Topological T-duality With Monodromy

David Baraglia

The Australian National University Canberra, Australia

> String-Math 2011 UPenn, June 6-11

Consider the following manifestations of T-duality:

Consider the following manifestations of T-duality:

Topological T-duality

Principal torus bundles with flux

Consider the following manifestations of T-duality:

Topological T-duality

- Principal torus bundles with flux
- T-D: exchange Chern class and flux

Consider the following manifestations of T-duality:

Topological T-duality

- Principal torus bundles with flux
- T-D: exchange Chern class and flux

Topological Mirror Symmetry

- Torus bundles with singularities
- Monodromy around singular fibers

Consider the following manifestations of T-duality:

Topological T-duality

- Principal torus bundles with flux
- T-D: exchange Chern class and flux

Topological Mirror Symmetry

- Torus bundles with singularities
- Monodromy around singular fibers
- T-D: dualize monodromy, fill in singular fibers

Consider the following manifestations of T-duality:

Topological T-duality

- Principal torus bundles with flux
- T-D: exchange Chern class and flux

Topological Mirror Symmetry

- Torus bundles with singularities
- Monodromy around singular fibers
- T-D: dualize monodromy, fill in singular fibers

We would like to bridge the gap between these constructions

Top T-duality can incorporate monodromy, singularities not yet considered

Affine Torus Bundles

Let
$$V \simeq \mathbb{R}^n$$
, $\Lambda \simeq \mathbb{Z}^n$, $T^n = V/\Lambda$
Aff $(T^n) = \operatorname{GL}(n, \mathbb{Z}) \ltimes T^n$

Let
$$V \simeq \mathbb{R}^n$$
, $\Lambda \simeq \mathbb{Z}^n$, $T^n = V/\Lambda$
Aff $(T^n) = \operatorname{GL}(n, \mathbb{Z}) \ltimes T^n$

Definition

An *affine torus bundle* on *M* is a torus bundle

 $\pi: E \to M$

with transition functions valued in $Aff(T^n)$

Let
$$V \simeq \mathbb{R}^n$$
, $\Lambda \simeq \mathbb{Z}^n$, $T^n = V/\Lambda$
Aff $(T^n) = \operatorname{GL}(n, \mathbb{Z}) \ltimes T^n$

Definition

An *affine torus bundle* on *M* is a torus bundle

 $\pi: E \to M$

with transition functions valued in $Aff(T^n)$

 $\operatorname{Aff}(T^n) \to \operatorname{Diff}(T^n)$ is a homotopy equivalence for $n \leq 3$.

Affine torus bundles over *M* in bijection with equiv classes of pairs (ρ, c)

Affine torus bundles over *M* in bijection with equiv classes of pairs (ρ, c)

ρ : π₁(*M*) → GL(*n*, Z) monodromy
 c ∈ H²(*M*, Λ_ρ) twisted Chern class

where Λ_{ρ} is the local system given by action of $\pi_1(M)$ on $\Lambda \simeq \mathbb{Z}^n$

Affine torus bundles over *M* in bijection with equiv classes of pairs (ρ, c)

ρ : π₁(*M*) → GL(*n*, ℤ) monodromy
 c ∈ H²(*M*, Λ_ρ) twisted Chern class

where Λ_{ρ} is the local system given by action of $\pi_1(M)$ on $\Lambda \simeq \mathbb{Z}^n$ $(\rho, c) \simeq (\rho', c')$ if they are related by an element of $\operatorname{GL}(n, \mathbb{Z})$

Topological T-duality (rank 1 case)

 $\pi: E \to M, \quad \hat{\pi}: \hat{E} \to M \quad \text{circle bundles on } M$ $h \in H^3(E, \mathbb{Z}), \quad \hat{h} \in H^3(\hat{E}, \mathbb{Z}) \quad \text{flux on } E, \hat{E}$

Topological T-duality (rank 1 case)

 $\begin{aligned} \pi: E \to M, \quad \hat{\pi}: \hat{E} \to M \quad \text{circle bundles on } M \\ h \in H^3(E, \mathbb{Z}), \quad \hat{h} \in H^3(\hat{E}, \mathbb{Z}) \quad \text{flux on } E, \hat{E} \\ & \text{GL}(1, \mathbb{Z}) = \mathbb{Z}_2 \\ \rho, \hat{\rho} \in H^1(M, \mathbb{Z}_2) \quad \text{monodromy} \end{aligned}$

Topological T-duality (rank 1 case)

 $\begin{aligned} \pi: E \to M, \quad \hat{\pi}: \hat{E} \to M \quad \text{circle bundles on } M \\ h \in H^3(E, \mathbb{Z}), \quad \hat{h} \in H^3(\hat{E}, \mathbb{Z}) \quad \text{flux on } E, \hat{E} \\ & \text{GL}(1, \mathbb{Z}) = \mathbb{Z}_2 \\ \rho, \hat{\rho} \in H^1(M, \mathbb{Z}_2) \quad \text{monodromy} \end{aligned}$

David Baraglia (ANU)

Definition

- $(E, h), (\hat{E}, \hat{h})$ are **T-dual** if
 - $\rho = \hat{\rho}$ (dual monodromy)
 - $\pi_*(h) = c_1(\hat{E}) \in H^2(M,\mathbb{Z}_{\hat{
 ho}})$ (swap Chern class and flux)

•
$$\hat{\pi}_*(\hat{h}) = c_1(E) \in H^2(M,\mathbb{Z}_
ho)$$

• $p^*h = \hat{p}^*\hat{h}$ (flux coincides on correspondence space)

Definition

- $(E, h), (\hat{E}, \hat{h})$ are **T-dual** if
 - $\rho = \hat{\rho}$ (dual monodromy)
 - $\pi_*(h) = c_1(\hat{E}) \in H^2(M,\mathbb{Z}_{\hat{
 ho}})$ (swap Chern class and flux)

•
$$\hat{\pi}_*(\hat{h}) = c_1(E) \in H^2(M,\mathbb{Z}_
ho)$$

• $p^*h = \hat{p}^*\hat{h}$ (flux coincides on correspondence space)

Theorem

For any (E, h) there exists a T-dual (\hat{E}, \hat{h}) unique up to isomorphism (fibre bundle isomorphisms)

 $\begin{aligned} \pi: E \to M, \quad \hat{\pi}: \hat{E} \to M \quad \text{affine } T^n\text{-bundles on } M \\ h \in H^3(E, \mathbb{Z}), \quad \hat{h} \in H^3(\hat{E}, \mathbb{Z}) \quad \text{flux on } E, \hat{E} \end{aligned}$

 $\rho, \hat{\rho} : \pi_1(M) \to \operatorname{GL}(n, \mathbb{Z})$ monodromy

$$\pi: E \to M, \quad \hat{\pi}: \hat{E} \to M \quad \text{affine } T^n \text{-bundles on } M$$
$$h \in H^3(E, \mathbb{Z}), \quad \hat{h} \in H^3(\hat{E}, \mathbb{Z}) \quad \text{flux on } E, \hat{E}$$
$$\rho, \hat{\rho}: \pi_1(M) \to \text{GL}(n, \mathbb{Z}) \quad \text{monodromy}$$

We require a constraint on the flux *h* (sim for \hat{h})

$$\pi: E \to M, \quad \hat{\pi}: \hat{E} \to M \quad \text{affine } T^n\text{-bundles on } M$$

 $h \in H^3(E, \mathbb{Z}), \quad \hat{h} \in H^3(\hat{E}, \mathbb{Z}) \quad \text{flux on } E, \hat{E}$

 $\rho, \hat{\rho} : \pi_1(M) \to \operatorname{GL}(n, \mathbb{Z})$ monodromy

We require a constraint on the flux *h* (sim for \hat{h})

Leray-Serre spec seq for $\pi: E \to M$ yields filtration

$$0\subseteq \mathcal{F}^{3,3}(\pi)\subseteq \mathcal{F}^{2,3}(\pi)\subseteq \mathcal{F}^{1,3}(\pi)\subseteq \mathcal{F}^{0,3}(\pi)=\mathcal{H}^3(\mathcal{E},\mathbb{Z})$$

$$\pi: E \to M, \quad \hat{\pi}: \hat{E} \to M \quad \text{affine } T^n\text{-bundles on } M$$

 $h \in H^3(E, \mathbb{Z}), \quad \hat{h} \in H^3(\hat{E}, \mathbb{Z}) \quad \text{flux on } E, \hat{E}$

 $\rho, \hat{\rho} : \pi_1(M) \to \operatorname{GL}(n, \mathbb{Z})$ monodromy

We require a constraint on the flux *h* (sim for \hat{h})

Leray-Serre spec seq for $\pi: E \to M$ yields filtration

$$0\subseteq \mathcal{F}^{3,3}(\pi)\subseteq \mathcal{F}^{2,3}(\pi)\subseteq \mathcal{F}^{1,3}(\pi)\subseteq \mathcal{F}^{0,3}(\pi)=\mathcal{H}^3(\mathcal{E},\mathbb{Z})$$

we demand $h \in F^{2,3}(\pi)$ (*h* has "one leg on the fiber")

$$F^{2,3}(\pi) \ni h \mapsto [h] \in F^{2,3}(\pi)/F^{3,3}(\pi) = E_{\infty}^{2,1}(\pi)$$

 $E_{\infty}^{2,1}(\pi)$ is a subquotient of $E_{2}^{2,1}(\pi) = H^{2}(M, \Lambda_{\rho}^{*})$

Definition

$(E, h), (\hat{E}, \hat{h})$ are **T-dual** if

- ρ and $\hat{\rho}$ are dual representations
- c₁(Ê) represents [h] in E^{2,1}₂(π̂) = H²(M, Λ^{*}_ρ) (swap Chern class and flux)
- $c_1(E)$ represents $[\hat{h}]$ in $E_2^{2,1}(\pi) = H^2(M, \Lambda_{\rho})$
- $p^*h = \hat{p}^*\hat{h}$ (flux coincides on correspondence space)

Definition

$(E, h), (\hat{E}, \hat{h})$ are **T-dual** if

- ρ and $\hat{\rho}$ are dual representations
- c₁(Ê) represents [h] in E^{2,1}₂(π̂) = H²(M, Λ^{*}_ρ) (swap Chern class and flux)
- $c_1(E)$ represents $[\hat{h}]$ in $E_2^{2,1}(\pi) = H^2(M, \Lambda_{\rho})$
- $p^*h = \hat{p}^*\hat{h}$ (flux coincides on correspondence space)

Theorem

For any (E, h) there exists a T-dual (\hat{E}, \hat{h}) . The Chern class of \hat{E} is determined up to a map $H^0(M, \wedge^2 \Lambda_{\rho}^*) \to H^2(M, \Lambda_{\rho}^*)$ given by contraction with $c_1(E)$.

Can find (\hat{E}, h') where $c_1(\hat{E})$ represents [h] and $c_1(E)$ represents [h']

Can find (\hat{E}, h') where $c_1(\hat{E})$ represents [h] and $c_1(E)$ represents [h']Leray-Serre spec seq for $E \times_M \hat{E} \to M$

$$E_2^{
ho,q} = H^{
ho}(M, \wedge^q(\Lambda_{
ho} \oplus \Lambda_{\hat{
ho}}))$$

Can find (\hat{E}, h') where $c_1(\hat{E})$ represents [h] and $c_1(E)$ represents [h']Leray-Serre spec seq for $E \times_M \hat{E} \to M$

$$E_2^{p,q} = H^p(M, \wedge^q(\Lambda_\rho \oplus \Lambda_{\hat{\rho}}))$$

Duality pairing of Λ_{ρ} and $\Lambda_{\hat{\rho}}$ determines a symplectic form

$$\omega \in H^0(M, \wedge^2(\Lambda_{
ho} \oplus \Lambda_{\hat{
ho}}))$$

Can find (\hat{E}, h') where $c_1(\hat{E})$ represents [h] and $c_1(E)$ represents [h']Leray-Serre spec seq for $E \times_M \hat{E} \to M$

$$E_2^{p,q} = H^p(M, \wedge^q(\Lambda_\rho \oplus \Lambda_{\hat{\rho}}))$$

Duality pairing of Λ_ρ and $\Lambda_{\hat\rho}$ determines a symplectic form

$$\omega \in H^0(M, \wedge^2(\Lambda_{
ho} \oplus \Lambda_{\hat{
ho}}))$$

Twisted Cohomology

Let (E, h), (\hat{E}, \hat{h}) be T-dual

Assume E, \hat{E} smooth, H, \hat{H} closed 3-forms representing h, \hat{h} .

Twisted Cohomology

Let (E, h), (\hat{E}, \hat{h}) be T-dual

Assume E, \hat{E} smooth, H, \hat{H} closed 3-forms representing h, \hat{h} .

 $H^*(E, H)$ defined as the \mathbb{Z}_2 -graded cohomology of $(\Omega^*(E), d_H)$ where

 $\mathbf{d}_{\mathbf{H}}\alpha = \mathbf{d}\alpha + \mathbf{H} \wedge \alpha$

Twisted Cohomology

Let (E, h), (\hat{E}, \hat{h}) be T-dual

Assume E, \hat{E} smooth, H, \hat{H} closed 3-forms representing h, \hat{h} .

 $H^*(E, H)$ defined as the \mathbb{Z}_2 -graded cohomology of $(\Omega^*(E), d_H)$ where

$$\mathbf{d}_{\mathbf{H}}\alpha = \mathbf{d}\alpha + \mathbf{H} \wedge \alpha$$

Theorem

If ρ is $SL(n, \mathbb{Z})$ -valued then we have an isomorphism

$$T: H^k(E, H) \simeq H^{k-n}(\hat{E}, \hat{H})$$

$$T \alpha = \int_{\hat{T}^n} \boldsymbol{e}^{\mathcal{B}} \pi^*(\alpha)$$

where \mathcal{B} is a certain 2-form on $E \times_M \hat{E}$ which restricted to the fibers $T^n \times \hat{T}^n$ is the natural symplectic form ω

Non-oriented case

What if ρ is not $SL(n, \mathbb{Z})$ -valued?

What if ρ is not $SL(n, \mathbb{Z})$ -valued? Let $w_1 \in H^1(M, \mathbb{Z}_2)$ be the determinant of ρ $(\mathbb{R}_{w_1}, \nabla)$ corresponding flat real line bundle What if ρ is not $SL(n, \mathbb{Z})$ -valued? Let $w_1 \in H^1(M, \mathbb{Z}_2)$ be the determinant of ρ $(\mathbb{R}_{w_1}, \nabla)$ corresponding flat real line bundle $H^*(E, (w_1, H))$ defined as cohomology of $(\Omega^*(E, \mathbb{R}_{w_1}), d_{\nabla, H})$

 $\textit{\textbf{d}}_{\nabla,\textit{\textbf{H}}}\alpha = \textit{\textbf{d}}_{\nabla}\alpha + \textit{\textbf{H}} \wedge \alpha$

What if ρ is not $SL(n, \mathbb{Z})$ -valued? Let $w_1 \in H^1(M, \mathbb{Z}_2)$ be the determinant of ρ $(\mathbb{R}_{w_1}, \nabla)$ corresponding flat real line bundle $H^*(E, (w_1, H))$ defined as cohomology of $(\Omega^*(E, \mathbb{R}_{w_1}), d_{\nabla, H})$

$$\mathbf{d}_{\nabla,\mathbf{H}}\alpha = \mathbf{d}_{\nabla}\alpha + \mathbf{H} \wedge \alpha$$

Theorem

We have isomorphisms

$$\begin{array}{rcl} H^k(E,H) &\simeq & H^{k-n}(\hat{E},(w_1,\hat{H})) \\ H^k(E,(w_1,H)) &\simeq & H^{k-n}(\hat{E},\hat{H}) \end{array}$$

 ρ determines a flat vector bundle $V_{\rho} = \Lambda_{\rho} \otimes \mathbb{R}$ set $w_1 = w_1(V_{\rho}), W_3 = W_3(V_{\rho})$

 ρ determines a flat vector bundle $V_{\rho} = \Lambda_{\rho} \otimes \mathbb{R}$ set $w_1 = w_1(V_{\rho}), W_3 = W_3(V_{\rho})$

We use *K*-theory with isomorphism classes of twists $H^1(_,\mathbb{Z}_2) \times H^3(_,\mathbb{Z})$ (e.g. using graded bundle gerbes)

 ρ determines a flat vector bundle $V_{\rho} = \Lambda_{\rho} \otimes \mathbb{R}$ set $w_1 = w_1(V_{\rho}), W_3 = W_3(V_{\rho})$

We use *K*-theory with isomorphism classes of twists $H^1(_,\mathbb{Z}_2) \times H^3(_,\mathbb{Z})$ (e.g. using graded bundle gerbes)

Theorem

We have isomorphisms

$$\begin{array}{lll} \mathcal{K}^k(E,h) &\simeq & \mathcal{K}^{k-n}(\hat{E},(w_1,\hat{h}+W_3))\\ \mathcal{K}^k(E,(w_1,h+W_3)) &\simeq & \mathcal{K}^{k-n}(\hat{E},\hat{h}) \end{array}$$

 ρ determines a flat vector bundle $V_{\rho} = \Lambda_{\rho} \otimes \mathbb{R}$ set $w_1 = w_1(V_{\rho}), W_3 = W_3(V_{\rho})$

We use *K*-theory with isomorphism classes of twists $H^1(_{-}, \mathbb{Z}_2) \times H^3(_{-}, \mathbb{Z})$ (e.g. using graded bundle gerbes)

Theorem

We have isomorphisms

$$\begin{array}{lll} \mathcal{K}^k(E,h) &\simeq & \mathcal{K}^{k-n}(\hat{E},(w_1,\hat{h}+W_3))\\ \mathcal{K}^k(E,(w_1,h+W_3)) &\simeq & \mathcal{K}^{k-n}(\hat{E},\hat{h}) \end{array}$$

In the special case $(w_1, W_3) = (0, 0)$ this reduces to

$$K^k(E,h)\simeq K^{k-n}(\hat{E},\hat{h})$$

Represent h, \hat{h} as bundle gerbes

Represent h, \hat{h} as bundle gerbes

Exists an isomorphism $u : p^*h \to \hat{p}^*\hat{h}$ s.t. on the fibers $T_m \times \hat{T}_m u$ looks like the Poincaré line bundle

Represent h, \hat{h} as bundle gerbes

Exists an isomorphism $u : p^*h \to \hat{p}^*\hat{h}$ s.t. on the fibers $T_m \times \hat{T}_m u$ looks like the Poincaré line bundle

Choose trivializations

$$egin{array}{ccc} & au & phantom{:}& \mathbf{0}
ightarrow eta|_{T_m} \ \hat{ au} & phantom{:}& \mathbf{0}
ightarrow \hat{m{h}}|_{\hat{T}_m} \end{array}$$

Represent h, \hat{h} as bundle gerbes

Exists an isomorphism $u : p^*h \to \hat{p}^*\hat{h}$ s.t. on the fibers $T_m \times \hat{T}_m u$ looks like the Poincaré line bundle

Choose trivializations

$$egin{array}{ccc} & \tau & : & \mathbf{0}
ightarrow eta|_{T_m} \ \hat{ au} & : & \mathbf{0}
ightarrow \hat{eta}|_{\hat{T}_m} \end{array}$$

$$p^*(h)|_{T_m imes \hat{T}_m} \xrightarrow{p^* au^{-1}} 0 \xrightarrow{\hat{p}^* \hat{\tau}} \hat{p}^*(\hat{h})|_{T_m imes \hat{T}_m}$$

differs from $u|_{T_m \times \hat{T}_m}$ by an element of $H^2(T_m \times \hat{T}_m, \mathbb{Z})$

Represent h, \hat{h} as bundle gerbes

Exists an isomorphism $u : p^*h \to \hat{p}^*\hat{h}$ s.t. on the fibers $T_m \times \hat{T}_m u$ looks like the Poincaré line bundle

Choose trivializations

$$egin{array}{ccc} & \tau & : & \mathbf{0}
ightarrow eta|_{T_m} \ \hat{ au} & : & \mathbf{0}
ightarrow \hat{eta}|_{\hat{T}_m} \end{array}$$

$$|p^*(h)|_{T_m \times \hat{T}_m} \xrightarrow{p^* \tau^{-1}} 0 \xrightarrow{\hat{p}^* \hat{\tau}} \hat{p}^*(\hat{h})|_{T_m \times \hat{T}_m}$$

differs from $u|_{T_m \times \hat{T}_m}$ by an element of $H^2(T_m \times \hat{T}_m, \mathbb{Z})$ Modulo $p^* H^2(T_m, \mathbb{Z}) + \hat{p}^* H^2(\hat{T}_m, \mathbb{Z})$ required to be the Poincaré line bundle

Fourier-Mukai type transformation

$$T: \mathcal{K}^{i}(E,h) \rightarrow \mathcal{K}^{i-n}(\hat{E},(w_{1},\hat{h}+W_{3}))$$

Fourier-Mukai type transformation

$$T: \mathcal{K}^{i}(E,h) \to \mathcal{K}^{i-n}(\hat{E},(w_{1},\hat{h}+W_{3}))$$

$$\begin{array}{ccc} \mathcal{K}^{i}(E \times_{M} \hat{E}, p^{*}h) & \xrightarrow{u} \mathcal{K}^{i}(E \times_{M} \hat{E}, \hat{p}^{*}\hat{h}) \\ & & & \downarrow^{\hat{p}_{*}} \\ \mathcal{K}^{i}(E, h) & \mathcal{K}^{i-n}(\hat{E}, (w_{1}, \hat{h} + W_{3})) \end{array}$$

Fourier-Mukai type transformation

$$T: \mathcal{K}^{i}(\mathcal{E},h) \to \mathcal{K}^{i-n}(\hat{\mathcal{E}},(w_{1},\hat{h}+W_{3}))$$

$$\begin{array}{ccc} \mathcal{K}^{i}(E \times_{M} \hat{E}, p^{*}h) & \xrightarrow{u} \mathcal{K}^{i}(E \times_{M} \hat{E}, \hat{p}^{*}\hat{h}) \\ & & & \downarrow^{\hat{p}_{*}} \\ \mathcal{K}^{i}(E, h) & \mathcal{K}^{i-n}(\hat{E}, (w_{1}, \hat{h} + W_{3})) \end{array}$$

Locally *T* looks like K-theoretic Fourier-Mukai use Mayer-Vietoris

 Monodromy can be incorporated into topological T-duality using local coefficients

- Monodromy can be incorporated into topological T-duality using local coefficients
- Higher rank T-duality presents the same existence and uniqueness challenges (although monodromy tends to make the T-dual less ambiguous)

- Monodromy can be incorporated into topological T-duality using local coefficients
- Higher rank T-duality presents the same existence and uniqueness challenges (although monodromy tends to make the T-dual less ambiguous)
- One should consider de Rham cohomology twisted by *H*¹(_, ℤ₂) × *H*³(_, ℝ) and *K*-theory by *H*¹(_, ℤ₂) × *H*³(_, ℤ)

- Monodromy can be incorporated into topological T-duality using local coefficients
- Higher rank T-duality presents the same existence and uniqueness challenges (although monodromy tends to make the T-dual less ambiguous)
- One should consider de Rham cohomology twisted by *H*¹(_, ℤ₂) × *H*³(_, ℝ) and *K*-theory by *H*¹(_, ℤ₂) × *H*³(_, ℤ)

THANK YOU