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Introduction

Generalizations of geometry

TM ⊕ T ∗M (type I or type II in absence of RR fluxes)
TM ⊕ T ∗M ⊕ S± (type IIA/IIB with RR fluxes)
TM ⊕ T ∗M ⊕G (type I + YM, heterotic)
TM ⊕ ∧2T ∗M ⊕ . . . (M-theory)
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Outline of the talk

Review of generalized geometry
Beyond generalized geometry

B2n-geometry
M-geometry

T-duality and generalized geometry
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Generalized geometry [Hitchin, Gualtieri, Cavalcanti]

Replace structures on TM (such as [ , ], ıx , Lx , d , ...) by similar
structures on E = TM ⊕ T ∗M

Bilinear form on sections x + ξ ∈ Γ(TM ⊕ T ∗M)

〈x + ξ, y + η〉 = 1
2(ıxη + ıyξ)

(Dorfman) Bracket

(x + ξ) ◦ (y + η) = [x , y ] + Lxη − ıydξ

Clifford algebra

{γx+ξ, γy+η} = 2〈x + ξ, y + η〉
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Generalized Geometry (cont’d)

Clifford module Ω•(M)

γx+ξ · ω = ıxω + ξ ∧ ω

De-Rham differential on Ω•(M)

d : Ωk (M)→ Ωk+1(M)
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Symmetries

Symmetries of 〈 , 〉 given by sections of the adjoint bundle

∧2E ∼= ∧2TM ⊕ End(TM)⊕ ∧2T ∗M

[They form the group O(n,n)]

In particular, we have the so called B-transform, for b ∈ Ω2(M)

eb · (x + ξ) = x + (ξ + ıxb)

b · (x + ξ) = ıxb (infinitesimally)

We have

eb · ((x + ξ) ◦ (y + η)) = eb · (x + ξ) ◦ eb · (y + η) + ıx ıydb

Symmetries of the Dorfman bracket are Diff(M) n Ω2
cl(M)
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Twisting

This suggest the introduction of a twisted Dorfman bracket, with
H ∈ Ω3(M), dH = 0

(x + ξ) ◦H (y + η) = [x , y ] + Lxη − ıydξ + ıx ıyH

such that

eb · ((x + ξ) ◦H (y + η)) =
(

eb · (x + ξ)
)
◦H+db

(
eb · (y + η)

)
and a twisted differential

dHω = dω + H ∧ ω
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Properties of the (twisted) Dorfman bracket

Properties (for A,B,C ∈ ΓE , f ∈ C∞(M))
(i) A ◦ (B ◦ C) = (A ◦ B) ◦ C + B ◦ (A ◦ C)

(ii) A ◦ (fB) = f (A ◦ B) + (ρ(A)f )B

The Courant bracket is defined as the anti-symmetrization

[[A,B]] =
1
2

(A ◦ B − B ◦ A)

or, conversely,
A ◦ B = [[A,B]] + d〈A,B〉
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Dorfman bracket as a derived bracket

Recall the usual Cartan relations

{ıx , ıy} = 0
{d , ıx} = Lx

[Lx , ıy ] = ı[x ,y ]

[Lx ,Ly ] = L[x ,y ]

[d ,Lx ] = 0

Here we have the analogue

{γA, γB} = 2〈A,B〉
{dH , γA} = LA

[LA, γB] = γA◦B

[LA,LB] = LA◦B = L[[A,B]]

[dH ,LA] = 0

where Lx+ξω = Lxω + (dξ + ıxH) ∧ ω
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Leibniz algebroids

Definition
A Leibniz algebroid (E , ◦, ρ) is a vector bundle E → M, with a
composition (Leibniz/Loday bracket) ◦ on ΓE , and a morphism
of vector bundles ρ : E → TM (anchor) such that
(L1) A ◦ (B ◦ C) = (A ◦ B) ◦ C + B ◦ (A ◦ C)

(L2) ρ(A ◦ B) = [ρ(A), ρ(B)]

(L3) A ◦ (fB) = f (A ◦ B) + (ρ(A)f )B
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Courant algebroids

Definition
A Courant algebroid (E , ◦, 〈 , 〉, ρ) is a vector bundle E → M,
with a composition ◦ on ΓE , a morphism of vector bundles
ρ : E → TM, and a field of nondegenerate bilinear forms 〈 , 〉
on ΓE such that

(C1) A ◦ (B ◦ C) = (A ◦ B) ◦ C + B ◦ (A ◦ C)

(C2) ρ(A)〈B,C〉 = 〈A,B ◦ C + C ◦ B〉
(C3) ρ(A)〈B,C〉 = 〈A ◦ B,C〉+ 〈B,A ◦ C〉

It follows that (E , ◦, ρ) is a Leibniz algebroid. Moreover

A ◦ B + B ◦ A = 2D〈A,B〉

where D = 1
2ρ
∗d : C∞(M)→ ΓE , i.e. 〈Df ,A〉 = 1

2ρ(A)f
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Exact Courant algebroids

An exact Courant algebroid E is a Courant algebroid that fits in
the exact sequence

0 −−−−→ T ∗M
ρ∗−−−−→ E

ρ−−−−→ TM −−−−→ 0

Such a Courant algebroid admits an isotropic splitting
s : TM → E , which allows us to identify E ∼= TM ⊕ T ∗M. The
composition on x + ξ ∈ Γ(TM ⊕T ∗M) is uniquely determined by

H(x , y , z) = 〈x ◦ y , z〉

It turns out H ∈ Ω3
cl(M)

Theorem (Ševera)
Equivalence classes of exact Courant algebroids are in 1–1
correspondence with H3(M,R).
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B2n-geometry [Baraglia]

We now consider the vector bundle

E = TM ⊕ 1⊕ T ∗M

with nondegenerate bilinear form

〈x + f + ξ, y + g + η〉 = 1
2(ıxη + ıyξ) + fg

Dorfman bracket

(x + f +ξ)◦(y +g +η) = [x , y ]+(x(g)−y(f ))+Lxη− ıydξ+2gdf

and anchor map
ρ(x + f + ξ) = x
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B2n-geometry (cont’d)

Adjoint bundle

∧2E = ∧2TM ⊕ TM ⊕ End(TM)⊕ T ∗M ⊕ ∧2T ∗M

In particular

a · (x + f + ξ) = ıxa− fa , a ∈ Ω1

b · (x + f + ξ) = ıxb , b ∈ Ω2

Note
[a1,a2] = a1 ∧ a2

Symmetries of the Dorfman bracket iff da = 0 = db.
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B2n-geometry (cont’d)

Consider F ∈ Ω2(M), H ∈ Ω3(M), and a twisted Dorfman
bracket

(x + f + ξ) ◦ (y + g + η) = [x , y ] + (x(g)− y(f )) + ıx ıyF
+ Lxη − ıydξ + 2gdf + ıx ıyH + ıxFg − ıyFf

This defines a Courant algebroid provided

dF = 0
dH + F ∧ F = 0
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B2n-geometry (cont’d)

The bracket can be obtained as a derived bracket using

dF ,H ω = dω + (−1)|ω|F ∧ ω + H ∧ ω

and
γx+f +ξ · ω = ıxω + (−1)|ω|fω + ξ ∧ ω

Note

dF ,H
2 = 0{

γx+f +ξ, γy+g+η

}
= 2〈x + f + ξ, y + g + η〉

iff F and H satisfy the Bianchi identities as before.
This is an example of non-exact transitive Courant algebroid

T ∗M −−−−→ TM ⊕ 1⊕ T ∗M −−−−→ TM −−−−→ 0
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Transitive Courant Algebroids [Chen-Stiénon-Xu]

Transitive Courant algebroids are of the form

E = TM ⊕G⊕ T ∗M

where G = kerρ/(kerρ)⊥ is a bundle of Lie algebras with
bracket

[r , s]G = prG(r ◦ s)

and
ρ(x + r + ξ) = x

Suppose

〈x + r + ξ, y + s + η〉 = 1
2 (ıxη + ıyξ) + 〈r , s〉G
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and
ρ(x + r + ξ) = x

Suppose

〈x + r + ξ, y + s + η〉 = 1
2 (ıxη + ıyξ) + 〈r , s〉G
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Transitive Courant Algebroids (cont’d)

Then the Dorfman bracket on E is completely determined by

H(x , y , z) = 〈prT∗M(x ◦ y), z〉
R(x , y) = prG(x ◦ y)

∇x r = prG(x ◦ r) .

It turns out H ∈ Ω3(M), R ∈ Ω2(M, g), and ∇x a TM-connection
on G

Namely

(x + r + ξ) ◦ (y + s + η) = [x , y ]

− ıx ıyR + [r , s]G +∇xs −∇y r
− ıx ıyH + 〈s,d∇r〉G + Lxη − ıydξ + 〈ıxR, s〉G − 〈ıyR, r〉G
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Transitive Courant Algebroids (cont’d)

where we have defined a ‘twisted differential’
d∇ : Ωk (M, ΓG)→ Ωk+1(M, ΓG) by

(d∇ω)(x0, . . . xk ) =
k∑

i=0

(−1)i∇xiω(x0, . . . , x̂i , . . . , xk )

+
∑

0≤i<j≤k

(−1)i+jω([xi , xj ], x0, . . . , . . . , x̂i , . . . , x̂j , . . . , xk )

[Note that d2
∇ = 0 iff the curvature corresponding to ∇x

vanishes]
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Transitive Courant Algebroids (cont’d)

where

Lx〈r , s〉G = 〈∇x r , s〉G + 〈r ,∇xs〉G
∇x [r , s]G = [∇x r , s]G + [r ,∇xs]G

d∇R = 0

d2
∇r =

(
∇x∇y −∇y∇x −∇[x ,y ]

)
r = [R, r ]G ,

dH = 〈R ∧ R〉G .
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M-geometry [Hull, Pacheco-Waldram, Baraglia]

In M-theory we have a 3-form C3 with

F4 = dC3

satisfying
dF4 = 0 (Bianchi)

and
d(∗F4) + 1

2F4 ∧ F4 = 0 (e.o.m.)

After putting F7 = ∗F4 we have

d(F7 + 1
2C3 ∧ F4) = 0 , F7 + 1

2C3 ∧ F4 = dC6
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M-geometry (cont’d)

Summarizing

F4 = dC3

F7 = dC6 − 1
2C3 ∧ F4

with

dF4 = 0

dF7 + 1
2F4 ∧ F4 = 0
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M-geometry (cont’d)

Symmetries by z3 ∈ Ω3
cl, z6 ∈ Ω6

cl

C′3 = C3 + z3

C′6 = C6 + z6 + 1
2C3 ∧ z3

Group law

(z3, z6) · (z ′3, z ′6) = (z3 + z ′3, z6 + z ′6 − 1
2z3 ∧ z ′3)
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M-geometry (cont’d)

The relevant bundle in this case is

E = TM ⊕ ∧2T ∗M ⊕ ∧5T ∗M

with Dorfman bracket

(x + a2 + a5) ◦ (y + b2 + b5) =

[x , y ] + Lxb2 − ıyda2 + Lxb5 − ıyda5 + da2 ∧ b2

The bracket is invariant under infinitesimal symmetries
generated by z3 ∈ Ω3

cl, z6 ∈ Ω6
cl

z3 · (x + a2 + a5) = ıxz3 − z3 ∧ a2

z6 · (x + a2 + a5) = −ıxz6

.
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M-geometry (cont’d)

It can be twisted by F4 ∈ Ω4, F7 ∈ Ω7

(x + a2 + a5) ◦ (y + b2 + b5) = [x , y ]

+ Lxb2 − ıyda2 + ıx ıyF4

+ Lxb5 − ıyda5 + da2 ∧ b2 + ıxF4 ∧ b2 + ıx ıyF7

and is a Leibniz algebroid iff

dF4 = 0

dF7 + 1
2F4 ∧ F4 = 0

Note that we have 〈 , 〉 : E ⊗ E → T ∗M ⊕ ∧4T ∗M

〈x + a2 + a5, y + b2 + b5〉 = (ıxb2 + ıya2) + (ıxb5 + ıya5 + a2∧b2)

(cf. notion of E-Courant algebroid [Chen-Liu-Sheng])
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T-duality for principal S1-bundles

Suppose we have a pair (E ,H), consisting of a principal circle
bundle

S1 −−−−→ E

π

y
M

and a so-called H-flux H, a Čech 3-cocycle.

Topologically, E is classified by an element in F ∈ H2(M,Z)
while H gives a class in H3(E ,Z)
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T-duality for principal S1-bundles (cont’d)

The T-dual of (E ,H) is given by the pair (Ê , Ĥ), where the
principal S1-bundle

Ŝ1 −−−−→ Ê

π̂

y
M

and the dual H-flux Ĥ ∈ H3(Ê ,Z), satisfy

F̂ = π∗H , F = π̂∗Ĥ

where π∗ : H3(E ,Z)→ H2(M,Z), and
π̂∗ : H3(Ê ,Z)→ H2(M,Z) are the pushforward maps
(‘integration over the S1-fiber’)
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T-duality for principal S1-bundles (cont’d)

E

π

��

E ×M Ê

p̂=π×1

��

p=1×π̂

��

M

Ê

π̂

��
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T-duality for principal S1-bundles (cont’d)

The ambiguity in the choice of Ĥ is removed by requiring that

p∗H − p̂∗Ĥ ≡ 0

in H3(E ×M Ê ,Z), where E ×M Ê is the correspondence space

E ×M Ê = {(x , x̂) ∈ E × Ê | π(x) = π̂(x̂)}

Theorem (B-Evslin-Mathai)
This T-duality gives rise to an isomorphism between the twisted
cohomologies and twisted K-theories of (E ,H) and (Ê , Ĥ) (with
a shift in degree by 1)
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T-duality and generalized geometry

Given a principal circle bundle E with H-flux H ∈ Ω3
cl(E)S1

S1 −−−−→ E

π

y
M

H = H(3) + A ∧ H(2), F = dA

there exists a T-dual principal circle bundle

S1 −−−−→ Ê

π̂

y
M

Ĥ = H(3) + Â ∧ F , F̂ = H(2) = dÂ
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T-duality and generalized geometry (cont’d)

Theorem [B-Evslin-Mathai, Cavalcanti-Gualtieri]
(a) We have an isomorphism of differential complexes

τ : (Ω•(E)S1
,dH)→ (Ω•(Ê)S1

,dĤ)

τ(Ω(k) + A ∧ Ω(k−1)) = −Ω(k−1) + Â ∧ Ω(k)

τ ◦ dH = −dĤ ◦ τ

Hence, τ induces an isomorphism on twisted cohomology
(b) We can identify (X + Ξ ∈ Γ(TE ⊕ T ∗E)S1

with a quadruple
(x , f ; ξ,g)

X = x + f∂A , Ξ = ξ + gA

and define a map φ : Γ(TE ⊕ T ∗E)S1 → Γ(T Ê ⊕ T ∗Ê)S1

φ(x + f∂A + ξ + gA) = x + g∂Â + ξ + f Â
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,dĤ)

τ(Ω(k) + A ∧ Ω(k−1)) = −Ω(k−1) + Â ∧ Ω(k)
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T-duality and generalized geometry (cont’d)

(b) The map φ is orthogonal wrt pairing on TE ⊕ T ∗E , hence
τ induces an isomorphism of Clifford algebras

(c) For X + Ξ ∈ Γ((TE ⊕ T ∗E)S1
) we have

τ(γX+Ξ · Ω) = γφ(X+Ξ) · τ(Ω)

Hence τ induces an isomorphism of Clifford modules
(d) For Xi + Ξi ∈ Γ((TE ⊕ T ∗E)S1

) we have

φ ([[X1 + Ξ1,X2 + Ξ2]]H) = [[φ(X1 + Ξ1), φ(X2 + Ξ2)]]Ĥ

Hence φ gives a homomorphism of twisted Courant
brackets

It follows that T-duality acts naturally on generalized complex
structures, generalized Kähler structures, generalized
Calabi-Yau structures, ...
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Dimensionally reduced Dorfman bracket

The dimensionally reduced Dorfman bracket

(x1, f1;ξ1,g1) ◦ (x2, f2; ξ2,g2) =

([x1, x2], x1(f2)− x2(f1) + ıx1ıx2F ;

(Lx1ξ2 − ıx2dξ1) + ıx1ıx2H(3) + (df1g2 + f2dg1)

+ (g2ıx1F − g1ıx2F ) + (f2ıx1H(2) − f1ıx2H(2)),

x1(g2)− x2(g1) + ıx1ıx2H(2))

is that of the transitive Courant algebroid
E = TM ⊕ (t⊕ t∗)⊕ T ∗M with R = −(F ,H(2)), H = −H(3) and
〈 , 〉G the canonical pairing between t and t∗.

[Doubling of the Atiyah algebroid corresponding to the principal
S1-bundle]
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Generalization to principal torus bundles

We have

H = H(3) + Ai ∧ H i
(2) + 1

2Ai ∧ Aj ∧ H ij
(1) + 1

6Ai ∧ Aj ∧ Ak ∧ H ijk
(0)

such that

dH =d̄ + H(3) + F(2)i∂Ai

+ 1
2F(1)ij∂Ai ∧ ∂Aj + 1

6F(0)ijk∂Ai ∧ ∂Aj ∧ ∂Ak

+ Ai ∧ H i
(2) + 1

2Ai ∧ Aj ∧ H ij
(1) + 1

6Ai ∧ Aj ∧ Ak ∧ H ijk
(0)

The F(1)ij and F(0)ijk are known as nongeometric fluxes

Theorem (B-Garretson-Kao)
T-duality provides an isomorphism of (certain) Courant
algebroids
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Theorem (B-Garretson-Kao)
T-duality provides an isomorphism of (certain) Courant
algebroids
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