Topological defects and Khovanov-Rozansky homology

based on arXiv:1006.5609 [hep-th] with Ingo Runkel, and work with Daniel Murfet

Nils Carqueville

LMU München

Topological defects

A 2-dimensional topological field theory with defects is a symmetric monoidal functor

$$
\langle\cdot\rangle: \operatorname{Cob}_{\Lambda}^{\mathcal{D}} \longrightarrow \operatorname{Vect}_{\mathbb{C}}^{\mathbb{Z}_{2}}
$$

Topological defects

A 2-dimensional topological field theory with defects is a symmetric monoidal functor

$$
\langle\cdot\rangle: \operatorname{Cob}_{\Lambda}^{\mathcal{D}} \longrightarrow \operatorname{Vect}_{\mathbb{C}}^{\mathbb{Z}_{2}}
$$

Topological defects

A 2-dimensional topological field theory with defects is a symmetric monoidal functor

$$
\langle\cdot\rangle: \operatorname{Cob}_{\Lambda}^{\mathcal{D}} \longrightarrow \operatorname{Vect}_{\mathbb{C}}^{\mathbb{Z}_{2}}
$$

independent of position of defect lines

Affine Landau-Ginzburg models: defects and defect fields between W_{1} and W_{2} described by $\operatorname{MF}\left(W_{1} \otimes 1-1 \otimes W_{2}\right)$

Topological defects

A 2-dimensional topological field theory with defects is a symmetric monoidal functor

$$
\langle\cdot\rangle: \operatorname{Cob}_{\Lambda}^{\mathcal{D}} \longrightarrow \operatorname{Vect}_{\mathbb{C}}^{\mathbb{Z}_{2}}
$$

independent of position of defect lines

Affine Landau-Ginzburg models: defects and defect fields between W_{1} and W_{2} described by $\operatorname{MF}\left(W_{1} \otimes 1-1 \otimes W_{2}\right)$

Example. Invisible defect
$I=\left(\begin{array}{cc}0 & x-y \\ \frac{W(x)-W(y)}{x-y} & 0\end{array}\right) \in \operatorname{MF}(W \otimes 1-1 \otimes W)$

Topological defects

A 2-dimensional topological field theory with defects is a symmetric monoidal functor

$$
\langle\cdot\rangle: \operatorname{Cob}_{\Lambda}^{\mathcal{D}} \longrightarrow \operatorname{Vect}_{\mathbb{C}}^{\mathbb{Z}_{2}}
$$

independent of position of defect lines

Affine Landau-Ginzburg models: defects and defect fields between W_{1} and W_{2} described by $\operatorname{MF}\left(W_{1} \otimes 1-1 \otimes W_{2}\right)$

Example. Invisible defect
$I=\left(\begin{array}{cc}0 & x-y \\ \frac{W(x)-W(y)}{x-y} & 0\end{array}\right) \in \operatorname{MF}(W \otimes 1-1 \otimes W), \quad \operatorname{End}(I)=\mathbb{C}[x] /(\partial W)$

Defect fusion

Defect fusion

Theorem. $\operatorname{MF}(W \otimes 1-1 \otimes W)$ is monoidal.

Defect fusion

Theorem. $\operatorname{MF}(W \otimes 1-1 \otimes W)$ is monoidal.
$(X \otimes Y)$

Defect fusion

Theorem. $\operatorname{MF}(W \otimes 1-1 \otimes W)$ is monoidal.
$(X \otimes Y)(m \otimes n)=X(m) \otimes n+(-1)^{|m|} m \otimes Y(n)$

Defect fusion

Theorem. $\operatorname{MF}(W \otimes 1-1 \otimes W)$ is monoidal.
$(X \otimes Y)(m \otimes n)=X(m) \otimes n+(-1)^{|m|} m \otimes Y(n), \quad I \otimes X \cong X \cong X \otimes I$

Defect fusion

Theorem. $\operatorname{MF}(W \otimes 1-1 \otimes W)$ is monoidal.
$(X \otimes Y)(m \otimes n)=X(m) \otimes n+(-1)^{|m|} m \otimes Y(n), \quad I \otimes X \cong X \cong X \otimes I$
Remark. Can compute $6 j$-symbols, agreement with rational CFT.

Defect fusion

Theorem. $\operatorname{MF}(W \otimes 1-1 \otimes W)$ is monoidal.
$(X \otimes Y)(m \otimes n)=X(m) \otimes n+(-1)^{|m|} m \otimes Y(n), \quad I \otimes X \cong X \cong X \otimes I$
Remark. Can compute $6 j$-symbols, agreement with rational CFT.
Remark. Part of structure of bicategory of Landau-Ginzburg models

Defect fusion

Theorem. $\operatorname{MF}(W \otimes 1-1 \otimes W)$ is monoidal.
$(X \otimes Y)(m \otimes n)=X(m) \otimes n+(-1)^{|m|} m \otimes Y(n), \quad I \otimes X \cong X \cong X \otimes I$
Remark. Can compute $6 j$-symbols, agreement with rational CFT.
Remark. Part of structure of bicategory of Landau-Ginzburg models:

- objects: potentials W

Defect fusion

Theorem. $\operatorname{MF}(W \otimes 1-1 \otimes W)$ is monoidal.
$(X \otimes Y)(m \otimes n)=X(m) \otimes n+(-1)^{|m|} m \otimes Y(n), \quad I \otimes X \cong X \cong X \otimes I$
Remark. Can compute $6 j$-symbols, agreement with rational CFT.
Remark. Part of structure of bicategory of Landau-Ginzburg models:

- objects: potentials W
- 1-morphisms: objects in $\operatorname{MF}\left(W_{1} \otimes 1-1 \otimes W_{2}\right)$

Defect fusion

Theorem. $\operatorname{MF}(W \otimes 1-1 \otimes W)$ is monoidal.
$(X \otimes Y)(m \otimes n)=X(m) \otimes n+(-1)^{|m|} m \otimes Y(n), \quad I \otimes X \cong X \cong X \otimes I$
Remark. Can compute $6 j$-symbols, agreement with rational CFT.
Remark. Part of structure of bicategory of Landau-Ginzburg models:

- objects: potentials W
- 1-morphisms: objects in $\operatorname{MF}\left(W_{1} \otimes 1-1 \otimes W_{2}\right)$
- 2-morphisms: morphisms in $\operatorname{MF}\left(W_{1} \otimes 1-1 \otimes W_{2}\right)$

Yoshino 1998, Khovanov/Rozansky 2004, Brunner/Roggenkamp 2007, Carqueville/Runkel 2009, Lazaroiu/McNamee

Action on bulk fields

Idea. Take bulk field $\varphi \in \operatorname{Jac}(W)$, wrap defect line X around it

Action on bulk fields

Idea. Take bulk field $\varphi \in \operatorname{Jac}(W)$, wrap defect line X around it, then collapse X on φ to produce new bulk field.

Action on bulk fields

Idea. Take bulk field $\varphi \in \operatorname{Jac}(W)$, wrap defect line X around it, then collapse X on φ to produce new bulk field.

Action on bulk fields

Idea. Take bulk field $\varphi \in \operatorname{Jac}(W)$, wrap defect line X around it, then collapse X on φ to produce new bulk field.

Need evaluation and coevaluation maps:

Action on bulk fields

Idea. Take bulk field $\varphi \in \operatorname{Jac}(W)$, wrap defect line X around it, then collapse X on φ to produce new bulk field.

Need evaluation and coevaluation maps:

Action on bulk fields

Idea. Take bulk field $\varphi \in \operatorname{Jac}(W)$, wrap defect line X around it, then collapse X on φ to produce new bulk field.

Theorem. $\mathrm{MF}(W \otimes 1-1 \otimes W)$ is pivotal rigid monoidal

Action on bulk fields

Idea. Take bulk field $\varphi \in \operatorname{Jac}(W)$, wrap defect line X around it, then collapse X on φ to produce new bulk field.

Theorem. $\mathrm{MF}(W \otimes 1-1 \otimes W)$ is pivotal rigid monoidal for $N=1$.

Action on bulk fields

Idea. Take bulk field $\varphi \in \operatorname{Jac}(W)$, wrap defect line X around it, then collapse X on φ to produce new bulk field.

Theorem. $\mathrm{MF}(W \otimes 1-1 \otimes W)$ is pivotal rigid monoidal for $N=1$.
Theorem. $\mathcal{D}_{l}, \mathcal{D}_{r}$ induce ring (anti-)homomorphisms

$$
K_{0}(\operatorname{MF}(W \otimes 1-1 \otimes W)) \otimes_{\mathbb{Z}} \mathbb{C} \longrightarrow \operatorname{End}^{0}\left(\operatorname{End}_{M F}(W \otimes 1-1 \otimes W)(I)\right)
$$

Action on bulk fields

$$
\left\langle\mathcal{D}_{l}(X)(\varphi) \psi\right\rangle_{\text {bulk }}=\left\langle\binom{\varphi \otimes \psi}{B_{X}}\right\rangle
$$

Action on bulk fields

$$
\begin{gathered}
\left\langle\mathcal{D}_{l}(X)(\varphi) \psi\right\rangle_{\text {bulk }}=\left\langle\binom{\varphi \otimes \psi}{B_{X}}\right\rangle \\
\mathcal{D}_{l}(X)(\varphi)=\operatorname{Res}\left[\frac{\varphi \operatorname{str}\left(\partial_{x_{1}} X \partial_{y_{1}} X \ldots \partial_{y_{N}} X\right) \mathrm{d} x_{1} \wedge \ldots \wedge \mathrm{~d} x_{N}}{\partial_{x_{1}} W \ldots \partial_{x_{N}} W}\right]
\end{gathered}
$$

Action on bulk fields

$$
\begin{gathered}
\left\langle\mathcal{D}_{l}(X)(\varphi) \psi\right\rangle_{\text {bulk }}=\left\langle\binom{\varphi \otimes \psi}{B_{X}}\right\rangle \\
\mathcal{D}_{l}(X)(\varphi)=\operatorname{Res}\left[\frac{\varphi \operatorname{str}\left(\partial_{x_{1}} X \partial_{y_{1}} X \ldots \partial_{y_{N}} X\right) \mathrm{d} x_{1} \wedge \ldots \wedge \mathrm{~d} x_{N}}{\partial_{x_{1}} W \ldots \partial_{x_{N}} W}\right]
\end{gathered}
$$

Proposition. For all known defects of $W=x^{d}$ we have

$$
\left\langle\mathcal{D}_{l}(X)(\varphi) \psi\right\rangle=\left\langle\varphi \mathcal{D}_{r}(X)(\psi)\right\rangle
$$

Action on bulk fields

$$
\begin{gathered}
\left\langle\mathcal{D}_{l}(X)(\varphi) \psi\right\rangle_{\text {bulk }}=\left\langle\binom{\varphi \otimes \psi}{B_{X}}\right\rangle \\
\mathcal{D}_{l}(X)(\varphi)=\operatorname{Res}\left[\frac{\varphi \operatorname{str}\left(\partial_{x_{1}} X \partial_{y_{1}} X \ldots \partial_{y_{N}} X\right) \mathrm{d} x_{1} \wedge \ldots \wedge \mathrm{~d} x_{N}}{\partial_{x_{1}} W \ldots \partial_{x_{N}} W}\right]
\end{gathered}
$$

Proposition. For all known defects of $W=x^{d}$ we have

$$
\left\langle\mathcal{D}_{l}(X)(\varphi) \psi\right\rangle=\left\langle\varphi \mathcal{D}_{r}(X)(\psi)\right\rangle
$$

Khovanov-Rozansky link invariants

Khovanov-Rozansky link invariants

In any link diagram

Khovanov-Rozansky link invariants

Khovanov-Rozansky link invariants

Khovanov-Rozansky link invariants

variable x_{n} to edge n

Khovanov-Rozansky link invariants

variable x_{n} to edge $n, \quad X \circ$ to

$$
\left.{ }_{k}^{i}\right)_{l}^{j}
$$

Khovanov-Rozansky link invariants

variable x_{n} to edge $n, \quad X_{\circ}$ to

Khovanov-Rozansky link invariants

variable x_{n} to edge $n, \quad X_{\circ}$ to $\left.\sum_{k}^{i}\right\rangle_{l}^{j}, \quad X_{\bullet}$ to $\prod_{k}^{i}{ }_{l}^{j}$
with $X_{\circ}, X_{\bullet} \in \operatorname{MF}\left(x_{i}^{n+1}+x_{j}^{n+1}-x_{k}^{n+1}-x_{l}^{n+1}\right)$.

Khovanov-Rozansky link invariants

In any link diagram
 replace crossing by
\Rightarrow get special planar graph. Associate
variable x_{n} to edge $n, \quad X_{\circ}$ to $\left.\int_{k}^{i}\right)_{l}^{j}, \quad X \bullet$ to

with $X_{\circ}, X_{\bullet} \in \operatorname{MF}\left(x_{i}^{n+1}+x_{j}^{n+1}-x_{k}^{n+1}-x_{l}^{n+1}\right)$.
Compilation of graph: @ X_{v}
vertices v

Khovanov-Rozansky link invariants

In any link diagram
 replace crossing by
\Rightarrow get special planar graph. Associate
variable x_{n} to edge $n, \quad X_{\circ}$ to $\left.\int_{k}^{i}\right)_{l}^{j}, \quad X \bullet$ to

with $X_{\circ}, X_{\bullet} \in \operatorname{MF}\left(x_{i}^{n+1}+x_{j}^{n+1}-x_{k}^{n+1}-x_{l}^{n+1}\right)$.
Compilation of graph: @ $X_{v} \in \operatorname{MF}(0)$
vertices v

Khovanov-Rozansky link invariants

In any link diagram
 replace crossing by
\Rightarrow get special planar graph. Associate
variable x_{n} to edge $n, \quad X_{\circ}$ to

with $X_{\circ}, X_{\bullet} \in \operatorname{MF}\left(x_{i}^{n+1}+x_{j}^{n+1}-x_{k}^{n+1}-x_{l}^{n+1}\right)$.
Compilation of graph: இ $X_{v} \in \operatorname{MF}(0)$, a complex over \mathbb{Q} vertices v

Khovanov-Rozansky link invariants

In any link diagram
 replace crossing by
\Rightarrow get special planar graph. Associate
variable x_{n} to edge $n, \quad X_{\circ}$ to

with $X_{\circ}, X_{\bullet} \in \operatorname{MF}\left(x_{i}^{n+1}+x_{j}^{n+1}-x_{k}^{n+1}-x_{l}^{n+1}\right)$.
Compilation of graph: இ $X_{v} \in \operatorname{MF}(0)$, a complex over \mathbb{Q} vertices v

Associate complexes of matrix factorisations to crossings in link diagram:

$$
\boldsymbol{\gamma} \hat{=}\left(\underline{X_{\circ}\{1-n\}} \xrightarrow{\chi_{0}} X_{\bullet}\{-n\}\right)
$$

Khovanov-Rozansky link invariants

In any link diagram

replace crossing by

\Rightarrow get special planar graph. Associate
variable x_{n} to edge $n, \quad X_{\circ}$ to $\left.\int_{k}^{i}\right)_{l}^{j}, \quad X \bullet$ to

with $X_{\circ}, X_{\bullet} \in \operatorname{MF}\left(x_{i}^{n+1}+x_{j}^{n+1}-x_{k}^{n+1}-x_{l}^{n+1}\right)$.
Compilation of graph: $\bigotimes X_{v} \in \operatorname{MF}(0)$, a complex over \mathbb{Q} vertices v

Associate complexes of matrix factorisations to crossings in link diagram:

$$
X \equiv\left(\underline{X_{0}\{1-n\}} \xrightarrow{\underline{x_{0}}} X_{0}\{-n\}\right), X \equiv\left(X_{0}\{n\} \xrightarrow{x_{1}} \underline{X_{0}\{n-1\}}\right)
$$

Khovanov-Rozansky link invariants

Tensoring over all crossings in a link diagram \mathcal{L} and compiling gives a ($\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_{2}$)-graded complex over \mathbb{Q}

Khovanov-Rozansky link invariants

Tensoring over all crossings in a link diagram \mathcal{L} and compiling gives a ($\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_{2}$)-graded complex over \mathbb{Q} whose homology is Khovanov-Rozansky homology $H(\mathcal{L})$.

Khovanov-Rozansky link invariants

Tensoring over all crossings in a link diagram \mathcal{L} and compiling gives a ($\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_{2}$)-graded complex over \mathbb{Q} whose homology is Khovanov-Rozansky homology $H(\mathcal{L})$.

Theorem. $H(\mathcal{L})$ is a link invariant

Khovanov-Rozansky link invariants

Tensoring over all crossings in a link diagram \mathcal{L} and compiling gives a ($\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_{2}$)-graded complex over \mathbb{Q} whose homology is Khovanov-Rozansky homology $H(\mathcal{L})$.

Theorem. $H(\mathcal{L})$ is a link invariant and concentrated in one \mathbb{Z}_{2}-degree.

$$
\operatorname{KR}_{n}(\mathcal{L})=\sum_{i, j \in \mathbb{Z}} t^{i} q^{j} \operatorname{dim}_{\mathbb{Q}}\left(H^{i, j}(\mathcal{L})\right)
$$

Khovanov-Rozansky link invariants

Tensoring over all crossings in a link diagram \mathcal{L} and compiling gives a ($\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_{2}$)-graded complex over \mathbb{Q} whose homology is Khovanov-Rozansky homology $H(\mathcal{L})$.

Theorem. $H(\mathcal{L})$ is a link invariant and concentrated in one \mathbb{Z}_{2}-degree.

$$
\operatorname{KR}_{n}(\mathcal{L})=\sum_{i, j \in \mathbb{Z}} t^{i} q^{j} \operatorname{dim}_{\mathbb{Q}}\left(H^{i, j}(\mathcal{L})\right)
$$

Categorification of $S L(n)$ link invariants: $\mathcal{P}_{n}(\mathcal{L})=\left.\mathrm{KR}_{n}(\mathcal{L})\right|_{t=-1}$

Khovanov-Rozansky link invariants

Tensoring over all crossings in a link diagram \mathcal{L} and compiling gives a ($\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_{2}$)-graded complex over \mathbb{Q} whose homology is Khovanov-Rozansky homology $H(\mathcal{L})$.

Theorem. $H(\mathcal{L})$ is a link invariant and concentrated in one \mathbb{Z}_{2}-degree.

$$
\operatorname{KR}_{n}(\mathcal{L})=\sum_{i, j \in \mathbb{Z}} t^{i} q^{j} \operatorname{dim}_{\mathbb{Q}}\left(H^{i, j}(\mathcal{L})\right)
$$

Categorification of $S L(n)$ link invariants: $\mathcal{P}_{n}(\mathcal{L})=\left.\mathrm{KR}_{n}(\mathcal{L})\right|_{t=-1}$

Direct computation obstructed by y-problem:
$X \in \mathrm{MF}_{\mathrm{Q}[x, y]}\left(W_{1}(x)-W_{2}(y)\right)$

Khovanov-Rozansky link invariants

Tensoring over all crossings in a link diagram \mathcal{L} and compiling gives a ($\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_{2}$)-graded complex over \mathbb{Q} whose homology is Khovanov-Rozansky homology $H(\mathcal{L})$.

Theorem. $H(\mathcal{L})$ is a link invariant and concentrated in one \mathbb{Z}_{2}-degree.

$$
\operatorname{KR}_{n}(\mathcal{L})=\sum_{i, j \in \mathbb{Z}} t^{i} q^{j} \operatorname{dim}_{\mathbb{Q}}\left(H^{i, j}(\mathcal{L})\right)
$$

Categorification of $S L(n)$ link invariants: $\mathcal{P}_{n}(\mathcal{L})=\left.\mathrm{KR}_{n}(\mathcal{L})\right|_{t=-1}$

Direct computation obstructed by y-problem: $X \in \operatorname{MF}_{\mathbb{Q}[x, y]}\left(W_{1}(x)-W_{2}(y)\right), Y \in \operatorname{MF}_{\mathbb{Q}[y, z]}\left(W_{2}(y)-W_{3}(z)\right)$

Khovanov-Rozansky link invariants

Tensoring over all crossings in a link diagram \mathcal{L} and compiling gives a ($\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_{2}$)-graded complex over \mathbb{Q} whose homology is Khovanov-Rozansky homology $H(\mathcal{L})$.

Theorem. $H(\mathcal{L})$ is a link invariant and concentrated in one \mathbb{Z}_{2}-degree.

$$
\operatorname{KR}_{n}(\mathcal{L})=\sum_{i, j \in \mathbb{Z}} t^{i} q^{j} \operatorname{dim}_{\mathbb{Q}}\left(H^{i, j}(\mathcal{L})\right)
$$

Categorification of $S L(n)$ link invariants: $\mathcal{P}_{n}(\mathcal{L})=\left.\mathrm{KR}_{n}(\mathcal{L})\right|_{t=-1}$

Direct computation obstructed by y-problem:
$X \in \operatorname{MF}_{\mathbb{Q}[x, y]}\left(W_{1}(x)-W_{2}(y)\right), Y \in \mathrm{MF}_{\mathrm{Q}[y, z]}\left(W_{2}(y)-W_{3}(z)\right)$
$\Longrightarrow \mathrm{MF}_{\mathrm{Q}[x, y, z]}\left(W_{1}(x)-W_{3}(z)\right) \ni X \otimes Y$

Khovanov-Rozansky link invariants

Tensoring over all crossings in a link diagram \mathcal{L} and compiling gives a ($\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_{2}$)-graded complex over \mathbb{Q} whose homology is Khovanov-Rozansky homology $H(\mathcal{L})$.

Theorem. $H(\mathcal{L})$ is a link invariant and concentrated in one \mathbb{Z}_{2}-degree.

$$
\operatorname{KR}_{n}(\mathcal{L})=\sum_{i, j \in \mathbb{Z}} t^{i} q^{j} \operatorname{dim}_{\mathbb{Q}}\left(H^{i, j}(\mathcal{L})\right)
$$

Categorification of $S L(n)$ link invariants: $\mathcal{P}_{n}(\mathcal{L})=\left.\mathrm{KR}_{n}(\mathcal{L})\right|_{t=-1}$

Direct computation obstructed by y-problem:
$X \in \operatorname{MF}_{\mathbb{Q}[x, y]}\left(W_{1}(x)-W_{2}(y)\right), Y \in \operatorname{MF}_{\mathbb{Q}[y, z]}\left(W_{2}(y)-W_{3}(z)\right)$
$\Longrightarrow \mathrm{MF}_{\mathrm{Q}[x, y, z]}\left(W_{1}(x)-W_{3}(z)\right) \ni X \otimes Y \cong T \in \mathrm{MF}_{\mathrm{Q}[x, z]}\left(W_{1}(x)-W_{3}(z)\right)$

Khovanov-Rozansky link invariants

Tensoring over all crossings in a link diagram \mathcal{L} and compiling gives a ($\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_{2}$)-graded complex over \mathbb{Q} whose homology is Khovanov-Rozansky homology $H(\mathcal{L})$.

Theorem. $H(\mathcal{L})$ is a link invariant and concentrated in one \mathbb{Z}_{2}-degree.

$$
\operatorname{KR}_{n}(\mathcal{L})=\sum_{i, j \in \mathbb{Z}} t^{i} q^{j} \operatorname{dim}_{\mathbb{Q}}\left(H^{i, j}(\mathcal{L})\right)
$$

Categorification of $S L(n)$ link invariants: $\mathcal{P}_{n}(\mathcal{L})=\left.\mathrm{KR}_{n}(\mathcal{L})\right|_{t=-1}$

Direct computation obstructed by y-problem:
$X \in \mathrm{MF}_{\mathrm{Q}[x, y]}\left(W_{1}(x)-W_{2}(y)\right), Y \in \mathrm{MF}_{\mathrm{Q}[y, z]}\left(W_{2}(y)-W_{3}(z)\right)$
$\Longrightarrow \mathrm{MF}_{\mathrm{Q}[x, y, z]}\left(W_{1}(x)-W_{3}(z)\right) \ni X \otimes Y \cong T \in \mathrm{MF}_{\mathrm{Q}[x, z]}\left(W_{1}(x)-W_{3}(z)\right)$
Theorem. There is an idempotent on $X \otimes Y$ whose splitting is T.

Computing Khovanov-Rozansky link invariants

Implementation of idempotent splitting in Singular

Computing Khovanov-Rozansky link invariants

Implementation of idempotent splitting in Singular allows for computation of arbitrary defect fusions.

Computing Khovanov-Rozansky link invariants

Implementation of idempotent splitting in Singular allows for computation of arbitrary defect fusions.

Corollary. Khovanov-Rozansky homology can be computed directly.

Computing Khovanov-Rozansky link invariants

Implementation of idempotent splitting in Singular allows for computation of arbitrary defect fusions.

Corollary. Khovanov-Rozansky homology can be computed directly. Reduced and unreduced $S L(n)$ and $S O(2 n)$ invariants

Computing Khovanov-Rozansky link invariants
Implementation of idempotent splitting in Singular allows for computation of arbitrary defect fusions.

Corollary. Khovanov-Rozansky homology can be computed directly. Reduced and unreduced $S L(n)$ and $S O(2 n)$ invariants, e. g.:

Computing Khovanov-Rozansky link invariants

Implementation of idempotent splitting in Singular allows for computation of arbitrary defect fusions.

Corollary. Khovanov-Rozansky homology can be computed directly. Reduced and unreduced $S L(n)$ and $S O(2 n)$ invariants, e. g.:

Computing Khovanov-Rozansky link invariants

$$
\begin{aligned}
\mathrm{KR}_{8}= & \left(q^{39}+q^{37}+q^{35}+q^{33}+q^{31}+q^{29}+q^{27}+q^{23} t+q^{21} t^{3}+q^{21} t\right. \\
& +q^{19} t^{3}+q^{19} t+q^{17} t^{3}+q^{17} t+q^{15} t^{3}+q^{15} t+q^{13} t^{3}+q^{13} t \\
& \left.+q^{11} t^{3}+q^{11} t+q^{9} t^{3}+q^{7} t^{3}\right) / t^{3}
\end{aligned}
$$

$$
\mathrm{KR}_{6}=\left(q^{28}+q^{26}+q^{24} t^{2}+q^{24}+q^{22} t^{2}+q^{22}+q^{20} t^{4}+q^{20} t^{2}+q^{20}\right.
$$

$$
+q^{18} t^{4}+q^{18} t^{2}+q^{18}+q^{16} t^{4}+q^{16} t^{2}+q^{14} t^{4}+q^{12} t^{4}+q^{12} t^{3}
$$

$$
\left.+q^{10} t^{3}+q^{8} t^{5}+q^{8} t^{3}+q^{6} t^{5}+q^{6} t^{3}+q^{4} t^{5}+q^{4} t^{3}+q^{2} t^{5}+t^{5}\right) / q^{43}
$$

Computing Khovanov-Rozansky link invariants

$$
\begin{aligned}
\mathrm{KR}_{5}=(& q^{28}+q^{26}+q^{24}+q^{22}+q^{18} t^{2}+q^{18} t+q^{16} t^{3}+q^{16} t^{2}+q^{16} t \\
& +q^{14} t^{3}+q^{14} t^{2}+q^{14} t+q^{12} t^{3}+q^{12} t^{2}+q^{12} t+q^{10} t^{3} \\
& \left.+q^{10} t^{2}+q^{6} t^{4}+q^{4} t^{4}+q^{2} t^{4}+t^{4}\right) /\left(q^{14} t^{2}\right)
\end{aligned}
$$

Computing Khovanov-Rozansky link invariants

$$
\begin{aligned}
\mathrm{KR}_{3}= & \left(q^{20}+q^{18} t+q^{18}+q^{16} t^{2}+q^{16} t+q^{14} t^{2}+q^{14} t+2 q^{12} t^{3}\right. \\
& +q^{12} t^{2}+q^{12} t+q^{10} t^{4}+3 q^{10} t^{3}+q^{10} t^{2}+q^{8} t^{5}+q^{8} t^{4} \\
& \left.+2 q^{8} t^{3}+q^{6} t^{5}+q^{6} t^{4}+q^{4} t^{5}+q^{4} t^{4}+q^{2} t^{6}+q^{2} t^{5}+t^{6}\right) /\left(q^{10} t^{3}\right)
\end{aligned}
$$

Computing Khovanov-Rozansky link invariants

Computing Khovanov-Rozansky link invariants

$$
\mathrm{KR}_{2}=\left(t^{5} q^{7}+t^{5} q^{5}+t^{3} q^{9}+t^{2} q^{13}+t q^{13}+t q^{11}+q^{17}+q^{15}\right) /\left(t^{5}\right)
$$

［lirkcomple］saving to disk．
［lirkCompi le］Looking at state［1，0］which is nunber［［ $2 / 4$ ］］ ［l irkComoi le］Currently used nemory：85akt．
［webConpile］Enter ing rounc 1 of comptation．
［nfPushforward］Pushing forward natrix of size 16 with $N=4$
［ntreduce］Reducing matrix or slze 64
［nfReduce］\quad result is size 16.
［nfSpl itIdemootent］Bachess of worst coeff in E： 5
［natrixsolitidempotent］Split idempotent nutrix in 3 steps． ［natrixsplitidempotent］Split idenpotent natrix in 3 steps． ［nfsplitidempotent］Bachess of worst costf in final B：
［nfsplitidemootent．］Worst coeff in final B：－10
［nffushrorward］result is size 8 ．
［nfPushforward］elopsed time zeanns．
［nfFushforwardInductive］In step 2 with ring vars $x(2), x(3), x(4)$
［ntPushrorward］Pushing forward natrix of slze $8 \mathrm{wth} N=4$
［nfReduce］Reducing matrix of size 32
［nfReducs］result is size 8.
［infspl itidempotent］Bachess of worst coeff in E： 5
［natrixSolitidempotent］Split idenpotent natrix in 3 steps．
［natrixSolitIdempotent］Split idenpotent natrix in 3 steps．
［ntSol itIdemontent］Bachess of warst coeff in final $\mathrm{B}: 3$
［nteplitidemotent］warst coelf in rinal E： $1 / 5$
［nfPushforward］result is size 4.
［nfPushforward］elapsed time 6e日ns．
［nffushtorwardinductive］In step 3 with ring vars $\times(3) \times(4)$
［nfFushforward］Pushing forward natrix of size 4 with $N=4$
［nfReducs］Reducing matrix of size 16
［nffeduce］result is size 12
［nTReduce］elopsed time 5ems．
［notrixSol itidempotent］Split idenpotent natrix in 5 steps． ［matrixSol itidemootent］Split idenpotent natrix in 2 steps． ［nfsplitidempotent］Bachess of worst coeff in rinol \bar{B} ：
［nfSplitidempotent］Woret coeff in final B： 5
［nfPushforward］result is size 6 ．
［ntFushrorward］elonsed time zebns．
［nffushforward Inductive］In step + wi th sing vars $x(4)$ ，
［nffushforuard］Pushing forward natrix of size 6 with N－ 4 ［nfReduce］Reducing matrix of size 24
［nfReduce］elcpsed time 6ems．
［nfsplitidempotent］Bochess of worst coesf in E： 1
［natrixSol itIdemontent］Split idenpotent natrix in a steps．
［nffushforward］elopsed time 240 ns ．
［nffushforward］elopsed time 24 ens．
［infeushforvardInductive］total elapeed time 391ans．
［webConpile］total elapsed tine 4日G日ns．
［NetConpt ie］even orading： $1,-1,-3,-5,5,3,1,-1,3,1,-1,-3$
［NetCompite］oda grading：a
［lirkCompile］Saving to disk．
［lirkcompl le］Look ing at state $[0,1]$ which is number［［ $3 / 4$ ］］． ［lirkCompi le］Currently used nemory：1415kb．

427996324890926935371873343342179883801296996825597376196623494714588217339450161856749067425625159779619773544226172982830158667234697130452510867931595486769363638115249978539162891364449139998859702442428799782181128669524925

 12963698992421889475711573543855017866332939699393639189467165987738841753374252920997372574657756982163455523167587504929192635742741868115691313766745447428492598764448222442615525185748237049774978442737428996560790944567881214
 -

 [nffushforward] result is size 64 .
[nffushforuard] elopsed tine 281744144 ms
[nffushforwardinductive] In step 3 with ring vars $\times(11), \times(12)$
[nfFustrorward] Pushing rorward matrix of size 34 with $N=4$
[nffeducs] Reducing matrix of size 336
$\geq \mathrm{F}$
24．

 404 4

 ＋ ＋
Man
 10 ，
 ava

等
友 4

者

 W\％\％

胃期

胃

 Q a

 M1

Computing Khovanov-Rozansky link invariants

$\mathrm{KR}_{2}=\left(q^{6}+q^{4}+q^{2} t^{2}+t^{2}\right) / t^{2}$
$\mathrm{KR}_{11}=\left(q^{42}+2 q^{40}+3 q^{38}+4 q^{36}+5 q^{34}+6 q^{32}+7 q^{30}+8 q^{28}+9 q^{26}\right.$
$+10 q^{24}+10 q^{22}+q^{20} t^{2}+9 q^{20}+q^{18} t^{2}+8 q^{18}+q^{16} t^{2}$

$$
+7 q^{16}+q^{14} t^{2}+6 q^{14}+q^{12} t^{2}+5 q^{12}+q^{10} t^{2}+4 q^{10}+q^{8} t^{2}
$$

$$
\left.+3 q^{8}+q^{6} t^{2}+2 q^{6}+q^{4} t^{2}+q^{4}+q^{2} t^{2}+t^{2}\right) / t^{2}
$$

Computing Khovanov-Rozansky link invariants

$$
\begin{aligned}
\mathrm{KR}_{5}=(& q^{24}+q^{22}+q^{20} t^{2}+q^{20}+2 q^{18} t^{2}+4 q^{16} t^{2}+q^{16} t+q^{14} t^{3} \\
& +4 q^{14} t^{2}+q^{14} t+q^{12} t^{4}+q^{12} t^{3}+3 q^{12} t^{2}+q^{12} t \\
& +q^{10} t^{4}+q^{10} t^{3}+2 q^{10} t^{2}+q^{8} t^{4}+q^{6} t^{4}+q^{4} t^{5}+q^{4} t^{4} \\
& \left.+q^{2} t^{5}+q^{2} t^{4}+t^{5}\right) /\left(q^{16} t^{2}\right)
\end{aligned}
$$

Computing Khovanov-Rozansky link invariants

Computing Khovanov-Rozansky link invariants

$$
\begin{aligned}
\mathrm{KR}_{3}= & \left(q^{16}+2 q^{14} t+q^{12} t+2 q^{10} t^{3}+2 q^{10} t^{2}+5 q^{8} t^{3}+2 q^{6} t^{4}+2 q^{6} t^{3}\right. \\
& \left.+q^{4} t^{5}+2 q^{2} t^{5}+t^{6}\right) / q^{8} t^{3}
\end{aligned}
$$

Computing Khovanov-Rozansky link invariants

$\mathrm{KR}_{3}=\left(q^{16}+2 q^{14} t+q^{12} t+2 q^{10} t^{3}+2 q^{10} t^{2}+5 q^{8} t^{3}+2 q^{6} t^{4}+2 q^{6} t^{3}\right.$

$$
\left.\left.+q^{4} t^{5}+2 q^{2} t^{5}+t^{6}\right) / q^{8} t^{3}\right)
$$

$\mathrm{KR}_{3}^{\prime}=\left(q^{12}+q^{10}+q^{8} t^{2}+3 q^{6} t^{2}+q^{4} t^{2}+q^{2} t^{4}+t^{4}\right) /\left(q^{6} t^{2}\right)$

Computing Khovanov-Rozansky link invariants

$$
\begin{aligned}
\mathrm{KR}_{3}= & \left(q^{16}+2 q^{14} t+q^{12} t+2 q^{10} t^{3}+2 q^{10} t^{2}+5 q^{8} t^{3}+2 q^{6} t^{4}+2 q^{6} t^{3}\right. \\
& \left.\left.+q^{4} t^{5}+2 q^{2} t^{5}+t^{6}\right) / q^{8} t^{3}\right)
\end{aligned}
$$

$$
\mathrm{KR}_{3}^{\prime}=\left(q^{12}+q^{10}+q^{8} t^{2}+3 q^{6} t^{2}+q^{4} t^{2}+q^{2} t^{4}+t^{4}\right) /\left(q^{6} t^{2}\right)
$$

$$
\mathrm{KR}_{4}=\left(q^{20}+2 q^{18} t+2 q^{14} t^{3}+q^{14} t+3 q^{12} t^{3}+2 q^{12} t^{2}+6 q^{10} t^{3}\right.
$$

$$
\left.+2 q^{8} t^{4}+3 q^{8} t^{3}+q^{6} t^{5}+2 q^{6} t^{3}+2 q^{2} t^{5}+t^{6}\right) /\left(q^{10} t^{3}\right)
$$

