Courant Algebroids and Generalizations of Geometry

Peter Bouwknegt ${ }^{(1,2)}$

(1) Department of Mathematics

Mathematical Sciences Institute
(2) Department of Theoretical Physics Research School of Physics and Engineering

The Australian National University Canberra, AUSTRALIA

String-Math 2011, UPenn
 9 June 2011

Introduction

Generalizations of geometry

Introduction

Generalizations of geometry

- $T M \oplus T^{*} M$ (type I or type II in absence of RR fluxes)

Introduction

Generalizations of geometry

- $T M \oplus T^{*} M$ (type I or type II in absence of RR fluxes)
- $T M \oplus T^{*} M \oplus S^{ \pm}$(type IIA/IIB with RR fluxes)

Introduction

Generalizations of geometry

- $T M \oplus T^{*} M$ (type I or type II in absence of RR fluxes)
- $T M \oplus T^{*} M \oplus S^{ \pm}$(type IIA/IIB with RR fluxes)
- $T M \oplus T^{*} M \oplus \mathfrak{G}$ (type I + YM, heterotic)

Introduction

Generalizations of geometry

- $T M \oplus T^{*} M$ (type I or type II in absence of RR fluxes)
- $T M \oplus T^{*} M \oplus S^{ \pm}$(type IIA/IIB with RR fluxes)
- $T M \oplus T^{*} M \oplus \mathfrak{G}$ (type I + YM, heterotic)
- $T M \oplus \wedge^{2} T^{*} M \oplus \ldots$ (M-theory)

Outline of the talk

net austaculus maitional unversity

Outline of the talk

- Review of generalized geometry
me fustanuar matioval universit
三ㅡ $\quad 9 \curvearrowright$

Outline of the talk

- Review of generalized geometry
- Beyond generalized geometry

Outline of the talk

- Review of generalized geometry
- Beyond generalized geometry
- $B_{2 n}$-geometry
- M-geometry

Outline of the talk

- Review of generalized geometry
- Beyond generalized geometry
- $B_{2 n}$-geometry
- M-geometry
- T-duality and generalized geometry

Generalized geometry [Hitchin, Gualtieri, Cavalcanti]

Replace structures on TM (such as [,], $\imath_{\chi}, \mathcal{L}_{\chi}, d, \ldots$) by similar structures on $E=T M \oplus T^{*} M$

Generalized geometry [Hitchin, Gualtieri, Cavalcanti]

Replace structures on TM (such as [,], $\imath_{\chi}, \mathcal{L}_{\chi}, d, \ldots$) by similar structures on $E=T M \oplus T^{*} M$

- Bilinear form on sections $x+\xi \in \Gamma\left(T M \oplus T^{*} M\right)$

$$
\langle x+\xi, y+\eta\rangle=\frac{1}{2}\left(\imath_{x} \eta+\imath_{y} \xi\right)
$$

Generalized geometry [Hitchin, Gualtieri, Cavalcanti]

Replace structures on TM (such as [,], $\imath_{\chi}, \mathcal{L}_{\chi}, d, \ldots$) by similar structures on $E=T M \oplus T^{*} M$

- Bilinear form on sections $x+\xi \in \Gamma\left(T M \oplus T^{*} M\right)$

$$
\langle x+\xi, y+\eta\rangle=\frac{1}{2}\left(\imath_{x} \eta+\imath_{y} \xi\right)
$$

- (Dorfman) Bracket

$$
(x+\xi) \circ(y+\eta)=[x, y]+\mathcal{L}_{x} \eta-\imath_{y} d \xi
$$

Generalized geometry [Hitchin, Gualtieri, Cavalcanti]

Replace structures on TM (such as [,], $\imath_{\chi}, \mathcal{L}_{\chi}, d, \ldots$) by similar structures on $E=T M \oplus T^{*} M$

- Bilinear form on sections $x+\xi \in \Gamma\left(T M \oplus T^{*} M\right)$

$$
\langle x+\xi, y+\eta\rangle=\frac{1}{2}\left(\imath_{x} \eta+\imath_{y} \xi\right)
$$

- (Dorfman) Bracket

$$
(x+\xi) \circ(y+\eta)=[x, y]+\mathcal{L}_{x} \eta-\imath_{y} d \xi
$$

- Clifford algebra

$$
\left\{\gamma_{x+\xi}, \gamma_{y+\eta}\right\}=2\langle x+\xi, y+\eta\rangle
$$

Generalized Geometry (cont'd)

- Clifford module $\Omega^{\bullet}(M)$

$$
\gamma_{x+\xi} \cdot \omega=\imath_{x} \omega+\xi \wedge \omega
$$

Generalized Geometry (cont'd)

- Clifford module $\Omega^{\bullet}(M)$

$$
\gamma_{x+\xi} \cdot \omega=\imath_{x} \omega+\xi \wedge \omega
$$

- De-Rham differential on $\Omega^{\bullet}(M)$

$$
d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)
$$

Symmetries

Symmetries of \langle,$\rangle given by sections of the adjoint bundle$

$$
\wedge^{2} E \cong \wedge^{2} T M \oplus \operatorname{End}(T M) \oplus \wedge^{2} T^{*} M
$$

[They form the group $O(n, n)$]

Symmetries

Symmetries of \langle,$\rangle given by sections of the adjoint bundle$

$$
\wedge^{2} E \cong \wedge^{2} T M \oplus \operatorname{End}(T M) \oplus \wedge^{2} T^{*} M
$$

[They form the group $O(n, n)$]
In particular, we have the so called B-transform, for $b \in \Omega^{2}(M)$

$$
\begin{aligned}
e^{b} \cdot(x+\xi) & =x+\left(\xi+\imath_{x} b\right) \\
b \cdot(x+\xi) & =\imath_{x} b \quad \text { (infinitesimally) }
\end{aligned}
$$

Symmetries

Symmetries of \langle,$\rangle given by sections of the adjoint bundle$

$$
\wedge^{2} E \cong \wedge^{2} T M \oplus \operatorname{End}(T M) \oplus \wedge^{2} T^{*} M
$$

[They form the group $O(n, n)$]
In particular, we have the so called B-transform, for $b \in \Omega^{2}(M)$

$$
\begin{aligned}
e^{b} \cdot(x+\xi) & =x+\left(\xi+\imath_{x} b\right) \\
b \cdot(x+\xi) & =\imath_{x} b \quad \text { (infinitesimally) }
\end{aligned}
$$

We have

$$
e^{b} \cdot((x+\xi) \circ(y+\eta))=e^{b} \cdot(x+\xi) \circ e^{b} \cdot(y+\eta)+\imath_{x} \imath_{y} d b
$$

Symmetries

Symmetries of \langle,$\rangle given by sections of the adjoint bundle$

$$
\wedge^{2} E \cong \wedge^{2} T M \oplus \operatorname{End}(T M) \oplus \wedge^{2} T^{*} M
$$

[They form the group $O(n, n)$]
In particular, we have the so called B-transform, for $b \in \Omega^{2}(M)$

$$
\begin{aligned}
e^{b} \cdot(x+\xi) & =x+\left(\xi+\imath_{x} b\right) \\
b \cdot(x+\xi) & =\imath_{x} b \quad \text { (infinitesimally) }
\end{aligned}
$$

We have

$$
e^{b} \cdot((x+\xi) \circ(y+\eta))=e^{b} \cdot(x+\xi) \circ e^{b} \cdot(y+\eta)+\imath_{x} \imath_{y} d b
$$

Symmetries of the Dorfman bracket are $\operatorname{Diff}(M) \ltimes \Omega_{\mathrm{cl}}^{2}(M)$

This suggest the introduction of a twisted Dorfman bracket, with $H \in \Omega^{3}(M), d H=0$

$$
(x+\xi) \circ H(y+\eta)=[x, y]+\mathcal{L}_{x} \eta-\imath_{y} d \xi+\imath_{x} \imath_{y} H
$$

This suggest the introduction of a twisted Dorfman bracket, with $H \in \Omega^{3}(M), d H=0$

$$
(x+\xi) \circ H(y+\eta)=[x, y]+\mathcal{L}_{x} \eta-\imath_{y} d \xi+\imath_{x} \imath_{y} H
$$

such that

$$
e^{b} \cdot((x+\xi) \circ H(y+\eta))=\left(e^{b} \cdot(x+\xi)\right) \circ_{H+d b}\left(e^{b} \cdot(y+\eta)\right)
$$

This suggest the introduction of a twisted Dorfman bracket, with $H \in \Omega^{3}(M), d H=0$

$$
(x+\xi) \circ H(y+\eta)=[x, y]+\mathcal{L}_{x} \eta-\imath_{y} d \xi+\imath_{x} \imath_{y} H
$$

such that

$$
e^{b} \cdot((x+\xi) \circ H(y+\eta))=\left(e^{b} \cdot(x+\xi)\right) \circ_{H+d b}\left(e^{b} \cdot(y+\eta)\right)
$$

and a twisted differential

$$
d_{H} \omega=d \omega+H \wedge \omega
$$

Properties (for $A, B, C \in \Gamma E, f \in C^{\infty}(M)$)
(i) $A \circ(B \circ C)=(A \circ B) \circ C+B \circ(A \circ C)$
(ii) $A \circ(f B)=f(A \circ B)+(\rho(A) f) B$

Properties of the (twisted) Dorfman bracket

Properties (for $A, B, C \in \Gamma E, f \in C^{\infty}(M)$)
(i) $A \circ(B \circ C)=(A \circ B) \circ C+B \circ(A \circ C)$
(ii) $A \circ(f B)=f(A \circ B)+(\rho(A) f) B$

The Courant bracket is defined as the anti-symmetrization

$$
\llbracket A, B \rrbracket=\frac{1}{2}(A \circ B-B \circ A)
$$

or, conversely,

$$
A \circ B=\llbracket A, B \rrbracket+d\langle A, B\rangle
$$

Dorfman bracket as a derived bracket

Recall the usual Cartan relations

$$
\begin{aligned}
\left\{\imath_{x}, \imath_{y}\right\} & =0 \\
\left\{d, \imath_{x}\right\} & =\mathcal{L}_{x} \\
{\left[\mathcal{L}_{x}, \imath_{y}\right] } & =\imath_{[x, y]} \\
{\left[\mathcal{L}_{x}, \mathcal{L}_{y}\right] } & =\mathcal{L}_{[x, y]} \\
{\left[d, \mathcal{L}_{x}\right] } & =0
\end{aligned}
$$

Dorfman bracket as a derived bracket

Recall the usual Cartan relations

$$
\begin{aligned}
\left\{\imath_{x}, \imath_{y}\right\} & =0 \\
\left\{d, \imath_{x}\right\} & =\mathcal{L}_{x} \\
{\left[\mathcal{L}_{x}, \imath_{y}\right] } & =\imath_{[x, y]} \\
{\left[\mathcal{L}_{x}, \mathcal{L}_{y}\right] } & =\mathcal{L}_{[x, y]} \\
{\left[d, \mathcal{L}_{x}\right] } & =0
\end{aligned}
$$

Here we have the analogue

$$
\begin{aligned}
\left\{\gamma_{A}, \gamma_{B}\right\} & =2\langle A, B\rangle \\
\left\{d_{H}, \gamma_{A}\right\} & =\mathcal{L}_{A} \\
{\left[\mathcal{L}_{A}, \gamma_{B}\right] } & =\gamma_{A \circ B} \\
{\left[\mathcal{L}_{A}, \mathcal{L}_{B}\right] } & =\mathcal{L}_{A \circ B}=\mathcal{L}_{\llbracket A, B \rrbracket} \\
{\left[d_{H}, \mathcal{L}_{A}\right] } & =0
\end{aligned}
$$

where $\mathcal{L}_{x+\xi} \omega=\mathcal{L}_{x} \omega+\left(d \xi+{ }_{x} H\right) \wedge \omega$

Leibniz algebroids

Definition

A Leibniz algebroid (E, \circ, ρ) is a vector bundle $E \rightarrow M$, with a composition (Leibniz/Loday bracket) \circ on ГE, and a morphism of vector bundles $\rho: E \rightarrow T M$ (anchor) such that
(L1) $A \circ(B \circ C)=(A \circ B) \circ C+B \circ(A \circ C)$
(L2) $\rho(A \circ B)=[\rho(A), \rho(B)]$
(L3) $A \circ(f B)=f(A \circ B)+(\rho(A) f) B$

Courant algebroids

Definition

A Courant algebroid $(E, \circ,\langle\rangle,, \rho)$ is a vector bundle $E \rightarrow M$, with a composition \circ on ΓE, a morphism of vector bundles $\rho: E \rightarrow T M$, and a field of nondegenerate bilinear forms \langle, on ΓE such that
(C1) $A \circ(B \circ C)=(A \circ B) \circ C+B \circ(A \circ C)$
(C2) $\rho(A)\langle B, C\rangle=\langle A, B \circ C+C \circ B\rangle$
(C3) $\rho(A)\langle B, C\rangle=\langle A \circ B, C\rangle+\langle B, A \circ C\rangle$

Courant algebroids

Definition

A Courant algebroid $(E, \circ,\langle\rangle,, \rho)$ is a vector bundle $E \rightarrow M$, with a composition \circ on $\lceil E$, a morphism of vector bundles $\rho: E \rightarrow T M$, and a field of nondegenerate bilinear forms \langle, on ΓE such that
(C1) $A \circ(B \circ C)=(A \circ B) \circ C+B \circ(A \circ C)$
(C2) $\rho(A)\langle B, C\rangle=\langle A, B \circ C+C \circ B\rangle$
(C3) $\rho(A)\langle B, C\rangle=\langle A \circ B, C\rangle+\langle B, A \circ C\rangle$
It follows that (E, \circ, ρ) is a Leibniz algebroid. Moreover

$$
A \circ B+B \circ A=2 D\langle A, B\rangle
$$

where $D=\frac{1}{2} \rho^{*} d: C^{\infty}(M) \rightarrow \Gamma E$, i.e. $\langle D f, A\rangle=\frac{1}{2} \rho(A) f$

Exact Courant algebroids

An exact Courant algebroid E is a Courant algebroid that fits in the exact sequence

$$
0 \longrightarrow T^{*} M \xrightarrow{\rho^{*}} E \xrightarrow{\rho} T M \longrightarrow 0
$$

Exact Courant algebroids

An exact Courant algebroid E is a Courant algebroid that fits in the exact sequence

$$
0 \longrightarrow T^{*} M \xrightarrow{\rho^{*}} E \xrightarrow{\rho} T M \longrightarrow 0
$$

Such a Courant algebroid admits an isotropic splitting $s: T M \rightarrow E$, which allows us to identify $E \cong T M \oplus T^{*} M$. The composition on $x+\xi \in \Gamma\left(T M \oplus T^{*} M\right)$ is uniquely determined by

$$
H(x, y, z)=\langle x \circ y, z\rangle
$$

It turns out $H \in \Omega_{\mathrm{cl}}^{3}(M)$

Exact Courant algebroids

An exact Courant algebroid E is a Courant algebroid that fits in the exact sequence

$$
0 \longrightarrow T^{*} M \xrightarrow{\rho^{*}} E \xrightarrow{\rho} T M \longrightarrow 0
$$

Such a Courant algebroid admits an isotropic splitting $s: T M \rightarrow E$, which allows us to identify $E \cong T M \oplus T^{*} M$. The composition on $x+\xi \in \Gamma\left(T M \oplus T^{*} M\right)$ is uniquely determined by

$$
H(x, y, z)=\langle x \circ y, z\rangle
$$

It turns out $H \in \Omega_{\mathrm{cl}}^{3}(M)$

Theorem (Ševera)

Equivalence classes of exact Courant algebroids are in 1-1 correspondence with $H^{3}(M, \mathbb{R})$.

$B_{2 n}$-geometry [Baraglia]

We now consider the vector bundle

$$
E=T M \oplus \mathbf{1} \oplus T^{*} M
$$

with nondegenerate bilinear form

$$
\langle x+f+\xi, y+g+\eta\rangle=\frac{1}{2}\left(\imath_{x} \eta+\imath_{y} \xi\right)+f g
$$

$B_{2 n}$-geometry [Baraglia]

We now consider the vector bundle

$$
E=T M \oplus \mathbf{1} \oplus T^{*} M
$$

with nondegenerate bilinear form

$$
\langle x+f+\xi, y+g+\eta\rangle=\frac{1}{2}\left(\imath_{x} \eta+\imath_{y} \xi\right)+f g
$$

Dorfman bracket
$(x+f+\xi) \circ(y+g+\eta)=[x, y]+(x(g)-y(f))+\mathcal{L}_{x} \eta-\imath_{y} d \xi+2 g d f$

$B_{2 n}$-geometry [Baraglia]

We now consider the vector bundle

$$
E=T M \oplus \mathbf{1} \oplus T^{*} M
$$

with nondegenerate bilinear form

$$
\langle x+f+\xi, y+g+\eta\rangle=\frac{1}{2}\left(\imath_{x} \eta+\imath_{y} \xi\right)+f g
$$

Dorfman bracket
$(x+f+\xi) \circ(y+g+\eta)=[x, y]+(x(g)-y(f))+\mathcal{L}_{x} \eta-\imath_{y} d \xi+2 g d f$ and anchor map

$$
\rho(x+f+\xi)=x
$$

$B_{2 n}$-geometry (cont'd)

Adjoint bundle

$$
\wedge^{2} E=\wedge^{2} T M \oplus T M \oplus E \operatorname{nd}(T M) \oplus T^{*} M \oplus \wedge^{2} T^{*} M
$$

$B_{2 n}$-geometry (cont'd)

Adjoint bundle

$$
\wedge^{2} E=\wedge^{2} T M \oplus T M \oplus E \operatorname{nd}(T M) \oplus T^{*} M \oplus \wedge^{2} T^{*} M
$$

In particular

$$
\begin{aligned}
& a \cdot(x+f+\xi)=\imath_{x} a-f a, \quad a \in \Omega^{1} \\
& b \cdot(x+f+\xi)=\imath_{x} b, \quad b \in \Omega^{2}
\end{aligned}
$$

$B_{2 n}$-geometry (cont'd)

Adjoint bundle

$$
\wedge^{2} E=\wedge^{2} T M \oplus T M \oplus E \operatorname{nd}(T M) \oplus T^{*} M \oplus \wedge^{2} T^{*} M
$$

In particular

$$
\begin{aligned}
& a \cdot(x+f+\xi)=\imath_{x} a-f a, \quad a \in \Omega^{1} \\
& b \cdot(x+f+\xi)=\imath_{x} b, \quad b \in \Omega^{2}
\end{aligned}
$$

Note

$$
\left[a_{1}, a_{2}\right]=a_{1} \wedge a_{2}
$$

$B_{2 n \text {-geometry (}}$ cont'd)

Adjoint bundle

$$
\wedge^{2} E=\wedge^{2} T M \oplus T M \oplus E \operatorname{nd}(T M) \oplus T^{*} M \oplus \wedge^{2} T^{*} M
$$

In particular

$$
\begin{aligned}
& a \cdot(x+f+\xi)=\imath_{x} a-f a, \quad a \in \Omega^{1} \\
& b \cdot(x+f+\xi)=\imath_{x} b, \quad b \in \Omega^{2}
\end{aligned}
$$

Note

$$
\left[a_{1}, a_{2}\right]=a_{1} \wedge a_{2}
$$

Symmetries of the Dorfman bracket iff $d a=0=d b$.

$B_{2 n}$-geometry (cont'd)

Consider $F \in \Omega^{2}(M), H \in \Omega^{3}(M)$, and a twisted Dorfman bracket

$$
\begin{aligned}
(x+f+\xi) & \circ(y+g+\eta)=[x, y]+(x(g)-y(f))+\imath_{x} \imath_{y} F \\
& +\mathcal{L}_{x} \eta-\imath_{y} d \xi+2 g d f+\imath_{x} \imath_{y} H+\imath_{x} F g-\imath_{y} F f
\end{aligned}
$$

$B_{2 n}$-geometry (cont'd)

Consider $F \in \Omega^{2}(M), H \in \Omega^{3}(M)$, and a twisted Dorfman bracket

$$
\begin{aligned}
(x+f+\xi) & \circ(y+g+\eta)=[x, y]+(x(g)-y(f))+\imath_{x} \imath_{y} F \\
& +\mathcal{L}_{x} \eta-\imath_{y} d \xi+2 g d f+\imath_{x} \imath_{y} H+\imath_{x} F g-\imath_{y} F f
\end{aligned}
$$

This defines a Courant algebroid provided

$$
\begin{aligned}
d F & =0 \\
d H+F \wedge F & =0
\end{aligned}
$$

$B_{2 n}$-geometry (cont'd)

The bracket can be obtained as a derived bracket using

$$
d_{F, H} \omega=d \omega+(-1)^{|\omega|} F \wedge \omega+H \wedge \omega
$$

and

$$
\gamma_{x+f+\xi} \cdot \omega=\imath_{x} \omega+(-1)^{|\omega|} f \omega+\xi \wedge \omega
$$

$B_{2 n}$-geometry (cont'd)

The bracket can be obtained as a derived bracket using

$$
d_{F, H} \omega=d \omega+(-1)^{|\omega|} F \wedge \omega+H \wedge \omega
$$

and

$$
\gamma_{x+f+\xi} \cdot \omega=\imath_{x} \omega+(-1)^{|\omega|} f \omega+\xi \wedge \omega
$$

Note

$$
\begin{aligned}
d_{F, H}{ }^{2} & =0 \\
\left\{\gamma_{x+f+\xi}, \gamma_{y+g+\eta}\right\} & =2\langle x+f+\xi, y+g+\eta\rangle
\end{aligned}
$$

iff F and H satisfy the Bianchi identities as before.

$B_{2 n}$-geometry (cont'd)

The bracket can be obtained as a derived bracket using

$$
d_{F, H} \omega=d \omega+(-1)^{|\omega|} F \wedge \omega+H \wedge \omega
$$

and

$$
\gamma_{x+f+\xi} \cdot \omega=\imath_{x} \omega+(-1)^{|\omega|} f \omega+\xi \wedge \omega
$$

Note

$$
\begin{aligned}
d_{F, H}{ }^{2} & =0 \\
\left\{\gamma_{x+f+\xi}, \gamma_{y+g+\eta}\right\} & =2\langle x+f+\xi, y+g+\eta\rangle
\end{aligned}
$$

iff F and H satisfy the Bianchi identities as before.
This is an example of non-exact transitive Courant algebroid

$$
T^{*} M \longrightarrow T M \oplus 1 \oplus T^{*} M \longrightarrow T M \longrightarrow 0
$$

Transitive Courant Algebroids [Chen-Stiénon-Xu]

Transitive Courant algebroids are of the form

$$
E=T M \oplus \mathfrak{G} \oplus T^{*} M
$$

where $\mathfrak{G}=\operatorname{ker} \rho /(\operatorname{ker} \rho)^{\perp}$ is a bundle of Lie algebras with bracket

$$
[r, s]_{\mathfrak{G}}=\operatorname{pr}_{\mathfrak{G}}(r \circ s)
$$

and

$$
\rho(x+r+\xi)=x
$$

Transitive Courant Algebroids [Chen-Stiénon-Xu]

Transitive Courant algebroids are of the form

$$
E=T M \oplus \mathfrak{G} \oplus T^{*} M
$$

where $\mathfrak{G}=\operatorname{ker} \rho /(\operatorname{ker} \rho)^{\perp}$ is a bundle of Lie algebras with bracket

$$
[r, s]_{\mathfrak{G}}=\operatorname{pr}_{\mathfrak{G}}(r \circ s)
$$

and

$$
\rho(x+r+\xi)=x
$$

Suppose

$$
\langle x+r+\xi, y+s+\eta\rangle=\frac{1}{2}\left(\imath_{x} \eta+\imath_{y} \xi\right)+\langle r, s\rangle_{\mathfrak{G}}
$$

Transitive Courant Algebroids (cont'd)

Then the Dorfman bracket on E is completely determined by

$$
\begin{aligned}
H(x, y, z) & =\left\langle\operatorname{pr}_{T * M}(x \circ y), z\right\rangle \\
R(x, y) & =\operatorname{pr}_{\mathfrak{G}}(x \circ y) \\
\nabla_{x} r & =\operatorname{pr}_{\mathfrak{G}}(x \circ r) .
\end{aligned}
$$

It turns out $H \in \Omega^{3}(M), R \in \Omega^{2}(M, \mathfrak{g})$, and ∇_{x} a $T M$-connection on \mathfrak{G}

Transitive Courant Algebroids (cont'd)

Then the Dorfman bracket on E is completely determined by

$$
\begin{aligned}
H(x, y, z) & =\left\langle\operatorname{pr}_{T^{*} M}(x \circ y), z\right\rangle \\
R(x, y) & =\operatorname{pr}_{\mathfrak{G}}(x \circ y) \\
\nabla_{x} r & =\operatorname{pr}_{\mathfrak{G}}(x \circ r) .
\end{aligned}
$$

It turns out $H \in \Omega^{3}(M), R \in \Omega^{2}(M, \mathfrak{g})$, and ∇_{x} a $T M$-connection on \mathfrak{G}
Namely

$$
\begin{aligned}
(x+r+\xi) & \circ(y+s+\eta)=[x, y] \\
& -\imath_{x} \imath_{y} R+[r, s]_{\mathfrak{G}}+\nabla_{x} s-\nabla_{y} r \\
& -\imath_{x} \imath_{y} H+\left\langle s, d_{\nabla} r\right\rangle_{\mathfrak{G}}+\mathcal{L}_{x} \eta-\imath_{y} d \xi+\left\langle\imath_{x} R, s\right\rangle_{\mathfrak{G}}-\left\langle\imath_{y} R, r\right\rangle_{\mathfrak{G}}
\end{aligned}
$$

Transitive Courant Algebroids (cont'd)

where we have defined a 'twisted differential'
$d_{\nabla}: \Omega^{k}(M, Г \mathfrak{G}) \rightarrow \Omega^{k+1}(M, Г \mathfrak{G})$ by

$$
\begin{aligned}
& \left(d_{\nabla} \omega\right)\left(x_{0}, \ldots x_{k}\right)=\sum_{i=0}^{k}(-1)^{i} \nabla_{x_{i} \omega} \omega\left(x_{0}, \ldots, \widehat{x}_{i}, \ldots, x_{k}\right) \\
& +\sum_{0 \leq i<j \leq k}(-1)^{i+j} \omega\left(\left[x_{i}, x_{j}\right], x_{0}, \ldots, \ldots, \widehat{x}_{i}, \ldots, \widehat{x}_{j}, \ldots, x_{k}\right)
\end{aligned}
$$

[Note that $d_{\nabla}^{2}=0$ iff the curvature corresponding to ∇_{x} vanishes]

Transitive Courant Algebroids (cont'd)

where

$$
\begin{aligned}
\mathcal{L}_{x}\langle r, s\rangle_{\mathfrak{G}} & =\left\langle\nabla_{x} r, s\right\rangle_{\mathfrak{G}}+\left\langle r, \nabla_{x} s\right\rangle_{\mathfrak{G}} \\
\nabla_{x}[r, s]_{\mathfrak{G}} & =\left[\nabla_{x} r, s\right]_{\mathfrak{G}}+\left[r, \nabla_{x} s\right]_{\mathfrak{G}} \\
d_{\nabla} R & =0 \\
d_{\nabla}^{2} r & =\left(\nabla_{x} \nabla_{y}-\nabla_{y} \nabla_{x}-\nabla_{[x, y]}\right) r=[R, r]_{\mathfrak{G}}, \\
d H & =\langle R \wedge R\rangle_{\mathfrak{G}} .
\end{aligned}
$$

M-geometry [Hull, Pacheco-Waldram, Baraglia]

In M-theory we have a 3-form C_{3} with

$$
F_{4}=d C_{3}
$$

satisfying

$$
d F_{4}=0
$$

(Bianchi)
and

$$
d\left(* F_{4}\right)+\frac{1}{2} F_{4} \wedge F_{4}=0
$$

M-geometry [Hull, Pacheco-Waldram, Baraglia]

In M-theory we have a 3 -form C_{3} with

$$
F_{4}=d C_{3}
$$

satisfying

$$
d F_{4}=0
$$

(Bianchi)
and

$$
d\left(* F_{4}\right)+\frac{1}{2} F_{4} \wedge F_{4}=0
$$

After putting $F_{7}=* F_{4}$ we have

$$
d\left(F_{7}+\frac{1}{2} C_{3} \wedge F_{4}\right)=0, \quad F_{7}+\frac{1}{2} C_{3} \wedge F_{4}=d C_{6}
$$

M-geometry (cont'd)

Summarizing

$$
\begin{aligned}
& F_{4}=d C_{3} \\
& F_{7}=d C_{6}-\frac{1}{2} C_{3} \wedge F_{4}
\end{aligned}
$$

with

$$
\begin{aligned}
& d F_{4}=0 \\
& d F_{7}+\frac{1}{2} F_{4} \wedge F_{4}=0
\end{aligned}
$$

M-geometry (cont'd)

Symmetries by $z_{3} \in \Omega_{\mathrm{cl}}^{3}, z_{6} \in \Omega_{\mathrm{cl}}^{6}$

$$
\begin{aligned}
& C_{3}^{\prime}=C_{3}+z_{3} \\
& C_{6}^{\prime}=C_{6}+z_{6}+\frac{1}{2} C_{3} \wedge z_{3}
\end{aligned}
$$

Group law

$$
\left(z_{3}, z_{6}\right) \cdot\left(z_{3}^{\prime}, z_{6}^{\prime}\right)=\left(z_{3}+z_{3}^{\prime}, z_{6}+z_{6}^{\prime}-\frac{1}{2} z_{3} \wedge z_{3}^{\prime}\right)
$$

M-geometry (cont'd)

The relevant bundle in this case is

$$
E=T M \oplus \wedge^{2} T^{*} M \oplus \wedge^{5} T^{*} M
$$

with Dorfman bracket

$$
\begin{aligned}
& \left(x+a_{2}+a_{5}\right) \circ\left(y+b_{2}+b_{5}\right)= \\
& \quad[x, y]+\mathcal{L}_{x} b_{2}-\imath_{y} d a_{2}+\mathcal{L}_{x} b_{5}-\imath_{y} d a_{5}+d a_{2} \wedge b_{2}
\end{aligned}
$$

M-geometry (cont'd)

The relevant bundle in this case is

$$
E=T M \oplus \wedge^{2} T^{*} M \oplus \wedge^{5} T^{*} M
$$

with Dorfman bracket

$$
\begin{aligned}
& \left(x+a_{2}+a_{5}\right) \circ\left(y+b_{2}+b_{5}\right)= \\
& \quad[x, y]+\mathcal{L}_{x} b_{2}-\imath_{y} d a_{2}+\mathcal{L}_{x} b_{5}-\imath_{y} d a_{5}+d a_{2} \wedge b_{2}
\end{aligned}
$$

The bracket is invariant under infinitesimal symmetries generated by $z_{3} \in \Omega_{\mathrm{cl}}^{3}$, $z_{6} \in \Omega_{\mathrm{cl}}^{6}$

$$
\begin{aligned}
& z_{3} \cdot\left(x+a_{2}+a_{5}\right)=\imath_{x} z_{3}-z_{3} \wedge a_{2} \\
& z_{6} \cdot\left(x+a_{2}+a_{5}\right)=-\imath_{x} z_{6}
\end{aligned}
$$

M-geometry (cont'd)

It can be twisted by $F_{4} \in \Omega^{4}, F_{7} \in \Omega^{7}$

$$
\begin{aligned}
\left(x+a_{2}+a_{5}\right) & \circ\left(y+b_{2}+b_{5}\right)=[x, y] \\
& +\mathcal{L}_{x} b_{2}-\imath_{y} d a_{2}+\imath_{x} \imath_{y} F_{4} \\
& +\mathcal{L}_{x} b_{5}-\imath_{y} d a_{5}+d a_{2} \wedge b_{2}+\imath_{x} F_{4} \wedge b_{2}+\imath_{x} \imath_{y} F_{7}
\end{aligned}
$$

M-geometry (cont'd)

It can be twisted by $F_{4} \in \Omega^{4}, F_{7} \in \Omega^{7}$

$$
\begin{aligned}
\left(x+a_{2}+a_{5}\right) & \circ\left(y+b_{2}+b_{5}\right)=[x, y] \\
& +\mathcal{L}_{x} b_{2}-\imath_{y} d a_{2}+\imath_{x} \imath_{y} F_{4} \\
& +\mathcal{L}_{x} b_{5}-\imath_{y} d a_{5}+d a_{2} \wedge b_{2}+\imath_{x} F_{4} \wedge b_{2}+\imath_{x} \imath_{y} F_{7}
\end{aligned}
$$

and is a Leibniz algebroid iff

$$
\begin{aligned}
& d F_{4}=0 \\
& d F_{7}+\frac{1}{2} F_{4} \wedge F_{4}=0
\end{aligned}
$$

M-geometry (cont'd)

It can be twisted by $F_{4} \in \Omega^{4}, F_{7} \in \Omega^{7}$

$$
\begin{aligned}
\left(x+a_{2}+a_{5}\right) & \circ\left(y+b_{2}+b_{5}\right)=[x, y] \\
& +\mathcal{L}_{x} b_{2}-\imath_{y} d a_{2}+\imath_{x} \imath_{y} F_{4} \\
& +\mathcal{L}_{x} b_{5}-\imath_{y} d a_{5}+d a_{2} \wedge b_{2}+\imath_{x} F_{4} \wedge b_{2}+\imath_{x} \imath_{y} F_{7}
\end{aligned}
$$

and is a Leibniz algebroid iff

$$
\begin{aligned}
& d F_{4}=0 \\
& d F_{7}+\frac{1}{2} F_{4} \wedge F_{4}=0
\end{aligned}
$$

Note that we have $\langle\rangle:, E \otimes E \rightarrow T^{*} M \oplus \wedge^{4} T^{*} M$
$\left\langle x+a_{2}+a_{5}, y+b_{2}+b_{5}\right\rangle=\left(\imath_{x} b_{2}+\imath_{y} a_{2}\right)+\left(\imath_{x} b_{5}+\imath_{y} a_{5}+a_{2} \wedge b_{2}\right)$
(cf. notion of E-Courant algebroid [Chen-Liu-Sheng])

T-duality for principal S^{1}-bundles

Suppose we have a pair (E, H), consisting of a principal circle bundle

$$
\begin{gathered}
S^{1} \longrightarrow E \\
\\
\pi \\
\\
M
\end{gathered}
$$

and a so-called H -flux H , a Čech 3-cocycle.
Topologically, E is classified by an element in $F \in H^{2}(M, \mathbb{Z})$ while H gives a class in $H^{3}(E, \mathbb{Z})$

T-duality for principal S^{1}-bundles (cont'd)

The T-dual of (E, H) is given by the pair $(\widehat{E}, \widehat{H})$, where the principal S^{1}-bundle

$$
\begin{array}{r}
\hat{S}^{1} \longrightarrow \hat{E} \\
\hat{\pi} \downarrow \\
M
\end{array}
$$

and the dual H-flux $\widehat{H} \in H^{3}(\widehat{E}, \mathbb{Z})$, satisfy

$$
\widehat{F}=\pi_{*} H, \quad F=\widehat{\pi}_{*} \widehat{H}
$$

where $\pi_{*}: H^{3}(E, \mathbb{Z}) \rightarrow H^{2}(M, \mathbb{Z})$, and $\widehat{\pi}_{*}: H^{3}(\widehat{E}, \mathbb{Z}) \rightarrow H^{2}(M, \mathbb{Z})$ are the pushforward maps
('integration over the S^{1}-fiber')

T-duality for principal S^{1}-bundles (cont'd)

eaustanuan mational unicisity

T-duality for principal S^{1}-bundles (cont'd)

The ambiguity in the choice of \widehat{H} is removed by requiring that

$$
p^{*} H-\widehat{p}^{*} \widehat{H} \equiv 0
$$

in $H^{3}\left(E \times_{M} \widehat{E}, \mathbb{Z}\right)$, where $E \times_{M} \widehat{E}$ is the correspondence space

$$
E \times_{M} \widehat{E}=\{(x, \widehat{x}) \in E \times \widehat{E} \mid \pi(x)=\widehat{\pi}(\widehat{x})\}
$$

T-duality for principal S^{1}-bundles (cont'd)

The ambiguity in the choice of \widehat{H} is removed by requiring that

$$
p^{*} H-\widehat{p}^{*} \widehat{H} \equiv 0
$$

in $H^{3}\left(E \times_{M} \widehat{E}, \mathbb{Z}\right)$, where $E \times_{M} \widehat{E}$ is the correspondence space

$$
E \times_{M} \widehat{E}=\{(x, \widehat{x}) \in E \times \widehat{E} \mid \pi(x)=\widehat{\pi}(\widehat{x})\}
$$

Theorem (B-Evslin-Mathai)

This T-duality gives rise to an isomorphism between the twisted cohomologies and twisted K-theories of (E, H) and $(\widehat{E}, \widehat{H})$ (with a shift in degree by 1)

Given a principal circle bundle E with H -flux $H \in \Omega_{\mathrm{cl}}^{3}(E)^{S^{1}}$

$$
\begin{array}{rl}
S^{1} \longrightarrow E \\
\pi & \\
M & H=H_{(3)}+A \wedge H_{(2)}, F=d A
\end{array}
$$

Given a principal circle bundle E with H-flux $H \in \Omega_{\mathrm{cl}}^{3}(E)^{S^{1}}$

$$
\begin{aligned}
S^{1} \longrightarrow E \\
\pi \\
M
\end{aligned} \quad H=H_{(3)}+A \wedge H_{(2)}, F=d A
$$

there exists a T-dual principal circle bundle

$$
\begin{array}{r}
S^{1} \longrightarrow \begin{array}{r}
\hat{E} \\
\widehat{\pi} \downarrow \\
M
\end{array} \quad \hat{H}=H_{(3)}+\widehat{A} \wedge F, \widehat{F}=H_{(2)}=d \widehat{A}, ~
\end{array}
$$

T-duality and generalized geometry (cont'd)

Theorem [B-Evslin-Mathai, Cavalcanti-Gualtieri]
(a) We have an isomorphism of differential complexes

$$
\tau:\left(\Omega^{\bullet}(E)^{S^{1}}, d_{H}\right) \rightarrow\left(\Omega^{\bullet}(\widehat{E})^{S^{1}}, d_{\hat{H}}\right)
$$

T-duality and generalized geometry (cont'd)

Theorem [B-Evslin-Mathai, Cavalcanti-Gualtieri]
(a) We have an isomorphism of differential complexes

$$
\begin{aligned}
& \tau:\left(\Omega^{\bullet}(E)^{S^{1}}, d_{H}\right) \rightarrow\left(\Omega^{\bullet}(\widehat{E})^{S^{1}}, d_{\widehat{H}}\right) \\
& \tau\left(\Omega_{(k)}+A \wedge \Omega_{(k-1)}\right)=-\Omega_{(k-1)}+\widehat{A} \wedge \Omega_{(k)} \\
& \tau \circ d_{H}=-d_{\hat{H}} \circ \tau
\end{aligned}
$$

T-duality and generalized geometry (cont'd)

Theorem [B-Evslin-Mathai, Cavalcanti-Gualtieri]
(a) We have an isomorphism of differential complexes
$\tau:\left(\Omega^{\bullet}(E)^{S^{1}}, d_{H}\right) \rightarrow\left(\Omega^{\bullet}(\widehat{E})^{S^{1}}, d_{\hat{H}}\right)$

$$
\begin{aligned}
\tau\left(\Omega_{(k)}+A \wedge \Omega_{(k-1)}\right) & =-\Omega_{(k-1)}+\widehat{A} \wedge \Omega_{(k)} \\
\tau \circ d_{H} & =-d_{\widehat{H}} \circ \tau
\end{aligned}
$$

Hence, τ induces an isomorphism on twisted cohomology

T-duality and generalized geometry (cont'd)

Theorem [B-Evslin-Mathai, Cavalcanti-Gualtieri]
(a) We have an isomorphism of differential complexes
$\tau:\left(\Omega^{\bullet}(E)^{S^{1}}, d_{H}\right) \rightarrow\left(\Omega^{\bullet}(\widehat{E})^{S^{1}}, d_{\hat{H}}\right)$

$$
\begin{aligned}
\tau\left(\Omega_{(k)}+A \wedge \Omega_{(k-1)}\right) & =-\Omega_{(k-1)}+\widehat{A} \wedge \Omega_{(k)} \\
\tau \circ d_{H} & =-d_{\widehat{H}} \circ \tau
\end{aligned}
$$

Hence, τ induces an isomorphism on twisted cohomology
(b) We can identify $\left(X+\equiv \in \Gamma\left(T E \oplus T^{*} E\right)^{S^{1}}\right.$ with a quadruple $(x, f ; \xi, g)$

$$
X=x+f \partial_{A}, \quad \equiv=\xi+g A
$$

and define a map $\phi: \Gamma\left(T E \oplus T^{*} E\right)^{S^{1}} \rightarrow \Gamma\left(T \widehat{E} \oplus T^{*} \widehat{E}\right)^{S^{1}}$

$$
\phi\left(x+f \partial_{A}+\xi+g A\right)=x+g \partial_{\widehat{A}}+\xi+f \widehat{A}
$$

T-duality and generalized geometry (cont'd)

(b) The map ϕ is orthogonal wrt pairing on $T E \oplus T^{*} E$, hence τ induces an isomorphism of Clifford algebras

T-duality and generalized geometry (cont'd)

(b) The map ϕ is orthogonal wrt pairing on $T E \oplus T^{*} E$, hence τ induces an isomorphism of Clifford algebras
(c) For $X+\equiv \in \Gamma\left(\left(T E \oplus T^{*} E\right)^{S^{1}}\right)$ we have

$$
\tau\left(\gamma_{X+}+\Omega\right)=\gamma_{\phi(X+\equiv)} \cdot \tau(\Omega)
$$

T-duality and generalized geometry (cont'd)

(b) The map ϕ is orthogonal wrt pairing on $T E \oplus T^{*} E$, hence τ induces an isomorphism of Clifford algebras
(c) For $X+\equiv \in \Gamma\left(\left(T E \oplus T^{*} E\right)^{S^{1}}\right)$ we have

$$
\tau\left(\gamma_{X+}+\Omega\right)=\gamma_{\phi(X+\equiv)} \cdot \tau(\Omega)
$$

Hence τ induces an isomorphism of Clifford modules

T-duality and generalized geometry (cont'd)

(b) The map ϕ is orthogonal wrt pairing on $T E \oplus T^{*} E$, hence τ induces an isomorphism of Clifford algebras
(c) For $X+\equiv \in \Gamma\left(\left(T E \oplus T^{*} E\right)^{S^{1}}\right)$ we have

$$
\tau\left(\gamma_{X+}{ }^{\prime} \cdot \Omega\right)=\gamma_{\phi(X+\equiv)} \cdot \tau(\Omega)
$$

Hence τ induces an isomorphism of Clifford modules
(d) For $X_{i}+\Xi_{i} \in \Gamma\left(\left(T E \oplus T^{*} E\right)^{S^{1}}\right)$ we have

$$
\phi\left(\llbracket X_{1}+\bar{\Xi}_{1}, X_{2}+\bar{\Xi}_{2} \rrbracket_{H}\right)=\llbracket \phi\left(X_{1}+\Xi_{1}\right), \phi\left(X_{2}+\bar{\Xi}_{2}\right) \rrbracket_{\hat{H}}
$$

T-duality and generalized geometry (cont'd)

(b) The map ϕ is orthogonal wrt pairing on $T E \oplus T^{*} E$, hence τ induces an isomorphism of Clifford algebras
(c) For $X+\equiv \in \Gamma\left(\left(T E \oplus T^{*} E\right)^{S^{1}}\right)$ we have

$$
\tau\left(\gamma_{X+}{ }^{\prime} \cdot \Omega\right)=\gamma_{\phi(X+\equiv)} \cdot \tau(\Omega)
$$

Hence τ induces an isomorphism of Clifford modules
(d) For $X_{i}+\Xi_{i} \in \Gamma\left(\left(T E \oplus T^{*} E\right)^{S^{1}}\right)$ we have

$$
\phi\left(\llbracket X_{1}+\Xi_{1}, X_{2}+\bar{\Xi}_{2} \rrbracket_{H}\right)=\llbracket \phi\left(X_{1}+\bar{\Xi}_{1}\right), \phi\left(X_{2}+\bar{\Xi}_{2}\right) \rrbracket_{\hat{H}}
$$

Hence ϕ gives a homomorphism of twisted Courant brackets

T-duality and generalized geometry (cont'd)

(b) The map ϕ is orthogonal wrt pairing on $T E \oplus T^{*} E$, hence τ induces an isomorphism of Clifford algebras
(c) For $X+\equiv \in \Gamma\left(\left(T E \oplus T^{*} E\right)^{S^{1}}\right)$ we have

$$
\tau\left(\gamma_{X+}{ }^{\prime} \cdot \Omega\right)=\gamma_{\phi(X+\equiv)} \cdot \tau(\Omega)
$$

Hence τ induces an isomorphism of Clifford modules
(d) For $X_{i}+\Xi_{i} \in \Gamma\left(\left(T E \oplus T^{*} E\right)^{S^{1}}\right)$ we have

$$
\phi\left(\llbracket X_{1}+\bar{\Xi}_{1}, X_{2}+\bar{\Xi}_{2} \rrbracket_{H}\right)=\llbracket \phi\left(X_{1}+\Xi_{1}\right), \phi\left(X_{2}+\bar{\Xi}_{2}\right) \rrbracket_{\hat{H}}
$$

Hence ϕ gives a homomorphism of twisted Courant brackets

It follows that T-duality acts naturally on generalized complex structures, generalized Kähler structures, generalized Calabi-Yau structures, ...

Dimensionally reduced Dorfman bracket

The dimensionally reduced Dorfman bracket

$$
\begin{aligned}
& \left(x_{1}, f_{1} ; \xi_{1}, g_{1}\right) \circ\left(x_{2}, f_{2} ; \xi_{2}, g_{2}\right)= \\
& \quad\left(\left[x_{1}, x_{2}\right], x_{1}\left(f_{2}\right)-x_{2}\left(f_{1}\right)+\imath_{x_{1}} \imath_{x_{2}} F ;\right. \\
& \left(\mathcal{L}_{x_{1}} \xi_{2}-\imath_{x_{2}} d \xi_{1}\right)+\imath_{x_{1}} \imath_{x_{2}} H_{(3)}+\left(d f_{1} g_{2}+f_{2} d g_{1}\right) \\
& +\left(g_{2} \imath_{x_{1}} F-g_{1} \imath_{x_{2}} F\right)+\left(f_{2} \imath_{x_{1}} H_{(2)}-f_{1} \imath_{x_{2}} H_{(2)}\right), \\
& \left.\quad x_{1}\left(g_{2}\right)-x_{2}\left(g_{1}\right)+\imath_{x_{1}} \imath_{x_{2}} H_{(2)}\right)
\end{aligned}
$$

is that of the transitive Courant algebroid
$E=T M \oplus\left(\mathfrak{t} \oplus \mathfrak{t}^{*}\right) \oplus T^{*} M$ with $R=-\left(F, H_{(2)}\right), H=-H_{(3)}$ and
$\langle,\rangle_{\mathfrak{G}}$ the canonical pairing between \mathfrak{t} and \mathfrak{t}^{*}.

Dimensionally reduced Dorfman bracket

The dimensionally reduced Dorfman bracket

$$
\begin{aligned}
& \left(x_{1}, f_{1} ; \xi_{1}, g_{1}\right) \circ\left(x_{2}, f_{2} ; \xi_{2}, g_{2}\right)= \\
& \quad\left(\left[x_{1}, x_{2}\right], x_{1}\left(f_{2}\right)-x_{2}\left(f_{1}\right)+\imath_{x_{1}} \imath_{x_{2}} F\right. \\
& \quad\left(\mathcal{L}_{x_{1}} \xi_{2}-\imath_{x_{2}} d \xi_{1}\right)+\imath_{x_{1}} \imath_{x_{2}} H_{(3)}+\left(d f_{1} g_{2}+f_{2} d g_{1}\right) \\
& \quad+\left(g_{2} \imath_{x_{1}} F-g_{1} \imath_{x_{2}} F\right)+\left(f_{2} \imath_{x_{1}} H_{(2)}-f_{1} \imath_{x_{2}} H_{(2)}\right) \\
& \left.\quad x_{1}\left(g_{2}\right)-x_{2}\left(g_{1}\right)+\imath_{x_{1}} \imath_{x_{2}} H_{(2)}\right)
\end{aligned}
$$

is that of the transitive Courant algebroid
$E=T M \oplus\left(\mathfrak{t} \oplus \mathfrak{t}^{*}\right) \oplus T^{*} M$ with $R=-\left(F, H_{(2)}\right), H=-H_{(3)}$ and
$\langle,\rangle_{\mathfrak{G}}$ the canonical pairing between \mathfrak{t} and \mathfrak{t}^{*}.
[Doubling of the Atiyah algebroid corresponding to the principal S^{1}-bundle]

Generalization to principal torus bundles

We have

$$
H=H_{(3)}+A_{i} \wedge H_{(2)}^{i}+\frac{1}{2} A_{i} \wedge A_{j} \wedge H_{(1)}^{i j}+\frac{1}{6} A_{i} \wedge A_{j} \wedge A_{k} \wedge H_{(0)}^{i j k}
$$

Generalization to principal torus bundles

We have

$$
H=H_{(3)}+A_{i} \wedge H_{(2)}^{i}+\frac{1}{2} A_{i} \wedge A_{j} \wedge H_{(1)}^{i j}+\frac{1}{6} A_{i} \wedge A_{j} \wedge A_{k} \wedge H_{(0)}^{i j k}
$$

such that

$$
\begin{aligned}
d_{H}= & \bar{d}+H_{(3)}+F_{(2) i} \partial_{A_{i}} \\
& +A_{i} \wedge H_{(2)}^{i}+\frac{1}{2} A_{i} \wedge A_{j} \wedge H_{(1)}^{i j}+\frac{1}{6} A_{i} \wedge A_{j} \wedge A_{k} \wedge H_{(0)}^{i j k}
\end{aligned}
$$

Generalization to principal torus bundles

We have

$$
H=H_{(3)}+A_{i} \wedge H_{(2)}^{i}+\frac{1}{2} A_{i} \wedge A_{j} \wedge H_{(1)}^{i j}+\frac{1}{6} A_{i} \wedge A_{j} \wedge A_{k} \wedge H_{(0)}^{i j k}
$$

such that

$$
\begin{aligned}
d_{H}= & \bar{d}+H_{(3)}+F_{(2) i} \partial_{A_{i}}+\frac{1}{2} F_{(1) i j} \partial_{A_{i}} \wedge \partial_{A_{j}}+\frac{1}{6} F_{(0) i j k} \partial_{A_{i}} \wedge \partial_{A_{j}} \wedge \partial_{A_{k}} \\
& +A_{i} \wedge H_{(2)}^{i}+\frac{1}{2} A_{i} \wedge A_{j} \wedge H_{(1)}^{i j}+\frac{1}{6} A_{i} \wedge A_{j} \wedge A_{k} \wedge H_{(0)}^{i j k}
\end{aligned}
$$

Generalization to principal torus bundles

We have

$$
H=H_{(3)}+A_{i} \wedge H_{(2)}^{i}+\frac{1}{2} A_{i} \wedge A_{j} \wedge H_{(1)}^{i j}+\frac{1}{6} A_{i} \wedge A_{j} \wedge A_{k} \wedge H_{(0)}^{i j k}
$$

such that

$$
\begin{aligned}
d_{H}= & \bar{d}+H_{(3)}+F_{(2) i} \partial_{A_{i}}+\frac{1}{2} F_{(1) i j} \partial_{A_{i}} \wedge \partial_{A_{j}}+\frac{1}{6} F_{(0) i j k} \partial_{A_{i}} \wedge \partial_{A_{j}} \wedge \partial_{A_{k}} \\
& +A_{i} \wedge H_{(2)}^{i}+\frac{1}{2} A_{i} \wedge A_{j} \wedge H_{(1)}^{i j}+\frac{1}{6} A_{i} \wedge A_{j} \wedge A_{k} \wedge H_{(0)}^{i j k}
\end{aligned}
$$

The $F_{(1) i j}$ and $F_{(0) i j k}$ are known as nongeometric fluxes

Generalization to principal torus bundles

We have

$$
H=H_{(3)}+A_{i} \wedge H_{(2)}^{i}+\frac{1}{2} A_{i} \wedge A_{j} \wedge H_{(1)}^{i j}+\frac{1}{6} A_{i} \wedge A_{j} \wedge A_{k} \wedge H_{(0)}^{i j k}
$$

such that

$$
\begin{aligned}
d_{H}= & \bar{d}+H_{(3)}+F_{(2) i} \partial_{A_{i}}+\frac{1}{2} F_{(1) i j} \partial_{A_{i}} \wedge \partial_{A_{j}}+\frac{1}{6} F_{(0) j k} \partial_{A_{i}} \wedge \partial_{A_{j}} \wedge \partial_{A_{k}} \\
& +A_{i} \wedge H_{(2)}^{i}+\frac{1}{2} A_{i} \wedge A_{j} \wedge H_{(1)}^{i j}+\frac{1}{6} A_{i} \wedge A_{j} \wedge A_{k} \wedge H_{(0)}^{i j k}
\end{aligned}
$$

The $F_{(1) i j}$ and $F_{(0) j k}$ are known as nongeometric fluxes

Theorem (B-Garretson-Kao)

T-duality provides an isomorphism of (certain) Courant algebroids

THANKS

Peter Bouwknegt
Courant Algebroids and Generalizations of Geometry

