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Idea

Consider the following manifestations of T-duality:

Topological T-duality
Principal torus bundles with flux
T-D: exchange Chern class and flux

Topological Mirror Symmetry
Torus bundles with singularities
Monodromy around singular fibers
T-D: dualize monodromy, fill in singular fibers

We would like to bridge the gap between these constructions

Top T-duality can incorporate monodromy, singularities not yet
considered
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Affine Torus Bundles

Let V ' Rn, Λ ' Zn, T n = V/Λ

Aff(T n) = GL(n,Z) n T n

Definition
An affine torus bundle on M is a torus bundle

π : E → M

with transition functions valued in Aff(T n)

Aff(T n)→ Diff(T n) is a homotopy equivalence for n ≤ 3.

David Baraglia (ANU) Topological T-duality With Monodromy Jun 8 3 / 15



Affine Torus Bundles

Let V ' Rn, Λ ' Zn, T n = V/Λ

Aff(T n) = GL(n,Z) n T n

Definition
An affine torus bundle on M is a torus bundle

π : E → M

with transition functions valued in Aff(T n)

Aff(T n)→ Diff(T n) is a homotopy equivalence for n ≤ 3.

David Baraglia (ANU) Topological T-duality With Monodromy Jun 8 3 / 15



Affine Torus Bundles

Let V ' Rn, Λ ' Zn, T n = V/Λ

Aff(T n) = GL(n,Z) n T n

Definition
An affine torus bundle on M is a torus bundle

π : E → M

with transition functions valued in Aff(T n)

Aff(T n)→ Diff(T n) is a homotopy equivalence for n ≤ 3.

David Baraglia (ANU) Topological T-duality With Monodromy Jun 8 3 / 15



Classification of Affine Torus Bundles

Affine torus bundles over M in bijection with equiv classes of pairs
(ρ, c)

ρ : π1(M)→ GL(n,Z) monodromy
c ∈ H2(M,Λρ) twisted Chern class

where Λρ is the local system given by action of π1(M) on Λ ' Zn

(ρ, c) ' (ρ′, c′) if they are related by an element of GL(n,Z)
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Topological T-duality (rank 1 case)

π : E → M, π̂ : Ê → M circle bundles on M

h ∈ H3(E ,Z), ĥ ∈ H3(Ê ,Z) flux on E , Ê

GL(1,Z) = Z2

ρ, ρ̂ ∈ H1(M,Z2) monodromy

E ×M Ê
p

||xxxxxxxxx p̂

""FFFFFFFFF

E
π

##GGGGGGGGGG Ê
π̂

{{wwwwwwwwww

M
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p

||xxxxxxxxx p̂

""FFFFFFFFF

E
π

##GGGGGGGGGG Ê
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Topological T-duality (rank 1 case)

Definition

(E ,h), (Ê , ĥ) are T-dual if

ρ = ρ̂ (dual monodromy)
π∗(h) = c1(Ê) ∈ H2(M,Zρ̂) (swap Chern class and flux)

π̂∗(ĥ) = c1(E) ∈ H2(M,Zρ)

p∗h = p̂∗ĥ (flux coincides on correspondence space)

Theorem

For any (E ,h) there exists a T-dual (Ê , ĥ) unique up to isomorphism
(fibre bundle isomorphisms)
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π̂∗(ĥ) = c1(E) ∈ H2(M,Zρ)
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Topological T-duality (general case)

π : E → M, π̂ : Ê → M affine T n-bundles on M

h ∈ H3(E ,Z), ĥ ∈ H3(Ê ,Z) flux on E , Ê

ρ, ρ̂ : π1(M)→ GL(n,Z) monodromy

We require a constraint on the flux h (sim for ĥ)

Leray-Serre spec seq for π : E → M yields filtration

0 ⊆ F 3,3(π) ⊆ F 2,3(π) ⊆ F 1,3(π) ⊆ F 0,3(π) = H3(E ,Z)

we demand h ∈ F 2,3(π) (h has “one leg on the fiber”)

F 2,3(π) 3 h 7→ [h] ∈ F 2,3(π)/F 3,3(π) = E2,1
∞ (π)

E2,1
∞ (π) is a subquotient of E2,1

2 (π) = H2(M,Λ∗ρ)
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Leray-Serre spec seq for π : E → M yields filtration

0 ⊆ F 3,3(π) ⊆ F 2,3(π) ⊆ F 1,3(π) ⊆ F 0,3(π) = H3(E ,Z)

we demand h ∈ F 2,3(π) (h has “one leg on the fiber”)

F 2,3(π) 3 h 7→ [h] ∈ F 2,3(π)/F 3,3(π) = E2,1
∞ (π)

E2,1
∞ (π) is a subquotient of E2,1

2 (π) = H2(M,Λ∗ρ)

David Baraglia (ANU) Topological T-duality With Monodromy Jun 8 7 / 15



Topological T-duality (general case)
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Topological T-duality (general case)

Definition

(E ,h), (Ê , ĥ) are T-dual if

ρ and ρ̂ are dual representations
c1(Ê) represents [h] in E2,1

2 (π̂) = H2(M,Λ∗ρ) (swap Chern class
and flux)
c1(E) represents [ĥ] in E2,1

2 (π) = H2(M,Λρ)

p∗h = p̂∗ĥ (flux coincides on correspondence space)

Theorem

For any (E ,h) there exists a T-dual (Ê , ĥ). The Chern class of Ê is
determined up to a map H0(M,∧2Λ∗ρ)→ H2(M,Λ∗ρ) given by
contraction with c1(E).

David Baraglia (ANU) Topological T-duality With Monodromy Jun 8 8 / 15



Topological T-duality (general case)

Definition
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Main Step in Proof

Can find (Ê ,h′) where c1(Ê) represents [h] and c1(E) represents [h′]

Leray-Serre spec seq for E ×M Ê → M

Ep,q
2 = Hp(M,∧q(Λρ ⊕ Λρ̂))

Duality pairing of Λρ and Λρ̂ determines a symplectic form

ω ∈ H0(M,∧2(Λρ ⊕ Λρ̂))

p∗h − p̂∗h′ is represented by
(c1(E),−c1(Ê))

so p∗h − p̂∗h′ = p̂∗π̂∗(a)

we then set ĥ = h′ + π̂∗a
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Twisted Cohomology

Let (E ,h), (Ê , ĥ) be T-dual

Assume E , Ê smooth, H, Ĥ closed 3-forms representing h, ĥ.

H∗(E ,H) defined as the Z2-graded cohomology of (Ω∗(E),dH) where

dHα = dα + H ∧ α

Theorem
If ρ is SL(n,Z)-valued then we have an isomorphism

T : Hk (E ,H) ' Hk−n(Ê , Ĥ)

Tα =

∫
T̂ n

eBπ∗(α)

where B is a certain 2-form on E ×M Ê which restricted to the fibers
T n × T̂ n is the natural symplectic form ω
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Non-oriented case

What if ρ is not SL(n,Z)-valued?

Let w1 ∈ H1(M,Z2) be the determinant of ρ

(Rw1 ,∇) corresponding flat real line bundle

H∗(E , (w1,H)) defined as cohomology of (Ω∗(E ,Rw1),d∇,H)

d∇,Hα = d∇α + H ∧ α

Theorem
We have isomorphisms

Hk (E ,H) ' Hk−n(Ê , (w1, Ĥ))

Hk (E , (w1,H)) ' Hk−n(Ê , Ĥ)
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Twisted K -theory

ρ determines a flat vector bundle Vρ = Λρ ⊗ R
set w1 = w1(Vρ), W3 = W3(Vρ)

We use K -theory with isomorphism classes of twists
H1( ,Z2)× H3( ,Z) (e.g. using graded bundle gerbes)

Theorem
We have isomorphisms

K k (E ,h) ' K k−n(Ê , (w1, ĥ + W3))

K k (E , (w1,h + W3)) ' K k−n(Ê , ĥ)

In the special case (w1,W3) = (0,0) this reduces to

K k (E ,h) ' K k−n(Ê , ĥ)
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Proof (following Bunke Rumpf Schick)

Represent h, ĥ as bundle gerbes

Exists an isomorphism u : p∗h→ p̂∗ĥ s.t. on the fibers Tm × T̂m u
looks like the Poincaré line bundle

Choose trivializations

τ : 0→ h|Tm

τ̂ : 0→ ĥ|T̂m

p∗(h)|Tm×T̂m

p∗τ−1
// 0

p̂∗τ̂ // p̂∗(ĥ)|Tm×T̂m

differs from u|Tm×T̂m
by an element of H2(Tm × T̂m,Z)

Modulo p∗H2(Tm,Z) + p̂∗H2(T̂m,Z) required to be the Poincaré line
bundle
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Modulo p∗H2(Tm,Z) + p̂∗H2(T̂m,Z) required to be the Poincaré line
bundle
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Proof (following Bunke Rumpf Schick)

Fourier-Mukai type transformation

T : K i(E ,h)→ K i−n(Ê , (w1, ĥ + W3))

K i(E ×M Ê ,p∗h)
u // K i(E ×M Ê , p̂∗ĥ)

p̂∗
��

K i(E ,h)

p∗
OO

K i−n(Ê , (w1, ĥ + W3))

Locally T looks like K-theoretic Fourier-Mukai

use Mayer-Vietoris
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Conclusions

Monodromy can be incorporated into topological T-duality using
local coefficients

Higher rank T-duality presents the same existence and
uniqueness challenges (although monodromy tends to make the
T-dual less ambiguous)
One should consider de Rham cohomology twisted by
H1( ,Z2)× H3( ,R) and K -theory by H1( ,Z2)× H3( ,Z)

THANK YOU
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