that is, unless w is real and less than —}. Hence the function in
question maps the unit circle 1-1 onto the full w-plane cut along the ray
— oo < w < —} on the negative real axis.

(b) The full right half-plane. To verify this, show that Rew > 0 in [2| <1,

then that w omits no such values.
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2. (a) We showed in the previous solution that f(z) has as many zeros in |z| < 1
as g(2) has in Im z > 0, but that number is one.

(N}
1+Z1 1+22
1—2 1 —2
then 1 —2y +2) —212 =1 —2) + 25 — 22,5, 0r 2y = 2,.

3. If f(g(z)) = f(g(2y) then g(z;) = g(z5) and s0 z; = 2,.
4. If f(2) is univalent in |2| < R, then f(Rz) is univalent in |2| < 1; hence so is

nn —1)
f(RZ)—(l +nRZ+TR2Z2+"')—1

nR nR

n—1 .
=Z+TRz 4o
By theorem 12,
n—1
2

r| =2
or

R =

n—1
which is less than unity when # = 6
5. We have to show that

w = log o
maps the upper half-plane onto the strip 0 <Imw <z, This is evident from
the equation preceding (25).
6. If f1() maps the unit circle onto the upper half-plane and fy(z) maps the
upper half-plane onto the strip in question, then fy(f;(2)) is the function we seek.
But from exercise 1,
14z
fi® =i

while we have already shown that

fo(?) = sin1z,

1 —2

Thus
i+ iz
1—z

f() =sin™t

is the required function.
7. According to exercise 1(b), the function

1+-2
-1

1 —=2 z .
v= 2 _l—z_z+z+
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maps the unit circle onto the convex set Rew > —4. All of its coefficients
a,=1»=12,...).
The function

has positive real part,and the sign of equality holds in (31) foreachn = 1,2,3, ...
8. According to exercise (1), the function

k4

(—'1—_—2)2=Z + 222 33 4 -
is univalent in |z| < 1, and the sign of equality holds in (33), (34) for each
n=1,2,3....
9. No, for
e _

6
would violate Theorem 10.
10. For a convex map we have, for |z| < r,

+%Z+‘Z‘Z2+'

[~

¥

|f(z)|=|z+a222+-“|§r+r2+r3+---=1_r.

Hence the maximum modulus is Ol —#)™) as r — 1. The function in
question does not satisfy this condition.
For (b), (¢), we have for such functions

r

If(Z)I§r+2r2+---=(1__r)_2

and this is not violated; so the answer to (b), (¢) is “possibly.”
11. From equation (20),
V2O(z, y) = (uz> + w,®) Vi(z, y)

which will be positive if ¢(z, y) is subharmonic.
12, If fo(2) is any function with the desired mapping property, then

_ gin J8® = ¥
f® —e‘”1 @

is the most general such function, where |wy| < 1. Now, for the extremal
function, we have f(2/) = 0. Furthermore, we may choose

i

z—-
z4+i

f (@) =
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by rotating and inverting the result of exercise 1(b). To make f(z) vanish at 2i,
then, we take

Jfo® — fo(20)

1 - f o(2) f ()

z—i 1

z+i 3

f@ =

lz—1i
1"EZ+i
z —2i
Tzt

The maximum value of the derivative in the whole class of functionsis therefore

@l =1
CHAPTER 7

1. By differentiation, the function has no interior extrema. On the boundary
joining (0, 0) to (1, 0) the function is f(x, 0) = z whose maximum is at (1, 0).
On the vertical boundary (0, y) = y? whose maximum is at (0, 1), whereas on
the other boundary f(», 1 — x) = 2® — @ + 1 which has a minimum at 2 = §,
maxima at the end points. Hence, in this case (not in general for nonlinear
functions) it is enough to examine the vertices, and the required maximum is 1.
2. According to equation (38) of Chapter 1, the required polynomial is the sum
of the first n + 1 terms of the formal expansion of f(x) in a series of Legendre
polynomials,

3. If

f@ =z+a@® +- - +az

is univalent in |2| < 1, then
f@®=1+2az+ "+ na"1

is not zero there. Hence the product of the zeros of '(2), namely 1/na,, exceeds
unity in modulus. Hence |a,| < 1/n. The polynomial

=zt 2

satisfies the conditions of the problem.
4. By Schwarz’s inequality (Theorem 1 of Chapter 1),

(x,x)a,a) = (a,x)? =1
from which
(x,%x) = (a,a)*

with equality if and only if x = (a, a)~%a. The problem can also be done with
Lagrange multipliers, but this would amount to another proof of Schwarz’s
inequality.
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5. (a) The functional is
1 z
Jlyl = —-J. y'(%) dx
x — @y g,
_ y(x) — Yo
Tz =,

where (z, y(2)) lies on C. The value of J[y] depends only on the endpoints, and
thus we may restrict attentions to straight lines. To find the straight line of least
slope is easy: start with a vertical line through P (slope — ). Rotate the line
clockwise about P until the curve C is touched. The position of the line segment

PC then solves the problem.
6. By minimizing
fF (=, y,y) dz

subject to the side condition
fG(x, %.9) =1

7. As in equation (20), we minimize

b 1i ’2
f J +y dx
0 Yy

with the conditions ¥(0) = y,, ¥(b) = 0, and

b
f\/l +y2de = L.
0

The Euler equations are then

d af [1+y? —) o [1+y? _
——,A/ L i avi+y? ———A/ Y +avityy =o.
dx 9y Yy oy y

Since the integrand was independent of =, a first integral is

2 A/1+y'2 —} { 1 +y2 S
f— +AVL 4y =1 ] +AV1 +y? =c
yay{ Yy y y Y !

which simplifies to

dy dx

/ 1} e
(11-['7?_/)—012 b

and the problem is reduced to a quadrature.

8. The problem is incompletely formulated as it stands, for the boundary values
were not given. We have to discover the kind of boundary conditions which are
natural to the problem. Let us use Fy, F,, F; to denote the derivatives of F with
respect to its first, second, and third arguments, respectively.
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Choosing a variation 7(x),

b
Ily + en] = f F(z, y(x) + en(x), y(z + B) + en(z + b)) d=

a
and

b
I'ly +enlizo = f {Fo(@, y(2), y(= + Wn(@) + Fy(@, y(@), y(x + Mz + h)} de
b b+
= J‘ Fyf, y(2), y(z + M) dx +f +hF3(x — h,y(@ — h), y(@)n(x) de.

In order to collect these two integrals into one we clearly need #n(x) to vanish on
[a,a + A)and on (b, b + A]. This means that y(z) is given on those two intervals.
If this is the case, the Euler equation is

Fy(z, y(), y(z + b)) + Fy(@ — h,y(x — h),y(x)) =0

where the values of y(x) are prescribedonae <2 <a +hand b <2 <b + h.
9. We first let z; =, x, = y, and introduce slack variables z3, ®,, 5, %z by

—% + @y +az =1 —dry —zy oy = -2
—ix, 4+ ;=3 Zy fxg=35

with the constraints #; 20 (i =1,...,6). The vertex (%, 3) corresponds to
2y > 0,2y > 0,25 >0, g > 0; 23 =2z, =0. The matrix of (60) is

-1 11000 1
-1 -1 0100 =2
-1 10010 3

1 00001 5

and the columns to be used for the basis are the first, second, fifth, and sixth.
If we now express each column as a linear combination of these four, as in
(63), we find the matrix of y;; to be

row 1 10 -2 -2 00
row2 01 1 -2 00
row5 {0 0 -2 % 10
row6 \0 0 % %2 01

From (64), p; = yy; + 2y, andsop; = 1,9, = 1,03 = 0,9, = —2,905 =@ =0.

The variables for which ¢; > ¢; are clearly the second and fourth. Using the
current values of the variables z; = ¢, 2, = 5,23 =0,1, = 0,25 = 4,5 = L2in
(69), we find

(e~ gmin () =3

q
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The fourth variable is then to be entered in the basis with the value 8 = 5; the
other variables now have the values

z =4 = 5(-§) =4
x2=%—5(—%)=5
23 =5 —5-3=0

rg =% —5-%4=1.

Thus, at the beginning of the second iteration, the values of the six variables are
4,5,0,5,0, 1, and the value of the function we seek to maximize has increased
from 4 to 14. Inspection of a graph will show that we have moved to a vertex
next to the one which actually solves the problem. Hence the next iteration,
which we omit here, will be the last.

10. If the line in question is ¥ = ax + f, then we have the conditions
M= —f8=—{!—at~Bt=e¢—(x+0)
and
ef —a=0.
We find readily that

a=e—1

B =31+ (e~ Dl ~loge — 1]
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