Mirror symmetry at higher genus

Kevin Costello

Northwestern

06/10/2011

Overview

(1) Generalities on non-homological mirror symmetry: Gromov-Witten invariants (A-model) are related to the "closed-string B-model".

Overview

(1) Generalities on non-homological mirror symmetry: Gromov-Witten invariants (A-model) are related to the "closed-string B-model".
(2) Introduce a new approach to the higher-genus closed string B-model (joint with Si Li, Harvard). This is based on the Bershadsky-Cecotti-Ooguri-Vafa quantum field theory, and my work on renormalization. (Preprint available on my homepage, also Li's thesis).

Overview

(1) Generalities on non-homological mirror symmetry: Gromov-Witten invariants (A-model) are related to the "closed-string B-model".
(2) Introduce a new approach to the higher-genus closed string B-model (joint with Si Li, Harvard). This is based on the Bershadsky-Cecotti-Ooguri-Vafa quantum field theory, and my work on renormalization. (Preprint available on my homepage, also Li's thesis).
(3) State a theorem of Li , that mirror symmetry holds for the elliptic curve: the generating function of Gromov-Witten invariants of the elliptic curve coincides with the partition function of the BCOV quantum field theory of the mirror elliptic curve.

Mirror symmetry pre-Kontsevich

Mirror symmetry was first formulated around 1990 (Candelas, de la Ossa, Green, and Greene-Plesser).

Original form of the conjecture: X, X^{\vee} a mirror pair of Calabi-Yau three-folds. Then, the conjecture states

Numbers of rational curves on X \qquad
variations of Hodge structure of X^{\vee}

Mirror symmetry pre-Kontsevich

Mirror symmetry was first formulated around 1990 (Candelas, de la Ossa, Green, and Greene-Plesser).

Original form of the conjecture: X, X^{\vee} a mirror pair of Calabi-Yau three-folds. Then, the conjecture states

Numbers of rational curves on $X \longleftrightarrow$
variations of Hodge structure of X^{\vee}

What does this mean? Rational curves and variations of Hodge structure are objects of a completely different nature.

Mirror symmetry pre-Kontsevich

Mirror symmetry was first formulated around 1990 (Candelas, de la Ossa, Green, and Greene-Plesser).

Original form of the conjecture: X, X^{\vee} a mirror pair of Calabi-Yau three-folds. Then, the conjecture states

Numbers of rational curves on $X \longleftrightarrow$
variations of Hodge structure of X^{\vee}

What does this mean? Rational curves and variations of Hodge structure are objects of a completely different nature.

Answer : (Givental, Barannikov). Both sides are encoded in a pair (V, L) where

- V is a symplectic vector space.
- $L \subset V$ is a conic Lagrangian submanifold.

B-model small Lagrangian cone

There are two versions of the story: small (without descendents) and large (includes descendents).

Let X be a Calabi-Yau 3-fold (equipped with holomorphic volume form). Let

$$
\begin{aligned}
V_{B}^{\text {small }}(X) & =H^{3}(X, \mathbb{C}) \\
\mathcal{M}_{X} & =\{\text { formal moduli space of Calabi-Yau manifolds near } X\}
\end{aligned}
$$

B-model small Lagrangian cone

There are two versions of the story: small (without descendents) and large (includes descendents).

Let X be a Calabi-Yau 3-fold (equipped with holomorphic volume form). Let

$$
\begin{aligned}
V_{B}^{\text {small }}(X) & =H^{3}(X, \mathbb{C}) \\
\mathcal{M}_{X} & =\{\text { formal moduli space of Calabi-Yau manifolds near } X\}
\end{aligned}
$$

There's a map

$$
\begin{aligned}
\mathcal{M}_{X} & \rightarrow V_{B}^{\text {small }}(X) \\
Y & \mapsto\left[\Omega_{Y}\right] \in H^{3}(X) .
\end{aligned}
$$

$L_{B}^{\text {small }}(X)$ is the image of this map.

A-model small Lagrangian cone (Givental)

Let

$$
\begin{aligned}
V_{A}^{\text {small }} & =\oplus_{p=0}^{3} H^{p, p}(X) \otimes \mathbb{C}((q)) \\
\left\langle\alpha^{p, p}, \beta^{3-p, 3-p}\right\rangle & =(-1)^{p} \int_{X} \alpha \wedge \beta
\end{aligned}
$$

A-model small Lagrangian cone (Givental)

Let

$$
\begin{aligned}
V_{A}^{\text {small }} & =\oplus_{p=0}^{3} H^{p, p}(X) \otimes \mathbb{C}((q)) \\
\left\langle\alpha^{p, p}, \beta^{3-p, 3-p}\right\rangle & =(-1)^{p} \int_{X} \alpha \wedge \beta
\end{aligned}
$$

Let \mathbf{F}_{0} be the generating function of genus 0 Gromov-Witten invariants:

$$
\begin{aligned}
\mathbf{F}_{0}: H^{0,0} \oplus H^{1,1} & \rightarrow \mathbb{C}((q)) \\
\left(\frac{\partial}{\partial \alpha_{1}} \ldots \frac{\partial}{\partial \alpha_{k}} \mathbf{F}_{0}\right)(0) & =\sum q^{d} \int_{\left[\overline{\mathcal{M}}_{0, k, d}(X)\right]^{\text {virt }}} \operatorname{ev}_{1}^{*} \alpha_{1} \ldots \mathrm{ev}_{k}^{*} \alpha_{k}
\end{aligned}
$$

A-model small Lagrangian cone (Givental)

Let

$$
\begin{aligned}
V_{A}^{\text {small }} & =\oplus_{p=0}^{3} H^{p, p}(X) \otimes \mathbb{C}((q)) \\
\left\langle\alpha^{p, p}, \beta^{3-p, 3-p}\right\rangle & =(-1)^{p} \int_{X} \alpha \wedge \beta
\end{aligned}
$$

Let \mathbf{F}_{0} be the generating function of genus 0 Gromov-Witten invariants:

$$
\begin{aligned}
\mathbf{F}_{0}: H^{0,0} \oplus H^{1,1} & \rightarrow \mathbb{C}((q)) \\
\left(\frac{\partial}{\partial \alpha_{1}} \ldots \frac{\partial}{\partial \alpha_{k}} \mathbf{F}_{0}\right)(0) & =\sum q^{d} \int_{\left[\overline{\mathcal{M}}_{0, k, d}(X)\right]^{\text {virt }}} \operatorname{ev}_{1}^{*} \alpha_{1} \ldots \mathrm{ev}_{k}^{*} \alpha_{k}
\end{aligned}
$$

Note:

$$
V_{A}=T^{*}\left(H^{0,0} \oplus H^{1,1}\right) \otimes \mathbb{C}((q))
$$

A-model small Lagrangian cone (Givental)

Let

$$
\begin{aligned}
V_{A}^{\text {small }} & =\oplus_{p=0}^{3} H^{p, p}(X) \otimes \mathbb{C}((q)) \\
\left\langle\alpha^{p, p}, \beta^{3-p, 3-p}\right\rangle & =(-1)^{p} \int_{X} \alpha \wedge \beta
\end{aligned}
$$

Let \mathbf{F}_{0} be the generating function of genus 0 Gromov-Witten invariants:

$$
\begin{aligned}
\mathbf{F}_{0}: H^{0,0} \oplus H^{1,1} & \rightarrow \mathbb{C}((q)) \\
\left(\frac{\partial}{\partial \alpha_{1}} \ldots \frac{\partial}{\partial \alpha_{k}} \mathbf{F}_{0}\right)(0) & =\sum q^{d} \int_{\left[\overline{\mathcal{M}}_{0, k, d}(X)\right]^{\text {virt }}} \operatorname{ev}_{1}^{*} \alpha_{1} \ldots \mathrm{ev}_{k}^{*} \alpha_{k}
\end{aligned}
$$

Note:

$$
V_{A}=T^{*}\left(H^{0,0} \oplus H^{1,1}\right) \otimes \mathbb{C}((q))
$$

Let

$$
L_{A}^{\text {small }}(X)=1+\text { graph of } \mathrm{d} \mathbf{F}_{0} \subset V_{A}^{\text {small }}
$$

Formal germ of Lagrangian cone at $1 \in V_{A}^{\text {small }}$.

Polarizations

A-model: Lagrangian cone in V_{A} is defined over Spec $\mathbb{C}((q))$.
B model to match this, we need to take a family of varieties over Spec $\mathbb{C}((q))$.

Then $V_{B}=H^{3}\left(X_{q}\right)$ is a symplectic vector space over $\mathbb{C}((q))$.

Polarizations

A-model: Lagrangian cone in V_{A} is defined over Spec $\mathbb{C}((q))$.
B model to match this, we need to take a family of varieties over Spec $\mathbb{C}((q))$.

Then $V_{B}=H^{3}\left(X_{q}\right)$ is a symplectic vector space over $\mathbb{C}((q))$.
A-model: symplectic vector space V_{A} is polarized

$$
V_{A}=\left(H^{0,0} \oplus H^{1,1}\right) \oplus\left(H^{2,2} \oplus H^{3,3}\right)
$$

(direct sum of Lagrangian subspaces).

Polarizations

A-model: Lagrangian cone in V_{A} is defined over Spec $\mathbb{C}((q))$.
B model to match this, we need to take a family of varieties over Spec $\mathbb{C}((q))$.

Then $V_{B}=H^{3}\left(X_{q}\right)$ is a symplectic vector space over $\mathbb{C}((q))$.
A-model: symplectic vector space V_{A} is polarized

$$
V_{A}=\left(H^{0,0} \oplus H^{1,1}\right) \oplus\left(H^{2,2} \oplus H^{3,3}\right)
$$

(direct sum of Lagrangian subspaces).
B-model: polarization is subtle. One Lagrangian subspace is

$$
F^{2} H^{3}(X) \subset H^{3}(X)
$$

Complementary Lagrangian: naive guess is complex conjugate $\bar{F}^{2} H^{3}(X)$.

Polarizations

A-model: Lagrangian cone in V_{A} is defined over Spec $\mathbb{C}((q))$.
B model to match this, we need to take a family of varieties over Spec $\mathbb{C}((q))$.

Then $V_{B}=H^{3}\left(X_{q}\right)$ is a symplectic vector space over $\mathbb{C}((q))$.
A-model: symplectic vector space V_{A} is polarized

$$
V_{A}=\left(H^{0,0} \oplus H^{1,1}\right) \oplus\left(H^{2,2} \oplus H^{3,3}\right)
$$

(direct sum of Lagrangian subspaces).
B-model: polarization is subtle. One Lagrangian subspace is

$$
F^{2} H^{3}(X) \subset H^{3}(X)
$$

Complementary Lagrangian: naive guess is complex conjugate $\bar{F}^{2} H^{3}(X)$.
Correct polarization: $X \rightarrow \operatorname{Spec} \mathbb{C}((q)), M: H^{3}(X) \rightarrow H^{3}(X)$ monordomy. Look at $\operatorname{Ker}(M-1)^{2} \subset H^{3}(X)$.

Descendents

If $\alpha_{1}, \ldots, \alpha_{n} \in H^{*}(X)$, define

$$
\left\langle\tau_{k_{1}}\left(\alpha_{1}\right), \ldots, \tau_{k_{n}}\left(\alpha_{n}\right)\right\rangle_{g, n, d}=\int_{\left[\overline{\mathcal{M}}_{g, n, d}(X)\right]^{\text {virt }}} \psi_{1}^{k_{1}} \operatorname{ev}_{1}^{*}\left(\alpha_{1}\right) \ldots \psi_{n}^{k_{n}} \operatorname{ev}_{n}^{*}\left(\alpha_{n}\right)
$$

Descendents

If $\alpha_{1}, \ldots, \alpha_{n} \in H^{*}(X)$, define

$$
\left\langle\tau_{k_{1}}\left(\alpha_{1}\right), \ldots, \tau_{k_{n}}\left(\alpha_{n}\right)\right\rangle_{g, n, d}=\int_{\left[\overline{\mathcal{M}}_{g, n, d}(X)\right]^{\text {virt }}} \psi_{1}^{k_{1}} \operatorname{ev}_{1}^{*}\left(\alpha_{1}\right) \ldots \psi_{n}^{k_{n}} \operatorname{ev}_{n}^{*}\left(\alpha_{n}\right)
$$

The generating function

$$
\mathbf{F}_{g} \in \mathscr{O}\left(H^{*}(X)[[t]]\right) \otimes \mathbb{C}[[q]]
$$

is defined by

$$
\left(\frac{\partial}{\partial\left(t^{k_{1}} \alpha_{1}\right)} \cdots \frac{\partial}{\partial\left(t^{k_{n}} \alpha_{n}\right)} \mathbf{F}_{g}\right)(0)=\sum q^{d}\left\langle\tau_{k_{1}}\left(\alpha_{1}\right), \ldots, \tau_{k_{n}}\left(\alpha_{n}\right)\right\rangle_{g, n, d}
$$

A-model symplectic formalism with descendents (Givental)

Let

$$
V_{A}^{b i g}(X)=H^{*}(X)((t))
$$

with symplectic pairing

$$
\langle\alpha f(t), \beta g(t)\rangle=\left(\int_{X} \alpha \beta\right) \operatorname{Res} f(t) g(-t) \mathrm{d} t .
$$

Identify

$$
V_{A}^{b i g}(X)=T^{*}(H(X)[[t]])
$$

A-model symplectic formalism with descendents (Givental)

Let

$$
V_{A}^{b i g}(X)=H^{*}(X)((t))
$$

with symplectic pairing

$$
\langle\alpha f(t), \beta g(t)\rangle=\left(\int_{X} \alpha \beta\right) \operatorname{Res} f(t) g(-t) \mathrm{d} t .
$$

Identify

$$
V_{A}^{b i g}(X)=T^{*}(H(X)[[t]])
$$

Define

$$
L_{A}^{b i g}=1+\operatorname{Graph}\left(\mathrm{d} \mathbf{F}_{0}\right) \subset H^{*}(X)((t))
$$

Polyvector fields

X a CY of dimension d. Let

$$
P V^{i, j}(X)=\Omega^{0, j}\left(X, \wedge^{i} T X\right)
$$

Contracting with $\Omega \in H^{0}\left(X, K_{X}\right)$ gives an isomorphsim

$$
\operatorname{PV}^{i, j}(X) \cong \Omega^{d-i, j}(X)
$$

Polyvector fields

X a CY of dimension d. Let

$$
P V^{i, j}(X)=\Omega^{0 . j}\left(X, \wedge^{i} T X\right) .
$$

Contracting with $\Omega \in H^{0}\left(X, K_{X}\right)$ gives an isomorphsim

$$
\mathrm{PV}^{i, j}(X) \cong \Omega^{d-i, j}(X) .
$$

Define

$$
\bar{\partial}: \mathrm{PV}^{i, j}(X) \rightarrow \mathrm{PV}^{i, j+1}(X) \quad \partial: \mathrm{PV}^{i, j}(X) \rightarrow \mathrm{PV}^{i, j-1}(X)
$$

corresponding to usual $\bar{\partial}, \partial$ operators on $\Omega^{*, *}(X)$.

Polyvector fields

X a CY of dimension d. Let

$$
P V^{i, j}(X)=\Omega^{0 . j}\left(X, \wedge^{i} T X\right) .
$$

Contracting with $\Omega \in H^{0}\left(X, K_{X}\right)$ gives an isomorphsim

$$
\mathrm{PV}^{i, j}(X) \cong \Omega^{d-i, j}(X) .
$$

Define

$$
\bar{\partial}: \mathrm{PV}^{i, j}(X) \rightarrow \mathrm{PV}^{i, j+1}(X) \quad \partial: \mathrm{PV}^{i, j}(X) \rightarrow \mathrm{PV}^{i, j-1}(X)
$$

corresponding to usual $\bar{\partial}, \partial$ operators on $\Omega^{*, *}(X)$.
$\mathrm{PV}^{*, *}(X)$ has graded-commutative product, and trace

$$
\operatorname{Tr}: \mathrm{PV}^{3,3}(X) \rightarrow \mathbb{C} \quad \operatorname{Tr}(\alpha)=\int_{X} \Omega(\alpha \vee \Omega)
$$

B-model Lagrangian cone with descendents (Barannikov)

Let

$$
V_{B}^{b i g}=\operatorname{PV}(X)((t))
$$

Differential $Q=\bar{\partial}+t \partial$, symplectic pairing

$$
\langle f(t) \alpha, g(t) \beta\rangle=\operatorname{Tr}(\alpha \beta) \operatorname{Res} f(t) g(-t) \mathrm{d} t .
$$

B-model Lagrangian cone with descendents (Barannikov)

Let

$$
V_{B}^{b i g}=\operatorname{PV}(X)((t))
$$

Differential $Q=\bar{\partial}+t \partial$, symplectic pairing

$$
\langle f(t) \alpha, g(t) \beta\rangle=\operatorname{Tr}(\alpha \beta) \operatorname{Res} f(t) g(-t) \mathrm{d} t .
$$

Define Lagrangian cone $L_{B}^{b i g} \subset V_{B}$ by

$$
L_{B}^{b i g}=\left\{t e^{f / t} \mid f \in \operatorname{PV}(X)[[t]]\right\}
$$

Formal germ of cone defined near $1 \in \operatorname{PV}(X)((t))$.

B-model Lagrangian cone with descendents (Barannikov)

Let

$$
V_{B}^{b i g}=\operatorname{PV}(X)((t))
$$

Differential $Q=\bar{\partial}+t \partial$, symplectic pairing

$$
\langle f(t) \alpha, g(t) \beta\rangle=\operatorname{Tr}(\alpha \beta) \operatorname{Res} f(t) g(-t) \mathrm{d} t .
$$

Define Lagrangian cone $L_{B}^{b i g} \subset V_{B}$ by

$$
L_{B}^{b i g}=\left\{t e^{f / t} \mid f \in \mathrm{PV}(X)[[t]]\right\}
$$

Formal germ of cone defined near $1 \in \operatorname{PV}(X)((t))$.
$L_{B}^{\text {small }}$ is moduli of deformations of CY X.
$L_{B}^{b i g}$ is moduli of "extended" $C Y$ deformations of X. (Equivalent to deformations of $\operatorname{Perf}(X)$ as a dg Calabi-Yau category).

B-model Lagrangian cone with descendents (Barannikov)

Let

$$
V_{B}^{b i g}=\operatorname{PV}(X)((t))
$$

Differential $Q=\bar{\partial}+t \partial$, symplectic pairing

$$
\langle f(t) \alpha, g(t) \beta\rangle=\operatorname{Tr}(\alpha \beta) \operatorname{Res} f(t) g(-t) \mathrm{d} t .
$$

Define Lagrangian cone $L_{B}^{b i g} \subset V_{B}$ by

$$
L_{B}^{b i g}=\left\{t e^{f / t} \mid f \in \mathrm{PV}(X)[[t]]\right\}
$$

Formal germ of cone defined near $1 \in \operatorname{PV}(X)((t))$.
$L_{B}^{\text {small }}$ is moduli of deformations of CY X.
$L_{B}^{b i g}$ is moduli of "extended" $C Y$ deformations of X. (Equivalent to deformations of $\operatorname{Perf}(X)$ as a dg Calabi-Yau category).

Easy to verify: $L_{B}^{b i g}$ is preserved by the differential (and satisfies Givental's other axioms).

Genus 0 mirror symmetry conjecture with descendents

Conjecture

X a Calabi-Yau, $X^{\vee} \rightarrow \operatorname{Spec} \mathbb{C}((q))$ the mirror family.
Then there is a quasi-isomorphism of symplectic vector spaces

$$
V_{A}^{b i g}(X)=H^{*}(X)((t)) \simeq \operatorname{PV}\left(X^{\vee}\right)((t))=V_{B}^{b i g}(X)
$$

taking $L_{A}^{\text {big }}$ to $L_{B}^{\text {big }}$.

Proved in many cases by Givental, Lian-Liu-Yau, Barannikov.

Higher genus picture

Genus $0 A$ and B-model: a Lagrangian submanifold L in a symplectic vector space V.

Higher genus picture

Genus $0 A$ and B-model: a Lagrangian submanifold L in a symplectic vector space V.

Higher genus: we should quantize this picture. Symplectic vector space V quantizes to the Weyl algebra

$$
\begin{aligned}
\mathcal{W}(V)=\text { free algebra over } \mathbb{C}[[\hbar]] \text { generated by } \alpha \in V^{\vee} \\
\qquad \quad \text { with relations }[\alpha, \beta]=\hbar\langle\alpha, \beta\rangle .
\end{aligned}
$$

Higher genus picture

Genus $0 A$ and B-model: a Lagrangian submanifold L in a symplectic vector space V.

Higher genus: we should quantize this picture. Symplectic vector space V quantizes to the Weyl algebra

$$
\begin{aligned}
\mathcal{W}(V)=\text { free algebra over } \mathbb{C}[[\hbar]] \text { generated by } \alpha \in V^{\vee} \\
\qquad \quad \text { with relations }[\alpha, \beta]=\hbar\langle\alpha, \beta\rangle .
\end{aligned}
$$

Lagrangian submanifold $L \subset V$ quantizes to a vector in $\operatorname{Fock}(V)$, the Fock module for $\mathcal{W}(V)$.

A-model at higher genus (Givental)

$$
V_{A}=T^{*} H^{*}(X)[[t]]
$$

So,

$$
\operatorname{Fock}\left(V_{A}\right)=\mathscr{O}\left(H^{*}(X)[[t]]\right)
$$

algebra of functions on $H^{*}(X)[[t]]$.

A-model at higher genus (Givental)

$$
V_{A}=T^{*} H^{*}(X)[[t]]
$$

So,

$$
\operatorname{Fock}\left(V_{A}\right)=\mathscr{O}\left(H^{*}(X)[[t]]\right)
$$

algebra of functions on $H^{*}(X)[[t]]$. Let

$$
\mathbf{F}_{g} \in \mathscr{O}\left(H^{*}(X)[[t]]\right) \otimes \mathbb{C}[[q]]
$$

be the generating function for genus g Gromov-Witten invariants with descendents.

A-model at higher genus (Givental)

$$
V_{A}=T^{*} H^{*}(X)[[t]] .
$$

So,

$$
\operatorname{Fock}\left(V_{A}\right)=\mathscr{O}\left(H^{*}(X)[[t]]\right)
$$

algebra of functions on $H^{*}(X)[[t]]$. Let

$$
\mathbf{F}_{g} \in \mathscr{O}\left(H^{*}(X)[[t]]\right) \otimes \mathbb{C}[[q]]
$$

be the generating function for genus g Gromov-Witten invariants with descendents. Then

$$
Z_{A}=\exp \left(\sum \hbar^{g-1} \mathbf{F}_{g}\right) \in \operatorname{Fock}\left(V_{A}\right)[[q]]
$$

A-model partition function.
Vector in Fock space which in $\hbar \rightarrow 0$ limit becomes $L_{A} \subset V_{A}$.

B-model partition function?

"Small" B-model partition function $Z_{B}^{\text {small }}$ should be a state in the Fock space for $H^{3}(X, \mathbb{C})$.

B-model partition function?

"Small" B-model partition function $Z_{B}^{\text {small }}$ should be a state in the Fock space for $H^{3}(X, \mathbb{C})$.

Large B-model partition function should be a state in the Fock space for PV $(X)((t))$.

B-model partition function?

"Small" B-model partition function $Z_{B}^{\text {small }}$ should be a state in the Fock space for $H^{3}(X, \mathbb{C})$.

Large B-model partition function should be a state in the Fock space for $\operatorname{PV}(X)((t))$.

Recall

$$
L_{B}=\left\{t e^{f / t} \mid f \in \mathrm{PV}(X)[[t]]\right\} \subset \mathrm{PV}(X)((t))
$$

L_{B} is the extended moduli of deformations of X.

B-model partition function?

"Small" B-model partition function $Z_{B}^{\text {small }}$ should be a state in the Fock space for $H^{3}(X, \mathbb{C})$.

Large B-model partition function should be a state in the Fock space for $\operatorname{PV}(X)((t))$.

Recall

$$
L_{B}=\left\{t e^{f / t} \mid f \in \operatorname{PV}(X)[[t]]\right\} \subset \operatorname{PV}(X)((t))
$$

L_{B} is the extended moduli of deformations of X.

Problem

Quantize the Lagrangian submanifold $L_{B} \subset \operatorname{PV}(X)((t))$.

B-model partition function?

"Small" B-model partition function $Z_{B}^{\text {small }}$ should be a state in the Fock space for $H^{3}(X, \mathbb{C})$.

Large B-model partition function should be a state in the Fock space for $\operatorname{PV}(X)((t))$.

Recall

$$
L_{B}=\left\{t e^{f / t} \mid f \in \operatorname{PV}(X)[[t]]\right\} \subset \operatorname{PV}(X)((t))
$$

L_{B} is the extended moduli of deformations of X.

Problem

Quantize the Lagrangian submanifold $L_{B} \subset \operatorname{PV}(X)((t))$.

We will discuss how to do this using QFT.

Quantum field theory and the B-model

Small B-model partition function should be a "quantization" of moduli of Calabi-Yaus

$$
\mathcal{M}_{X} \subset H^{3}(X, \mathbb{C})
$$

(Lagrangian submanifold).

Quantum field theory and the B-model

Small B-model partition function should be a "quantization" of moduli of Calabi-Yaus

$$
\mathcal{M}_{X} \subset H^{3}(X, \mathbb{C})
$$

(Lagrangian submanifold).
Bershadsky-Cecotti-Ooguri-Vafa consider a "gravitational" quantum field theory on X, a Calabi-Yau three-fold.

Quantum field theory and the B-model

Small B-model partition function should be a "quantization" of moduli of Calabi-Yaus

$$
\mathcal{M}_{X} \subset H^{3}(X, \mathbb{C})
$$

(Lagrangian submanifold).
Bershadsky-Cecotti-Ooguri-Vafa consider a "gravitational" quantum field theory on X, a Calabi-Yau three-fold.

Fields include Beltrami differentials $\Omega^{0,1}(X, T X)$, the gauge group is the diffeomorphism group.

The space of solutions to the equation of motion is \mathcal{M}_{X}, formal moduli space of Calabi-Yaus near X.

They argue that the partition function of this theory is the B-model partition function.

Quantum field theory and the B-model

Small B-model partition function should be a "quantization" of moduli of Calabi-Yaus

$$
\mathcal{N}_{X} \subset H^{3}(X, \mathbb{C})
$$

(Lagrangian submanifold).
Bershadsky-Cecotti-Ooguri-Vafa consider a "gravitational" quantum field theory on X, a Calabi-Yau three-fold.

Fields include Beltrami differentials $\Omega^{0,1}(X, T X)$, the gauge group is the diffeomorphism group.

The space of solutions to the equation of motion is \mathcal{M}_{X}, formal moduli space of Calabi-Yaus near X.

They argue that the partition function of this theory is the B-model partition function.

Witten : the BCOV partition function is a state in $\operatorname{Fock}\left(H^{3}(X)\right)$.

Extended BCOV theory

We want to quantize extended moduli space

$$
L_{B}^{b i g} \subset \mathrm{PV}(X)((t))
$$

to produce a state in the Fock space for $\operatorname{PV}(X)((t))$.

Extended BCOV theory

We want to quantize extended moduli space

$$
L_{B}^{b i g} \subset \mathrm{PV}(X)((t))
$$

to produce a state in the Fock space for $\operatorname{PV}(X)((t))$.
Note

$$
\operatorname{PV}(X)((t)) \cong T^{*} \operatorname{PV}(X)[[t]]
$$

as graded vector spaces (not as cochain complexes).

Extended BCOV theory

We want to quantize extended moduli space

$$
L_{B}^{b i g} \subset \mathrm{PV}(X)((t))
$$

to produce a state in the Fock space for $\operatorname{PV}(X)((t))$.
Note

$$
\operatorname{PV}(X)((t)) \cong T^{*} \operatorname{PV}(X)[[t]]
$$

as graded vector spaces (not as cochain complexes).
Fields of extended BCOV theory are

$$
\operatorname{PV}(X)[[t]] .
$$

Extended BCOV theory

We want to quantize extended moduli space

$$
L_{B}^{b i g} \subset \mathrm{PV}(X)((t))
$$

to produce a state in the Fock space for $\operatorname{PV}(X)((t))$.
Note

$$
\operatorname{PV}(X)((t)) \cong T^{*} \operatorname{PV}(X)[[t]]
$$

as graded vector spaces (not as cochain complexes).
Fields of extended BCOV theory are

$$
\operatorname{PV}(X)[[t]] .
$$

Extended BCOV action is the functional

$$
\mathbf{F}_{0} \in \mathscr{O}(\mathrm{PV}(X)[[t]])
$$

such that

$$
\operatorname{Graph}\left(\mathrm{d} \mathbf{F}_{0}\right)=L_{B}
$$

Extended BCOV theory

Concretely:

$$
\mathbf{F}_{0} \in \mathscr{O}(\mathrm{PV}(X)[[t]])
$$

satisfies

$$
\left(\frac{\partial}{\partial\left(\alpha_{1} t^{k^{1}}\right)} \cdots \frac{\partial}{\partial\left(\alpha_{n} t^{k^{n}}\right)} \mathbf{F}_{0}\right)(0)=\operatorname{Tr}\left(\alpha_{1} \ldots \alpha_{n}\right) \int_{\overline{\mathcal{M}}_{0, n}} \psi_{1}^{k_{1}} \ldots \psi_{n}^{k_{n}} .
$$

$\left(\alpha_{i} \in \operatorname{PV}(X)\right)$.

Extended BCOV theory

Concretely:

$$
\mathbf{F}_{0} \in \mathscr{O}(\mathrm{PV}(X)[[t]])
$$

satisfies

$$
\left(\frac{\partial}{\partial\left(\alpha_{1} t^{k^{1}}\right)} \cdots \frac{\partial}{\partial\left(\alpha_{n} t^{k^{n}}\right)} \mathbf{F}_{0}\right)(0)=\operatorname{Tr}\left(\alpha_{1} \ldots \alpha_{n}\right) \int_{\overline{\mathcal{M}}_{0, n}} \psi_{1}^{k_{1}} \ldots \psi_{n}^{k_{n}}
$$

$\left(\alpha_{i} \in \operatorname{PV}(X)\right)$.
This a degenerate QFT: quadratic term is ill-defined as a functional, but it's inverse (Green's kernel/propagator) makes sense.

Extended BCOV theory

Concretely:

$$
\mathbf{F}_{0} \in \mathscr{O}(\mathrm{PV}(X)[[t]])
$$

satisfies

$$
\left(\frac{\partial}{\partial\left(\alpha_{1} t^{k^{1}}\right)} \cdots \frac{\partial}{\partial\left(\alpha_{n} t^{k^{n}}\right)} \mathbf{F}_{0}\right)(0)=\operatorname{Tr}\left(\alpha_{1} \ldots \alpha_{n}\right) \int_{\overline{\mathcal{M}}_{0, n}} \psi_{1}^{k_{1}} \ldots \psi_{n}^{k_{n}}
$$

$\left(\alpha_{i} \in \operatorname{PV}(X)\right)$.
This a degenerate QFT: quadratic term is ill-defined as a functional, but it's inverse (Green's kernel/propagator) makes sense.

BV formalism: classical field theories are given by differential graded symplectic manifolds. Symplectic form is of cohomology degree -1 . Action functional S, Poisson bracket $\{-,-\}$ and differential are related by $\{S,-\}=\mathrm{d}$.

Extended BCOV theory

Concretely:

$$
\mathbf{F}_{0} \in \mathscr{O}(\mathrm{PV}(X)[[t]])
$$

satisfies

$$
\left(\frac{\partial}{\partial\left(\alpha_{1} t^{k^{1}}\right)} \cdots \frac{\partial}{\partial\left(\alpha_{n} t^{k^{n}}\right)} \mathbf{F}_{0}\right)(0)=\operatorname{Tr}\left(\alpha_{1} \ldots \alpha_{n}\right) \int_{\overline{\mathcal{M}}_{0, n}} \psi_{1}^{k_{1}} \ldots \psi_{n}^{k_{n}}
$$

$\left(\alpha_{i} \in \operatorname{PV}(X)\right)$.
This a degenerate QFT: quadratic term is ill-defined as a functional, but it's inverse (Green's kernel/propagator) makes sense.

BV formalism: classical field theories are given by differential graded symplectic manifolds. Symplectic form is of cohomology degree -1 . Action functional S, Poisson bracket $\{-,-\}$ and differential are related by $\{S,-\}=\mathrm{d}$.

Here: dg Poisson manifold, with a potential \mathbf{F}_{0} satisfying $\left\{\mathbf{F}_{0},-\right\}=\mathrm{d}$. Can still be treated using usual techniques.

The classical master equation

Recall

$$
\operatorname{PV}(X)((t))=T^{*}(\operatorname{PV}(X)[[t]])
$$

as graded vector space but not as a cochain complex.
If $\Phi \in \mathscr{O}(\mathrm{PV}(X)[[t]])$ then

$$
\operatorname{Graph}(\mathrm{d} \Phi) \subset \operatorname{PV}(X)((t))
$$

is preserved by the differential on $\operatorname{PV}(X)((t))$

$$
Q \Phi+\frac{1}{2}\{\Phi, \Phi\}=0
$$

$\{-,-\}$ a Poisson bracket on $\mathscr{O}(\operatorname{PV}(X)[[t]])$ of degree 1 .

The classical master equation

Recall

$$
\operatorname{PV}(X)((t))=T^{*}(\operatorname{PV}(X)[[t]])
$$

as graded vector space but not as a cochain complex.
If $\Phi \in \mathscr{O}(\mathrm{PV}(X)[[t]])$ then

$$
\operatorname{Graph}(\mathrm{d} \Phi) \subset \operatorname{PV}(X)((t))
$$

is preserved by the differential on $\operatorname{PV}(X)((t))$

$$
Q \Phi+\frac{1}{2}\{\Phi, \Phi\}=0
$$

$\{-,-\}$ a Poisson bracket on $\mathscr{O}(\operatorname{PV}(X)[[t]])$ of degree 1 .
This equation is called classical master equation.
Since $L_{B}^{b i g}$ is preserved by the differential, \mathbf{F}_{0} satisfies classical master equation.

Interpreting the classical master equation

Two interpretations of $\mathbf{F}_{0} \in \mathscr{O}(\mathrm{PV}(X)[[t]])$:
(1) Classical action functional for generalized BCOV theory.

Interpreting the classical master equation

Two interpretations of $\mathbf{F}_{0} \in \mathscr{O}(\mathrm{PV}(X)[[t]])$:
(1) Classical action functional for generalized BCOV theory.
(2) Generating function for Lagrangian submanifold of $\operatorname{PV}(X)((t))=V_{B}^{\text {big }}$.

Interpreting the classical master equation

Two interpretations of $\mathbf{F}_{0} \in \mathscr{O}(\mathrm{PV}(X)[[t]])$:
(1) Classical action functional for generalized BCOV theory.
(2) Generating function for Lagrangian submanifold of $\operatorname{PV}(X)((t))=V_{B}^{b i g}$.

Classical master equation has interpretation in both settings:

Interpreting the classical master equation

Two interpretations of $\mathbf{F}_{0} \in \mathscr{O}(\mathrm{PV}(X)[[t]])$:
(1) Classical action functional for generalized BCOV theory.
(2) Generating function for Lagrangian submanifold of

$$
\mathrm{PV}(X)((t))=V_{B}^{\text {big }}
$$

Classical master equation has interpretation in both settings:
(1) Consistency condition for classical gauge theory (usual interpretation).

Interpreting the classical master equation

Two interpretations of $\mathbf{F}_{0} \in \mathscr{O}(\mathrm{PV}(X)[[t]])$:
(1) Classical action functional for generalized BCOV theory.
(2) Generating function for Lagrangian submanifold of $\operatorname{PV}(X)((t))=V_{B}^{\text {big }}$.

Classical master equation has interpretation in both settings:
(1) Consistency condition for classical gauge theory (usual interpretation).
(2) Lagrangian submanifold is preserved by the differential.

Interpreting the classical master equation

Two interpretations of $\mathbf{F}_{0} \in \mathscr{O}(\mathrm{PV}(X)[[t]])$:
(1) Classical action functional for generalized BCOV theory.
(2) Generating function for Lagrangian submanifold of

$$
\mathrm{PV}(X)((t))=V_{B}^{\text {big }}
$$

Classical master equation has interpretation in both settings:
(1) Consistency condition for classical gauge theory (usual interpretation).
(2) Lagrangian submanifold is preserved by the differential.

Aim : quantize this classical field theory. My book Renormalization and effective field theory gives the definition of quantization we use, and allows one to construct quantizations by obstruction theory (term by term in \hbar).

Quantization (naive approach)

Naive idea: look for a series

$$
\mathbf{F}=\sum \hbar^{g} \mathbf{F}_{g} \in \mathscr{O}(\operatorname{PV}(X)[[t]])[[\hbar]]
$$

satisfying quantum master equation

$$
Q \mathbf{F}+\frac{1}{2}\{\mathbf{F}, \mathbf{F}\}+\hbar \Delta \mathbf{F}=0
$$

Quantization (naive approach)

Naive idea: look for a series

$$
\mathbf{F}=\sum \hbar^{g} \mathbf{F}_{g} \in \mathscr{O}(\operatorname{PV}(X)[[t]])[[\hbar]]
$$

satisfying quantum master equation

$$
Q \mathbf{F}+\frac{1}{2}\{\mathbf{F}, \mathbf{F}\}+\hbar \Delta \mathbf{F}=0
$$

QME has two interpretations:

Quantization (naive approach)

Naive idea: look for a series

$$
\mathbf{F}=\sum \hbar^{g} \mathbf{F}_{g} \in \mathscr{O}(\mathrm{PV}(X)[[t]])[[\hbar]]
$$

satisfying quantum master equation

$$
Q \mathbf{F}+\frac{1}{2}\{\mathbf{F}, \mathbf{F}\}+\hbar \Delta \mathbf{F}=0
$$

QME has two interpretations:
(1) Consistency condition for quantum gauge theory.

Quantization (naive approach)

Naive idea: look for a series

$$
\mathbf{F}=\sum \hbar^{g} \mathbf{F}_{g} \in \mathscr{O}(\mathrm{PV}(X)[[t]])[[\hbar]]
$$

satisfying quantum master equation

$$
Q \mathbf{F}+\frac{1}{2}\{\mathbf{F}, \mathbf{F}\}+\hbar \Delta \mathbf{F}=0
$$

QME has two interpretations:
(1) Consistency condition for quantum gauge theory.
(2) $\exp (\mathbf{F} / \hbar)$ is killed by the differential in the Fock space for $\operatorname{PV}(X)((t))$.

Quantization (naive approach)

Naive idea: look for a series

$$
\mathbf{F}=\sum \hbar^{g} \mathbf{F}_{g} \in \mathscr{O}(\mathrm{PV}(X)[[t]])[[\hbar]]
$$

satisfying quantum master equation

$$
Q \mathbf{F}+\frac{1}{2}\{\mathbf{F}, \mathbf{F}\}+\hbar \Delta \mathbf{F}=0
$$

QME has two interpretations:
(1) Consistency condition for quantum gauge theory.
(2) $\exp (\mathbf{F} / \hbar)$ is killed by the differential in the Fock space for $\operatorname{PV}(X)((t))$.

Problem : Δ is not defined (because of ultraviolet divergences of quantum field theory).

Definition of quantization

Solution (Renormalization and effective field theory, C. 2011): gives general definition of a perturbative QFT.

Definition of quantization

Solution (Renormalization and effective field theory, C. 2011): gives general definition of a perturbative QFT.

Definition

A quantization of the BCOV theory is a family of action functionals

$$
\mathbf{F}[L] \in \mathscr{O}(\operatorname{PV}(X)[[t]])[[\hbar]]
$$

($\mathbf{F}[L]$ is "scale L effective action"). These must satisfy:

- Renormalization group equation: $\mathbf{F}[L]$ expressed in terms of $\mathbf{F}[\varepsilon]$ by (roughly) "integrating out modes of wave-length between ε and L ".

Definition of quantization

Solution (Renormalization and effective field theory, C. 2011): gives general definition of a perturbative QFT.

Definition

A quantization of the BCOV theory is a family of action functionals

$$
\mathbf{F}[L] \in \mathscr{O}(\mathrm{PV}(X)[[t]])[[\hbar]]
$$

($\mathbf{F}[L]$ is "scale L effective action"). These must satisfy:

- Renormalization group equation: $\mathbf{F}[L]$ expressed in terms of $\mathbf{F}[\varepsilon]$ by (roughly) "integrating out modes of wave-length between ε and L ".
- Each F[L] satisfies quantum master equation

$$
Q \mathbf{F}[L]+\frac{1}{2}\{\mathbf{F}[L], \mathbf{F}[L]\}_{L}+\hbar \Delta_{L} \mathbf{F}[L]=0
$$

Definition of quantization

Solution (Renormalization and effective field theory, C. 2011): gives general definition of a perturbative QFT.

Definition

A quantization of the BCOV theory is a family of action functionals

$$
\mathbf{F}[L] \in \mathscr{O}(\mathrm{PV}(X)[[t]])[[\hbar]]
$$

($\mathbf{F}[L]$ is "scale L effective action"). These must satisfy:

- Renormalization group equation: $\mathbf{F}[L]$ expressed in terms of $\mathbf{F}[\varepsilon]$ by (roughly) "integrating out modes of wave-length between ε and L ".
- Each F[L] satisfies quantum master equation

$$
Q \mathbf{F}[L]+\frac{1}{2}\{\mathbf{F}[L], \mathbf{F}[L]\}_{L}+\hbar \Delta_{L} \mathbf{F}[L]=0
$$

- Locality axiom : as $L \rightarrow 0, \mathbf{F}[L]$ approximated by the integral of a Lagrangian.

Quantizing the BCOV theory

In general, one can construct quantizations of a classical theory (in this sense) using obstruction theory, term by term in \hbar.

Quantizing the BCOV theory

In general, one can construct quantizations of a classical theory (in this sense) using obstruction theory, term by term in \hbar.

Theorem (C., Si Li)

The BCOV theory admits a (canonical) quantization on any complex torus.

Proof: obstruction theory/ cohomological calculations.

Quantizing the BCOV theory

In general, one can construct quantizations of a classical theory (in this sense) using obstruction theory, term by term in \hbar.

Theorem (C., Si Li)

The BCOV theory admits a (canonical) quantization on any complex torus.

Proof: obstruction theory/ cohomological calculations.
Best results in the case of an elliptic curve: there the quantization is unique. The situation in higher dimensions is not so satisfactory (yet!)

Quantizing the BCOV theory

In general, one can construct quantizations of a classical theory (in this sense) using obstruction theory, term by term in \hbar.

Theorem (C., Si Li)

The BCOV theory admits a (canonical) quantization on any complex torus.

Proof: obstruction theory/ cohomological calculations.
Best results in the case of an elliptic curve: there the quantization is unique. The situation in higher dimensions is not so satisfactory (yet!)

Quantum master equation and RGE imply we can construct a cohomology class

$$
[\exp (\mathbf{F}[L] / \hbar)] \in H^{*}(\operatorname{Fock}(\operatorname{PV}(X)((t))))
$$

independent of L.
This will be the partition function of the BCOV theory.

Mirror symmetry for the elliptic curve

E elliptic curve. Mirror family: $E_{\tau}^{\vee}, \tau \in \mathbb{H}, q=e^{2 \pi i \tau}$.

Mirror symmetry for the elliptic curve

E elliptic curve. Mirror family: $E_{\tau}^{\vee}, \tau \in \mathbb{H}, q=e^{2 \pi i \tau}$.
Symplectic vector spaces:

$$
\begin{aligned}
V_{A}^{b i g}(E) & =H^{*}(E)((t)) \otimes \mathbb{C}((q)) \\
V_{B}^{b i g}\left(E_{\tau}\right) & =H^{*}\left(\Omega^{0, *}\left(E, \wedge^{*} T E\right)((t))\right), \text { differential } \bar{\partial}+t \partial
\end{aligned}
$$

There's a natural isomorphism of symplectic vector spaces

$$
V_{A}^{b i g}(E) \cong V_{B}^{b i g}\left(E_{\tau}\right)
$$

Mirror symmetry for the elliptic curve

E elliptic curve. Mirror family: $E_{\tau}^{\vee}, \tau \in \mathbb{H}, q=e^{2 \pi i \tau}$.
Symplectic vector spaces:

$$
\begin{aligned}
V_{A}^{b i g}(E) & =H^{*}(E)((t)) \otimes \mathbb{C}((q)) \\
V_{B}^{b i g}\left(E_{\tau}\right) & =H^{*}\left(\Omega^{0, *}\left(E, \wedge^{*} T E\right)((t))\right), \text { differential } \bar{\partial}+t \partial
\end{aligned}
$$

There's a natural isomorphism of symplectic vector spaces

$$
V_{A}^{b i g}(E) \cong V_{B}^{b i g}\left(E_{\tau}\right)
$$

Theorem (Li)

Under this isomorphism, the A-model partition function $Z_{A}(E) \in \operatorname{Fock}\left(V_{A}^{\text {big }}(E)\right)$ corresponds to $Z_{B}\left(E^{\vee}\right) \in \operatorname{Fock}\left(V_{B}^{\text {big }}\left(E^{\vee}\right)\right)$.

Mirror symmetry for the elliptic curve

E elliptic curve. Mirror family: $E_{\tau}^{\vee}, \tau \in \mathbb{H}, q=e^{2 \pi i \tau}$.
Symplectic vector spaces:

$$
\begin{aligned}
V_{A}^{b i g}(E) & =H^{*}(E)((t)) \otimes \mathbb{C}((q)) \\
V_{B}^{b i g}\left(E_{\tau}\right) & =H^{*}\left(\Omega^{0, *}\left(E, \wedge^{*} T E\right)((t))\right), \text { differential } \bar{\partial}+t \partial
\end{aligned}
$$

There's a natural isomorphism of symplectic vector spaces

$$
V_{A}^{b i g}(E) \cong V_{B}^{b i g}\left(E_{\tau}\right)
$$

Theorem (Li)

Under this isomorphism, the A-model partition function $Z_{A}(E) \in \operatorname{Fock}\left(V_{A}^{\text {big }}(E)\right)$ corresponds to $Z_{B}\left(E^{\vee}\right) \in \operatorname{Fock}\left(V_{B}^{\text {big }}\left(E^{\vee}\right)\right)$.

This means all GW invariants of an elliptic curve E can be computed from quantum BCOV theory on the mirror elliptic curve E^{\vee}.

Correlators and the Hodge filtration

Choice of splitting of the Hodge filtration on $H^{1}(E)$ leads to a polarization of the symplectic vector space $H^{*}(\operatorname{PV}(X)((t)))$.

Correlators and the Hodge filtration

Choice of splitting of the Hodge filtration on $H^{1}(E)$ leads to a polarization of the symplectic vector space $H^{*}(\operatorname{PV}(X)((t)))$.

This leads to B-model correlators

$$
\left\langle\alpha_{1} t^{k_{1}}, \ldots, \alpha_{n} t^{k_{n}}\right\rangle_{g, n}^{E, S \subset H^{1}(E)} \in \mathbb{C}
$$

for $\alpha_{i} \in H^{*}(\operatorname{PV}(E), \bar{\partial})$.

Correlators and the Hodge filtration

Choice of splitting of the Hodge filtration on $H^{1}(E)$ leads to a polarization of the symplectic vector space $H^{*}(\operatorname{PV}(X)((t)))$.

This leads to B-model correlators

$$
\left\langle\alpha_{1} t^{k_{1}}, \ldots, \alpha_{n} t^{k_{n}}\right\rangle_{g, n}^{E, S \subset H^{1}(E)} \in \mathbb{C}
$$

for $\alpha_{i} \in H^{*}(\operatorname{PV}(E), \bar{\partial})$.
The correlators depend holomorphically on E and on choice S of splitting of Hodge filtration. They are also $S L_{2}(\mathbb{Z})$ invariant (i.e. modular).

Correlators and the Hodge filtration

Choice of splitting of the Hodge filtration on $H^{1}(E)$ leads to a polarization of the symplectic vector space $H^{*}(\operatorname{PV}(X)((t)))$.

This leads to B-model correlators

$$
\left\langle\alpha_{1} t^{k_{1}}, \ldots, \alpha_{n} t^{k_{n}}\right\rangle_{g, n}^{E, S \subset H^{1}(E)} \in \mathbb{C}
$$

for $\alpha_{i} \in H^{*}(\mathrm{PV}(E), \bar{\partial})$.
The correlators depend holomorphically on E and on choice S of splitting of Hodge filtration. They are also $S L_{2}(\mathbb{Z})$ invariant (i.e. modular).

But naive splitting \bar{F}^{1} (complex conjugate to Hodge filtration) does not vary holomorphically with E. "Holomorphic anomaly".

Large complex structure splitting

If $\tau \in \mathbb{H}$, let E_{τ} be the elliptic curve. If $\sigma \in \mathbb{H}$ let $F_{\sigma}^{1} H^{1}\left(E_{\tau}\right)$ be Hodge filtration for structure σ : then $\bar{F}_{\sigma}^{1} H^{1}\left(E_{\tau}\right)$ splits Hodge filtration on $H^{1}\left(E_{\tau}\right)$.

Large complex structure splitting

If $\tau \in \mathbb{H}$, let E_{τ} be the elliptic curve. If $\sigma \in \mathbb{H}$ let $F_{\sigma}^{1} H^{1}\left(E_{\tau}\right)$ be Hodge filtration for structure σ : then $\bar{F}_{\sigma}^{1} H^{1}\left(E_{\tau}\right)$ splits Hodge filtration on $H^{1}\left(E_{\tau}\right)$.

To match the A-model use splitting $\lim _{\sigma \rightarrow i \infty} \bar{F}_{\sigma}^{1} H^{1}\left(E_{\tau}\right)$.
Physicists say: "Fix τ and let $\bar{\tau}$ go to ∞ ". With this splitting correlators are quasi-modular forms.

Large complex structure splitting

If $\tau \in \mathbb{H}$, let E_{τ} be the elliptic curve. If $\sigma \in \mathbb{H}$ let $F_{\sigma}^{1} H^{1}\left(E_{\tau}\right)$ be Hodge filtration for structure σ : then $\bar{F}_{\sigma}^{1} H^{1}\left(E_{\tau}\right)$ splits Hodge filtration on $H^{1}\left(E_{\tau}\right)$.

To match the A-model use splitting $\lim _{\sigma \rightarrow i \infty} \bar{F}_{\sigma}^{1} H^{1}\left(E_{\tau}\right)$.
Physicists say: "Fix τ and let $\bar{\tau}$ go to ∞ ". With this splitting correlators are quasi-modular forms.

Theorem (Li)

B-model correlators on E_{τ} with this splitting of the Hodge filtration are equal to A-model correlators on mirror curve E^{\vee}, with $q=e^{2 \pi i \tau}$.

Large complex structure splitting

If $\tau \in \mathbb{H}$, let E_{τ} be the elliptic curve. If $\sigma \in \mathbb{H}$ let $F_{\sigma}^{1} H^{1}\left(E_{\tau}\right)$ be Hodge filtration for structure σ : then $\bar{F}_{\sigma}^{1} H^{1}\left(E_{\tau}\right)$ splits Hodge filtration on $H^{1}\left(E_{\tau}\right)$.

To match the A-model use splitting $\lim _{\sigma \rightarrow i \infty} \bar{F}_{\sigma}^{1} H^{1}\left(E_{\tau}\right)$.
Physicists say: "Fix τ and let $\bar{\tau}$ go to ∞ ". With this splitting correlators are quasi-modular forms.

Theorem (Li)

B-model correlators on E_{τ} with this splitting of the Hodge filtration are equal to A-model correlators on mirror curve E^{\vee}, with $q=e^{2 \pi i \tau}$.

$$
\begin{aligned}
1 \in H^{0}\left(E, \mathscr{O}_{E}\right) & \leftrightarrow 1 \in H^{0}\left(E^{\vee}\right) \\
\mathrm{d} \bar{z} \in H^{1}\left(E, \mathscr{O}_{E}\right) & \leftrightarrow \mathrm{d} \bar{z} \in H^{0,1}\left(E^{\vee}\right) \\
\partial_{z} \in H^{0}(E, T E) & \leftrightarrow \mathrm{d} z \in H^{1,0}\left(E^{\vee}\right) \\
\partial_{z} \mathrm{~d} \bar{z} \in H^{1}(E, T E) & \leftrightarrow \mathrm{d} z \mathrm{~d} \bar{z} \in H^{2}\left(E^{\vee}\right) .
\end{aligned}
$$

Sketch of proof

(1) Prove that Virasoro constraints hold on the B-model. Obstruction theory argument: they hold classically, there is a unique quantization, so they hold at the quantum level.

Sketch of proof

(1) Prove that Virasoro constraints hold on the B-model. Obstruction theory argument: they hold classically, there is a unique quantization, so they hold at the quantum level.
(2) Reduces calculation to "stationary sector": need to compute correlators

$$
\left\langle\omega t^{k_{1}}, \ldots, \omega t^{k_{n}}\right\rangle_{g, n}^{\tau, \infty}
$$

where $\omega \in H^{1}(E, T E)$ has $\operatorname{Tr}(\omega)=1$, so $\omega=\partial_{z} \mathrm{~d} \bar{z} / 2 \operatorname{Im} \tau$.

Sketch of proof

(1) Prove that Virasoro constraints hold on the B-model. Obstruction theory argument: they hold classically, there is a unique quantization, so they hold at the quantum level.
(2) Reduces calculation to "stationary sector": need to compute correlators

$$
\left\langle\omega t^{k_{1}}, \ldots, \omega t^{k_{n}}\right\rangle_{g, n}^{\tau, \infty}
$$

where $\omega \in H^{1}(E, T E)$ has $\operatorname{Tr}(\omega)=1$, so $\omega=\partial_{z} \mathrm{~d} \bar{z} / 2 \operatorname{Im} \tau$.
(3) Localization: in limiting splitting of Hodge filtration, ω becomes supported on an a-cycle.

Sketch of proof

(1) Prove that Virasoro constraints hold on the B-model. Obstruction theory argument: they hold classically, there is a unique quantization, so they hold at the quantum level.
(2) Reduces calculation to "stationary sector": need to compute correlators

$$
\left\langle\omega t^{k_{1}}, \ldots, \omega t^{k_{n}}\right\rangle_{g, n}^{\tau, \infty}
$$

where $\omega \in H^{1}(E, T E)$ has $\operatorname{Tr}(\omega)=1$, so $\omega=\partial_{z} \mathrm{~d} \bar{z} / 2 \operatorname{Im} \tau$.
(3) Localization: in limiting splitting of Hodge filtration, ω becomes supported on an a-cycle.
(9) Implies there are operators $\left\{O_{k} \mid k \geq 0\right\}$ in the chiral free boson such that

$$
\operatorname{Tr}_{\text {Fock }}\left(e^{2 \pi i \tau H} O_{k_{1}} \ldots O_{k_{n}}\right)=\left\langle\omega t^{k_{1}}, \ldots, \omega t^{k_{n}}\right\rangle_{g, n}^{\tau, \infty}
$$

Sketch of proof

(1) Operators $\left\{O_{k} \mid k \geq 0\right\}$ in the chiral free boson such that

$$
\operatorname{Tr}_{\text {Fock }}\left(e^{2 \pi i \tau H} O_{k_{1}} \ldots O_{k_{n}}\right)=\left\langle\omega t^{k_{1}}, \ldots, \omega t^{k_{n}}\right\rangle_{g, n}^{\tau, \infty}
$$

Sketch of proof

(1) Operators $\left\{O_{k} \mid k \geq 0\right\}$ in the chiral free boson such that

$$
\operatorname{Tr}_{\text {Fock }}\left(e^{2 \pi i \tau H} O_{k_{1}} \ldots O_{k_{n}}\right)=\left\langle\omega t^{k_{1}}, \ldots, \omega t^{k_{n}}\right\rangle_{g, n}^{\tau, \infty}
$$

(2) Right hand side: symmetric under permutation of k_{i}. So operators $O_{k_{i}}$ commute.

Sketch of proof

(1) Operators $\left\{O_{k} \mid k \geq 0\right\}$ in the chiral free boson such that

$$
\operatorname{Tr}_{\text {Fock }}\left(e^{2 \pi i \tau H} O_{k_{1}} \ldots O_{k_{n}}\right)=\left\langle\omega t^{k_{1}}, \ldots, \omega t^{k_{n}}\right\rangle_{g, n}^{\tau, \infty}
$$

(2) Right hand side: symmetric under permutation of k_{i}. So operators $O_{k_{i}}$ commute.
(3) So we have a completely integrable system. Commutativity, classical behaviour, and scaling behaviour completely determines the $O_{k_{i}}$.

Sketch of proof

(1) Operators $\left\{O_{k} \mid k \geq 0\right\}$ in the chiral free boson such that

$$
\operatorname{Tr}_{\text {Fock }}\left(e^{2 \pi i \tau H} O_{k_{1}} \ldots O_{k_{n}}\right)=\left\langle\omega t^{k_{1}}, \ldots, \omega t^{k_{n}}\right\rangle_{g, n}^{\tau, \infty}
$$

(2) Right hand side: symmetric under permutation of k_{i}. So operators $O_{k_{i}}$ commute.
(3) So we have a completely integrable system. Commutativity, classical behaviour, and scaling behaviour completely determines the $O_{k_{i}}$.
(1) Apply boson-fermion correspondence, $O_{k_{i}}$ becoming commuting operators in system of 2 free chiral fermions.

Sketch of proof

(1) Operators $\left\{O_{k} \mid k \geq 0\right\}$ in the chiral free boson such that

$$
\operatorname{Tr}_{\text {Fock }}\left(e^{2 \pi i \tau H} O_{k_{1}} \ldots O_{k_{n}}\right)=\left\langle\omega t^{k_{1}}, \ldots, \omega t^{k_{n}}\right\rangle_{g, n}^{\tau, \infty}
$$

(2) Right hand side: symmetric under permutation of k_{i}. So operators $O_{k_{i}}$ commute.
(3) So we have a completely integrable system. Commutativity, classical behaviour, and scaling behaviour completely determines the $O_{k_{i}}$.
(1) Apply boson-fermion correspondence, $O_{k_{i}}$ becoming commuting operators in system of 2 free chiral fermions.
(3) Okounkov-Pandharipande: A-model correlators are expectation values of a family of commuting operators in a system of 2 chiral free fermions. The operators are the same: essentially characterized by commutativity.

GW invariants of an elliptic curve are complicated (determined by Okounkov-Pandharipande, 2002).

GW invariants of an elliptic curve are complicated (determined by Okounkov-Pandharipande, 2002).

If

$$
\begin{aligned}
& F^{E}\left(z_{1}, \ldots, z_{n} ; q\right) \\
= & z_{1} \ldots z_{n} \prod_{m=1}^{\infty}\left(1-q^{m}\right) \exp \left(\sum q^{d}\left\langle\tau_{k_{1}}(\omega), \ldots, \tau_{k_{n}}(\omega)\right\rangle_{g, n, d} z_{1}^{k_{1}} \ldots z^{k_{n}}\right)
\end{aligned}
$$

and

$$
\theta(z)=\theta(z, q)=\sum_{n \in \mathbb{Z}}(-1)^{n} q^{\left(n+\frac{1}{2}\right)^{2} / 2} e^{\left(n+\frac{1}{2}\right) z}
$$

then

$$
F^{E}\left(z_{1}, \ldots, z_{n} ; q\right)=\sum_{\substack{\text { permutations of } \\ z_{1}, \ldots, z_{n}}} \frac{\operatorname{det}\left[\frac{\theta^{(j-i+1)}\left(z_{1}+\cdots+z_{n-j}\right)}{(j-i+1)!}\right]_{i, j=1}^{n}}{\theta\left(z_{1}\right) \theta\left(z_{1}+z_{2}\right) \ldots \theta\left(z_{1}+\cdots+z_{n}\right)}
$$

