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Overview

1 Generalities on non-homological mirror symmetry: Gromov-Witten
invariants (A-model) are related to the “closed-string B-model”.

2 Introduce a new approach to the higher-genus closed string B-model
(joint with Si Li, Harvard). This is based on the
Bershadsky-Cecotti-Ooguri-Vafa quantum field theory, and my work
on renormalization. (Preprint available on my homepage, also Li’s
thesis).

3 State a theorem of Li, that mirror symmetry holds for the elliptic
curve: the generating function of Gromov-Witten invariants of the
elliptic curve coincides with the partition function of the BCOV
quantum field theory of the mirror elliptic curve.
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Mirror symmetry pre-Kontsevich

Mirror symmetry was first formulated around 1990 (Candelas, de la Ossa,
Green, and Greene-Plesser).

Original form of the conjecture: X ,X∨ a mirror pair of Calabi-Yau
three-folds. Then, the conjecture states

Numbers of rational curves on X ←→
variations of Hodge structure of X∨

What does this mean? Rational curves and variations of Hodge structure
are objects of a completely different nature.

Answer : (Givental, Barannikov). Both sides are encoded in a pair (V , L)
where

V is a symplectic vector space.

L ⊂ V is a conic Lagrangian submanifold.
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B-model small Lagrangian cone

There are two versions of the story: small (without descendents) and large
(includes descendents).

Let X be a Calabi-Yau 3-fold (equipped with holomorphic volume form).
Let

V small
B (X ) = H3(X ,C)

MX = { formal moduli space of Calabi-Yau manifolds near X}

There’s a map

MX → V small
B (X )

Y 7→ [ΩY ] ∈ H3(X ).

Lsmall
B (X ) is the image of this map.
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A-model small Lagrangian cone (Givental)

Let

V small
A = ⊕3

p=0Hp,p(X )⊗ C((q))〈
αp,p, β3−p,3−p

〉
= (−1)p

∫
X
α ∧ β

Let F0 be the generating function of genus 0 Gromov-Witten invariants:

F0 : H0,0 ⊕ H1,1 → C((q))(
∂

∂α1
. . .

∂

∂αk
F0

)
(0) =

∑
qd

∫
[M0,k,d (X )]virt

ev∗1 α1 . . . ev∗k αk .

Note:
VA = T ∗(H0,0 ⊕ H1,1)⊗ C((q)).

Let
Lsmall

A (X ) = 1 + graph of dF0 ⊂ V small
A

Formal germ of Lagrangian cone at 1 ∈ V small
A .
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Polarizations

A-model: Lagrangian cone in VA is defined over Spec C((q)).

B model to match this, we need to take a family of varieties over
Spec C((q)).

Then VB = H3(Xq) is a symplectic vector space over C((q)).

A-model: symplectic vector space VA is polarized

VA =
(
H0,0 ⊕ H1,1

)
⊕
(
H2,2 ⊕ H3,3

)
(direct sum of Lagrangian subspaces).

B-model: polarization is subtle. One Lagrangian subspace is

F 2H3(X ) ⊂ H3(X ).

Complementary Lagrangian: naive guess is complex conjugate F
2
H3(X ).

Correct polarization: X → Spec C((q)), M : H3(X )→ H3(X ) monordomy.
Look at Ker(M − 1)2 ⊂ H3(X ).
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Descendents

If α1, . . . , αn ∈ H∗(X ), define

〈τk1(α1), . . . , τkn(αn)〉g ,n,d =

∫
[Mg,n,d (X )]virt

ψk1
1 ev∗1(α1) . . . ψkn

n ev∗n(αn).

The generating function

Fg ∈ O(H∗(X )[[t]])⊗ C[[q]]

is defined by(
∂

∂(tk1α1)
. . .

∂

∂(tknαn)
Fg

)
(0) =

∑
qd 〈τk1(α1), . . . , τkn(αn)〉g ,n,d
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A-model symplectic formalism with descendents (Givental)

Let
V big

A (X ) = H∗(X )((t))

with symplectic pairing

〈αf (t), βg(t)〉 =

(∫
X
αβ

)
Res f (t)g(−t)dt.

Identify
V big

A (X ) = T ∗(H(X )[[t]]).

Define
Lbig

A = 1 + Graph(dF0) ⊂ H∗(X )((t))
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Polyvector fields

X a CY of dimension d . Let

PVi ,j(X ) = Ω0,j(X ,∧iTX ).

Contracting with Ω ∈ H0(X ,KX ) gives an isomorphsim

PVi ,j(X ) ∼= Ωd−i ,j(X ).

Define

∂ : PVi ,j(X )→ PVi ,j+1(X ) ∂ : PVi ,j(X )→ PVi ,j−1(X )

corresponding to usual ∂, ∂ operators on Ω∗,∗(X ).

PV∗,∗(X ) has graded-commutative product, and trace

Tr : PV3,3(X )→ C Tr(α) =
∫
X Ω(α ∨ Ω).
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B-model Lagrangian cone with descendents (Barannikov)

Let
V big

B = PV(X )((t)).

Differential Q = ∂ + t∂, symplectic pairing

〈f (t)α, g(t)β〉 = Tr(αβ) Res f (t)g(−t)dt.

Define Lagrangian cone Lbig
B ⊂ VB by

Lbig
B = {tef /t | f ∈ PV(X )[[t]]}.

Formal germ of cone defined near 1 ∈ PV(X )((t)).

Lsmall
B is moduli of deformations of CY X .

Lbig
B is moduli of “extended” CY deformations of X . (Equivalent to

deformations of Perf(X ) as a dg Calabi-Yau category).

Easy to verify: Lbig
B is preserved by the differential (and satisfies Givental’s

other axioms).
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Genus 0 mirror symmetry conjecture with descendents

Conjecture

X a Calabi-Yau, X∨ → Spec C((q)) the mirror family.
Then there is a quasi-isomorphism of symplectic vector spaces

V big
A (X ) = H∗(X )((t)) ' PV(X∨)((t)) = V big

B (X )

taking Lbig
A to Lbig

B .

Proved in many cases by Givental, Lian-Liu-Yau, Barannikov.



Higher genus picture

Genus 0 A and B-model: a Lagrangian submanifold L in a symplectic
vector space V .

Higher genus: we should quantize this picture. Symplectic vector space V
quantizes to the Weyl algebra

W(V ) = free algebra over C[[~]] generated by α ∈ V ∨

with relations [α, β] = ~ 〈α, β〉 .

Lagrangian submanifold L ⊂ V quantizes to a vector in Fock(V ), the
Fock module for W(V ).
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A-model at higher genus (Givental)

VA = T ∗H∗(X )[[t]].

So,
Fock(VA) = O(H∗(X )[[t]])

algebra of functions on H∗(X )[[t]].

Let

Fg ∈ O(H∗(X )[[t]])⊗ C[[q]]

be the generating function for genus g Gromov-Witten invariants with
descendents. Then

ZA = exp
(∑

~g−1Fg

)
∈ Fock(VA)[[q]]

A-model partition function.

Vector in Fock space which in ~→ 0 limit becomes LA ⊂ VA.
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B-model partition function?

“Small” B-model partition function Z small
B should be a state in the Fock

space for H3(X ,C).

Large B-model partition function should be a state in the Fock space for
PV(X )((t)).

Recall
LB = {tef /t | f ∈ PV(X )[[t]]} ⊂ PV(X )((t)).

LB is the extended moduli of deformations of X .

Problem

Quantize the Lagrangian submanifold LB ⊂ PV(X )((t)).

We will discuss how to do this using QFT.
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Quantum field theory and the B-model

Small B-model partition function should be a “quantization” of moduli of
Calabi-Yaus

MX ⊂ H3(X ,C).

(Lagrangian submanifold).

Bershadsky-Cecotti-Ooguri-Vafa consider a “gravitational” quantum field
theory on X , a Calabi-Yau three-fold.

Fields include Beltrami differentials Ω0,1(X ,TX ), the gauge group is the
diffeomorphism group.

The space of solutions to the equation of motion is MX , formal moduli
space of Calabi-Yaus near X .

They argue that the partition function of this theory is the B-model
partition function.

Witten : the BCOV partition function is a state in Fock(H3(X )).
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partition function.

Witten : the BCOV partition function is a state in Fock(H3(X )).



Extended BCOV theory

We want to quantize extended moduli space

Lbig
B ⊂ PV(X )((t))

to produce a state in the Fock space for PV(X )((t)).

Note
PV(X )((t)) ∼= T ∗ PV(X )[[t]]

as graded vector spaces (not as cochain complexes).

Fields of extended BCOV theory are

PV(X )[[t]].

Extended BCOV action is the functional

F0 ∈ O(PV(X )[[t]])

such that
Graph(dF0) = LB .
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Extended BCOV theory

Concretely:
F0 ∈ O(PV(X )[[t]])

satisfies(
∂

∂(α1tk1)
. . .

∂

∂(αntkn)
F0

)
(0) = Tr(α1 . . . αn)

∫
M0,n

ψk1
1 . . . ψkn

n .

(αi ∈ PV(X )).

This a degenerate QFT: quadratic term is ill-defined as a functional, but
it’s inverse (Green’s kernel/propagator) makes sense.

BV formalism: classical field theories are given by differential graded
symplectic manifolds. Symplectic form is of cohomology degree −1.
Action functional S , Poisson bracket {−,−} and differential are related by
{S ,−} = d.

Here: dg Poisson manifold, with a potential F0 satisfying {F0,−} = d.
Can still be treated using usual techniques.
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The classical master equation

Recall
PV(X )((t)) = T ∗ (PV(X )[[t]])

as graded vector space but not as a cochain complex.

If Φ ∈ O(PV(X )[[t]]) then

Graph(dΦ) ⊂ PV(X )((t))

is preserved by the differential on PV(X )((t)) ⇐⇒

QΦ + 1
2{Φ,Φ} = 0

{−,−} a Poisson bracket on O(PV(X )[[t]]) of degree 1.

This equation is called classical master equation.

Since Lbig
B is preserved by the differential, F0 satisfies classical master

equation.
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Interpreting the classical master equation

Two interpretations of F0 ∈ O(PV(X )[[t]]):

1 Classical action functional for generalized BCOV theory.

2 Generating function for Lagrangian submanifold of
PV(X )((t)) = V big

B .

Classical master equation has interpretation in both settings:

1 Consistency condition for classical gauge theory (usual interpretation).

2 Lagrangian submanifold is preserved by the differential.

Aim : quantize this classical field theory. My book Renormalization and
effective field theory gives the definition of quantization we use, and allows
one to construct quantizations by obstruction theory (term by term in ~).
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Quantization (naive approach)

Naive idea: look for a series

F =
∑

~gFg ∈ O(PV(X )[[t]])[[~]]

satisfying quantum master equation

QF + 1
2{F,F}+ ~∆F = 0.

QME has two interpretations:

1 Consistency condition for quantum gauge theory.

2 exp(F/~) is killed by the differential in the Fock space for PV(X )((t)).

Problem : ∆ is not defined (because of ultraviolet divergences of quantum
field theory).
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Definition of quantization

Solution (Renormalization and effective field theory, C. 2011): gives
general definition of a perturbative QFT.

Definition

A quantization of the BCOV theory is a family of action functionals

F[L] ∈ O(PV(X )[[t]])[[~]]

(F[L] is “scale L effective action”). These must satisfy:

Renormalization group equation: F[L] expressed in terms of F[ε] by
(roughly) “integrating out modes of wave-length between ε and L”.

Each F[L] satisfies quantum master equation

QF[L] + 1
2{F[L],F[L]}L + ~∆LF[L] = 0.

Locality axiom : as L→ 0, F[L] approximated by the integral of a
Lagrangian.
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Quantizing the BCOV theory

In general, one can construct quantizations of a classical theory (in this
sense) using obstruction theory, term by term in ~.

Theorem (C., Si Li )

The BCOV theory admits a (canonical) quantization on any complex torus.

Proof: obstruction theory/ cohomological calculations.

Best results in the case of an elliptic curve: there the quantization is
unique. The situation in higher dimensions is not so satisfactory (yet!)

Quantum master equation and RGE imply we can construct a cohomology
class

[exp(F[L]/~)] ∈ H∗(Fock(PV(X )((t))))

independent of L.

This will be the partition function of the BCOV theory.
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Mirror symmetry for the elliptic curve

E elliptic curve. Mirror family: E∨τ , τ ∈ H, q = e2πiτ .

Symplectic vector spaces:

V big
A (E ) = H∗(E )((t))⊗ C((q))

V big
B (Eτ ) = H∗

(
Ω0,∗(E ,∧∗TE )((t))

)
, differential ∂ + t∂.

There’s a natural isomorphism of symplectic vector spaces

V big
A (E ) ∼= V big

B (Eτ ).

Theorem (Li)

Under this isomorphism, the A-model partition function
ZA(E ) ∈ Fock(V big

A (E )) corresponds to ZB(E∨) ∈ Fock(V big
B (E∨)).

This means all GW invariants of an elliptic curve E can be computed from
quantum BCOV theory on the mirror elliptic curve E∨.
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Correlators and the Hodge filtration

Choice of splitting of the Hodge filtration on H1(E ) leads to a polarization
of the symplectic vector space H∗(PV(X )((t))).

This leads to B-model correlators〈
α1tk1 , . . . , αntkn

〉E ,S⊂H1(E)

g ,n
∈ C

for αi ∈ H∗(PV(E ), ∂).

The correlators depend holomorphically on E and on choice S of splitting
of Hodge filtration. They are also SL2(Z) invariant (i.e. modular).

But naive splitting F
1

(complex conjugate to Hodge filtration) does not
vary holomorphically with E . “Holomorphic anomaly”.
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Large complex structure splitting

If τ ∈ H, let Eτ be the elliptic curve. If σ ∈ H let F 1
σH1(Eτ ) be Hodge

filtration for structure σ: then F
1
σH1(Eτ ) splits Hodge filtration on H1(Eτ ).

To match the A-model use splitting limσ→i∞ F
1
σH1(Eτ ).

Physicists say: “Fix τ and let τ go to ∞”. With this splitting correlators
are quasi-modular forms.

Theorem (Li)

B-model correlators on Eτ with this splitting of the Hodge filtration are
equal to A-model correlators on mirror curve E∨, with q = e2πiτ .

1 ∈ H0(E ,OE )↔ 1 ∈ H0(E∨)

dz ∈ H1(E ,OE )↔ dz ∈ H0,1(E∨)

∂z ∈ H0(E ,TE )↔ dz ∈ H1,0(E∨)

∂zdz ∈ H1(E ,TE )↔ dzdz ∈ H2(E∨).
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Sketch of proof

1 Prove that Virasoro constraints hold on the B-model. Obstruction
theory argument: they hold classically, there is a unique quantization,
so they hold at the quantum level.

2 Reduces calculation to “stationary sector”: need to compute
correlators 〈

ωtk1 , . . . , ωtkn

〉τ,∞
g ,n

where ω ∈ H1(E ,TE ) has Tr(ω) = 1, so ω = ∂zdz/2 Im τ .

3 Localization: in limiting splitting of Hodge filtration, ω becomes
supported on an a-cycle.

4 Implies there are operators {Ok | k ≥ 0} in the chiral free boson such
that

TrFock

(
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Sketch of proof

1 Operators {Ok | k ≥ 0} in the chiral free boson such that

TrFock

(
e2πiτHOk1 . . .Okn

)
=
〈
ωtk1 , . . . , ωtkn

〉τ,∞
g ,n

.

2 Right hand side: symmetric under permutation of ki . So operators
Oki

commute.

3 So we have a completely integrable system. Commutativity, classical
behaviour, and scaling behaviour completely determines the Oki

.

4 Apply boson-fermion correspondence, Oki
becoming commuting

operators in system of 2 free chiral fermions.

5 Okounkov-Pandharipande: A-model correlators are expectation values
of a family of commuting operators in a system of 2 chiral free
fermions. The operators are the same: essentially characterized by
commutativity.
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GW invariants of an elliptic curve are complicated (determined by
Okounkov-Pandharipande, 2002).

If

F E (z1, . . . , zn; q)

= z1 . . . zn

∞∏
m=1

(1− qm) exp
(∑

qd 〈τk1(ω), . . . , τkn(ω)〉g ,n,d zk1
1 . . . zkn

)
and

θ(z) = θ(z , q) =
∑
n∈Z

(−1)nq(n+
1
2)2/2e(n+

1
2)z

then

F E (z1, . . . , zn; q) =
∑

permutations of
z1,...,zn

det
[
θ(j−i+1)(z1+···+zn−j )

(j−i+1)!

]n
i ,j=1

θ(z1)θ(z1 + z2) . . . θ(z1 + · · ·+ zn)



GW invariants of an elliptic curve are complicated (determined by
Okounkov-Pandharipande, 2002).

If

F E (z1, . . . , zn; q)

= z1 . . . zn

∞∏
m=1

(1− qm) exp
(∑

qd 〈τk1(ω), . . . , τkn(ω)〉g ,n,d zk1
1 . . . zkn

)
and

θ(z) = θ(z , q) =
∑
n∈Z

(−1)nq(n+
1
2)2/2e(n+

1
2)z

then

F E (z1, . . . , zn; q) =
∑

permutations of
z1,...,zn

det
[
θ(j−i+1)(z1+···+zn−j )

(j−i+1)!

]n
i ,j=1

θ(z1)θ(z1 + z2) . . . θ(z1 + · · ·+ zn)


