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Topological defects

A 2-dimensional topological field theory with defects is a symmetric
monoidal functor

〈 · 〉 : CobDΛ −→ VectZ2
C

〈

Apart from boundary conditions, there is another natural structure for two-
dimensional field theories one can study, namely defect lines. A defect line is a
line of inhomogeneity on the two-dimensional worldsheet, and the possible “defect
conditions” again form a category. This is not surprising, because via the folding
trick [WA] one can think of a defect line in a given theory as a boundary for the
corresponding folded theory, and so the same mathematical framework applies.
However, there is one crucial difference between boundaries and defects, and
this is that several defect lines can meet in junction points. As we will outline
below, defect junctions can be encoded by endowing the category of defects with
a monoidal structure.

On the side of matrix factorisations, the relevant tensor product is known from
[Yo, ADD, KhR, BR], but the full monoidal structure, including the associator
and unit isomorphisms, has not yet been coherently given. We close this gap in
the case of polynomial rings R = [x1, . . . , xN ] and prove that defects in any
topologically B-twisted Landau-Ginzburg model indeed form a monoidal cate-
gory. Some of the necessary ingredients are already contained in [KhR, BR]; we
formulate them in the language of bimodule matrix factorisations – or matrix
bi-factorisations for short – and show that they satisfy the necessary coherence
conditions for a monoidal category (theorems 2.8 and 2.18). We also prove a corre-
sponding statement for graded matrix bi-factorisations (theorems 2.17 and 2.18).

The infrared fixed point of the N = 2 Landau-Ginzburg model with superpo-
tential W = xd is the A-type N = 2 super-Virasoro minimal model of central
charge c = 3 − 6

d
[KMS, Ma, VW, HW], and one can now try to compare the

corresponding monoidal categories of defect conditions. Before describing the
monoidal structure and the comparison calculations, let us motivate in more
detail how the tensor product arises on the category of defect conditions.

Defects in two-dimensional quantum field theory

A defect line can either be an oriented closed loop, or an oriented interval joining
two field insertion points. Each field insertion can be the start and end point of
an arbitrary finite number of defect lines, resulting in n-valent defect junctions,
n = 0, 1, 2, . . . . A typical piece of a worldsheet might look as follows:

X1

X2

X3

X4

X5

X6

X7

X8

φ1

φ2 φ3 φ4

φ5

φ6

Here we label the defect lines by defect conditions Xi and the field insertions by
fields φi from the corresponding space of n-valent junction fields. The quantum

3

〉
independent of position of defect lines

Affine Landau-Ginzburg models: defects and defect fields between W1

and W2 described by MF(W1 ⊗ 1− 1⊗W2)

Example. Invisible defect

I =

(
0 x− y

W (x)−W (y)
x−y 0

)
∈ MF(W⊗1−1⊗W ) , End(I) = C[x]/(∂W )
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Defect fusion

〈

X Y

W1 W2 W3

〉
=

〈

X ⊗ Y
W1 W3

〉

Theorem. MF(W ⊗ 1− 1⊗W ) is monoidal.

(X ⊗ Y )(m⊗ n) = X(m)⊗ n+ (−1)|m|m⊗ Y (n), I ⊗X ∼= X ∼= X ⊗ I

Remark. Can compute 6j-symbols, agreement with rational CFT.

Remark. Part of structure of bicategory of Landau-Ginzburg models:

objects: potentials W

1-morphisms: objects in MF(W1 ⊗ 1− 1⊗W2)

2-morphisms: morphisms in MF(W1 ⊗ 1− 1⊗W2)
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Action on bulk fields

Idea. Take bulk field ϕ ∈ Jac(W ), wrap defect line X around it

, then
collapse X on ϕ to produce new bulk field.

Then one may ask the question of what happens to this field if one wraps a
topological defect X around it and subsequently collapses X to coincide with the
insertion point of ϕ. This process should map ϕ to a new bulk field ϕX inserted
at the same point:

ϕ !−→ ϕX ≡ ϕ X . (1.6)

To formulate this in the language of rigid monoidal categories, all we have to do
is to reinterpret the above picture in terms of the defect (junction) fields that we
have already introduced. As a first step, we note that any bulk field may also be
viewed as a defect field living on the defect I (which is invisible, after all):

ϕ ≡ ϕ

I

I

. (1.7)

Consequently we may interpret the action (1.6) on bulk fields as a linear map
Dr(X) on the endomorphisms of I:

Dr(X) : ϕ

I

I

!−→ Dr(X)(ϕ) =

ρX

ρ−1
X

ϕX

I

I

. (1.8)

The right-hand side is now solely expressed in terms of the known morphisms
ϕ, ρX , ρ−1

X and (1.4) in the defect category, and hence one can explicitly compute
this map on bulk fields using the rigid monoidal structure. A special case is the
action of X on the identity field, which is called the (right) quantum dimension

dimr(X) = X . (1.9)

For the opposite defect orientation one obtains the (possibly different) map Dl

and the left quantum dimension diml(X).
In section 3 we will perform this analysis of defect actions on bulk fields for a

certain class of Landau-Ginzburg models and compare the result to the analogous

6

Theorem. MF(W ⊗ 1− 1⊗W ) is pivotal rigid monoidal for N = 1.

Theorem. Dl, Dr induce ring (anti-)homomorphisms

K0(MF(W ⊗ 1− 1⊗W ))⊗Z C −→ End0(EndMF(W⊗1−1⊗W )(I))
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Need evaluation and coevaluation maps:

The invisible defect I by definition acts as the identity under fusion, i. e. there
are isomorphisms λY : I⊗Y → Y and ρY : Y ⊗ I → Y for all defects Y . Thus its
presence can never change the value of correlators, and because of the triviality
of the invisible defect it also must be dual to itself,

I∨ ∼= I , (1.3)

since an orientation that cannot be seen is irrelevant.
Always reading diagrams from bottom to top, we may now identify (1.1) and

its 180◦-rotated version with junction fields and therefore morphisms in the defect
category:

X∨ X

I

: X∨ ⊗X −→ I , X∨X

I

: I −→ X ⊗X∨ . (1.4)

These are the evaluation and coevaluation maps which are at the heart of the gen-
eral duality structure of definition 2.2, and whose concrete realisation in Landau-
Ginzburg models with only one chiral superfield will be given in (2.24) and (2.29)
below.

Another intuitively natural property of topological defects is that one should
be able to “straighten them out” as their precise location does not matter. By
this we mean that locally on a worldsheet we should have the identities

X

X
= X ,

X∨

X∨
= X∨ (1.5)

where we have chosen not to display the invisible defect. The existence of mor-
phisms (1.4) subject to the above relations is precisely what it means for the
defect category to be rigid. This is the subject of theorem 2.5 and remark 2.8 for
the case of MFbi(W ).

Since we think about passing to the dual defect as orientation reversal, one
should expect that the map ( · )∨∨ which sends a defect X to its double dual X∨∨

is the identity. The more precise statement, which we prove as theorem 2.10,
is that there is a natural isomorphism between the identity functor and ( · )∨∨
which is compatible with the monoidal structure. This result will be crucial for
applications to concrete models.

Once the duality structures described so far are established, they can be used to
study more concrete situations, for instance the action of defects on bulk fields.
For this, consider an insertion of a bulk field ϕ somewhere on the worldsheet.
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Action on bulk fields

Idea. Take bulk field ϕ ∈ Jac(W ), wrap defect line X around it, then
collapse X on ϕ to produce new bulk field.

Then one may ask the question of what happens to this field if one wraps a
topological defect X around it and subsequently collapses X to coincide with the
insertion point of ϕ. This process should map ϕ to a new bulk field ϕX inserted
at the same point:

ϕ !−→ ϕX ≡ ϕ X . (1.6)

To formulate this in the language of rigid monoidal categories, all we have to do
is to reinterpret the above picture in terms of the defect (junction) fields that we
have already introduced. As a first step, we note that any bulk field may also be
viewed as a defect field living on the defect I (which is invisible, after all):

ϕ ≡ ϕ

I

I

. (1.7)

Consequently we may interpret the action (1.6) on bulk fields as a linear map
Dr(X) on the endomorphisms of I:

Dr(X) : ϕ
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!−→ Dr(X)(ϕ) =

ρX

ρ−1
X

ϕX

I

I

. (1.8)

The right-hand side is now solely expressed in terms of the known morphisms
ϕ, ρX , ρ−1

X and (1.4) in the defect category, and hence one can explicitly compute
this map on bulk fields using the rigid monoidal structure. A special case is the
action of X on the identity field, which is called the (right) quantum dimension

dimr(X) = X . (1.9)

For the opposite defect orientation one obtains the (possibly different) map Dl

and the left quantum dimension diml(X).
In section 3 we will perform this analysis of defect actions on bulk fields for a

certain class of Landau-Ginzburg models and compare the result to the analogous
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Action on bulk fields

〈
Dl(X)(ϕ)ψ

〉
bulk

=

〈

ϕ⊗ ψ

BX

〉

Dl(X)(ϕ) = Res
[
ϕ str (∂x1X∂y1X . . . ∂yNX) dx1 ∧ . . . ∧ dxN

∂x1W . . . ∂xNW

]

Proposition. For all known defects of W = xd we have
〈
Dl(X)(ϕ)ψ

〉
=
〈
ϕDr(X)(ψ)

〉

as has to be the case by lemma 3.4.
Turning to the rank-one matrix bi-factorisations PS, we will now compute

Dl(PS). Let us identify xi with ( âi 0
0 âi ) ∈ EndMFbi(W )(I) ∼= R/(∂W ). Substitut-

ing (3.23) into (3.7a) we find

Dl(PS)(xi) =

[
1

2πi

∮
xi
∏

l /∈S(x− ηlb)
∏

l∈S(x− ηla)dx

(xd − bd)(b− a)

]∧

=
d−1∑

k=0

[
(ηkb)i

∏
l /∈S(ηkb− ηlb)

∏
l∈S(ηkb− ηla)∏

m$=k(η
kb− ηmb)(b− a)

]∧

=
∑

k∈S

[
ηkibi

∏
l /∈S(ηkb− ηlb)

∏
l∈S,l $=k(η

kb− ηla)ηk(b− a)∏
m$=k(η

kb− ηmb)(b− a)

]∧

=
∑

k∈S

η(i+1)kxi , (3.25)

where we used that â = b̂ on EndMFbi(W )(I) in the last step. Similarly one obtains

Dr(PS)(xi) =
∑

k∈S

η−(i+1)kxi . (3.26)

In the one-variable case with potential W (x) = xd the bulk two-point-
correlator (3.19) simplifies to 〈xi xj〉 = δi+j,d−2. Hence it follows from (3.25)
and (3.26) that Dl and Dr are adjoint in the following sense.

Proposition 3.7. Let X ∈ MFbi(x
d) be isomorphic to a direct sum of objects of

the form (3.22) and (3.23). Then

〈Dl(X)(ϕ) ψ〉 = 〈ϕDr(X)(ψ)〉 . (3.27)

This result has a physical interpretation. Let us consider a worldsheet that
is the Riemann sphere and that has two field insertions around one of which a
topological defect is wrapped counterclockwise. As the defect is topological, the
associated correlator has the same value if the defect is moved around the sphere
to wrap the second field insertion:

〈

ϕ ψ

〉
=

〈

ϕ ψ

〉
=

〈

ϕ ψ

〉
.

(3.28)

29
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In the one-variable case with potential W (x) = xd the bulk two-point-
correlator (3.19) simplifies to 〈xi xj〉 = δi+j,d−2. Hence it follows from (3.25)
and (3.26) that Dl and Dr are adjoint in the following sense.

Proposition 3.7. Let X ∈ MFbi(x
d) be isomorphic to a direct sum of objects of

the form (3.22) and (3.23). Then

〈Dl(X)(ϕ) ψ〉 = 〈ϕDr(X)(ψ)〉 . (3.27)

This result has a physical interpretation. Let us consider a worldsheet that
is the Riemann sphere and that has two field insertions around one of which a
topological defect is wrapped counterclockwise. As the defect is topological, the
associated correlator has the same value if the defect is moved around the sphere
to wrap the second field insertion:

〈

ϕ ψ

〉
=

〈

ϕ ψ

〉
=

〈

ϕ ψ

〉
.

(3.28)
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Action on bulk fields
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=

〈

ϕ⊗ ψ

BX
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Khovanov-Rozansky link invariants

In any link diagram replace crossing by or

⇒ get special planar graph. Associate

variable xn to edge n , X◦ to

k l

i j
, X• to

k l

i j

with X◦, X• ∈ MF(xn+1
i + xn+1

j − xn+1
k − xn+1

l ).

Compilation of graph:
⊗

vertices v

Xv ∈ MF(0), a complex over Q

Associate complexes of matrix factorisations to crossings in link diagram:

=̂
(
X◦{1− n} χ0−→ X•{−n}

)
, =̂

(
X•{n} χ1−→ X◦{n− 1}

)

Khovanov/Rozansky 2004
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Khovanov-Rozansky link invariants

Tensoring over all crossings in a link diagram L and compiling gives a
(Z×Z×Z2)-graded complex over Q

whose homology is
Khovanov-Rozansky homology H(L).

Theorem. H(L) is a link invariant and concentrated in one Z2-degree.

KRn(L) =
∑

i,j∈Z
tiqj dimQ(H i,j(L))

Categorification of SL(n) link invariants: Pn(L) = KRn(L)
∣∣
t=−1

Direct computation obstructed by y-problem:
X ∈ MFQ[x,y](W1(x)−W2(y)), Y ∈ MFQ[y,z](W2(y)−W3(z))

=⇒ MFQ[x,y,z](W1(x)−W3(z)) 3 X⊗Y ∼= T ∈ MFQ[x,z](W1(x)−W3(z))

Theorem. There is an idempotent on X ⊗ Y whose splitting is T .
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Computing Khovanov-Rozansky link invariants

Implementation of idempotent splitting in Singular

allows for computation
of arbitrary defect fusions.

Corollary. Khovanov-Rozansky homology can be computed directly.
Reduced and unreduced SL(n) and SO(2n) invariants, e. g.:

Carqueville/Murfet 2011
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Computing Khovanov-Rozansky link invariants

KR8 = (q39 + q37 + q35 + q33 + q31 + q29 + q27 + q23t+ q21t3 + q21t

+ q19t3 + q19t+ q17t3 + q17t+ q15t3 + q15t+ q13t3 + q13t

+ q11t3 + q11t+ q9t3 + q7t3)/t3

KR6 = (q28 + q26 + q24t2 + q24 + q22t2 + q22 + q20t4 + q20t2 + q20

+ q18t4 + q18t2 + q18 + q16t4 + q16t2 + q14t4 + q12t4 + q12t3

+ q10t3 + q8t5 + q8t3 + q6t5 + q6t3 + q4t5 + q4t3 + q2t5 + t5)/q43

Carqueville/Murfet 2011



Computing Khovanov-Rozansky link invariants

KR5 = (q28 + q26 + q24 + q22 + q18t2 + q18t+ q16t3 + q16t2 + q16t

+ q14t3 + q14t2 + q14t+ q12t3 + q12t2 + q12t+ q10t3

+ q10t2 + q6t4 + q4t4 + q2t4 + t4)/(q14t2)

Carqueville/Murfet 2011



Computing Khovanov-Rozansky link invariants

KR3 = (q20 + q18t+ q18 + q16t2 + q16t+ q14t2 + q14t+ 2q12t3

+ q12t2 + q12t+ q10t4 + 3q10t3 + q10t2 + q8t5 + q8t4

+ 2q8t3 + q6t5 + q6t4 + q4t5 + q4t4 + q2t6 + q2t5 + t6)/(q10t3)

Carqueville/Murfet 2011



Computing Khovanov-Rozansky link invariants

KR2 = (t5q7 + t5q5 + t3q9 + t2q13 + tq13 + tq11 + q17 + q15)/(t5)

Carqueville/Murfet 2011



Computing Khovanov-Rozansky link invariants

KR2 = (t5q7 + t5q5 + t3q9 + t2q13 + tq13 + tq11 + q17 + q15)/(t5)

Carqueville/Murfet 2011











Computing Khovanov-Rozansky link invariants

KR2 = (q6 + q4 + q2t2 + t2)/t2

KR11 = (q42 + 2q40 + 3q38 + 4q36 + 5q34 + 6q32 + 7q30 + 8q28 + 9q26

+ 10q24 + 10q22 + q20t2 + 9q20 + q18t2 + 8q18 + q16t2

+ 7q16 + q14t2 + 6q14 + q12t2 + 5q12 + q10t2 + 4q10 + q8t2

+ 3q8 + q6t2 + 2q6 + q4t2 + q4 + q2t2 + t2)/t2

Carqueville/Murfet 2011



Computing Khovanov-Rozansky link invariants

KR5 = (q24 + q22 + q20t2 + q20 + 2q18t2 + 4q16t2 + q16t+ q14t3

+ 4q14t2 + q14t+ q12t4 + q12t3 + 3q12t2 + q12t

+ q10t4 + q10t3 + 2q10t2 + q8t4 + q6t4 + q4t5 + q4t4

+ q2t5 + q2t4 + t5)/(q16t2)

Carqueville/Murfet 2011



Computing Khovanov-Rozansky link invariants

KR4 = (q20 + q18t+ q16t2 + q14t3 + q12t2 + q10t3 + 2q8t4 + q4t6

+ q2t6 + q2t5 + t6)/q32

Carqueville/Murfet 2011



Computing Khovanov-Rozansky link invariants

KR3 = (q16 + 2q14t+ q12t+ 2q10t3 + 2q10t2 + 5q8t3 + 2q6t4 + 2q6t3

+ q4t5 + 2q2t5 + t6)/q8t3

Carqueville/Murfet 2011



Computing Khovanov-Rozansky link invariants

KR3 = (q16 + 2q14t+ q12t+ 2q10t3 + 2q10t2 + 5q8t3 + 2q6t4 + 2q6t3

+ q4t5 + 2q2t5 + t6)/q8t3)

KR′3 = (q12 + q10 + q8t2 + 3q6t2 + q4t2 + q2t4 + t4)/(q6t2)

Carqueville/Murfet 2011



Computing Khovanov-Rozansky link invariants

KR3 = (q16 + 2q14t+ q12t+ 2q10t3 + 2q10t2 + 5q8t3 + 2q6t4 + 2q6t3

+ q4t5 + 2q2t5 + t6)/q8t3)

KR′3 = (q12 + q10 + q8t2 + 3q6t2 + q4t2 + q2t4 + t4)/(q6t2)

KR4 = (q20 + 2q18t+ 2q14t3 + q14t+ 3q12t3 + 2q12t2 + 6q10t3

+ 2q8t4 + 3q8t3 + q6t5 + 2q6t3 + 2q2t5 + t6)/(q10t3)

Carqueville/Murfet 2011


