A Generalized Borcea-Voisin Construction

Jimmy Dillies

String-Math 2011
Philadelphia

1 History
2 Construction
3 Classification
4 Mirror Symmetry
5 Issue
6 Conclusion

Mirror threefolds

■ First family of mirror threefolds which were neither complete intersection nor toric is due to [Borcea, C.; Voisin, C.] and relies on the existence of involutions on the product of a torus with a K3 surface.

Mirror threefolds

- First family of mirror threefolds which were neither complete intersection nor toric is due to [Borcea, C.; Voisin, C.] and relies on the existence of involutions on the product of a torus with a K3 surface.
- Their construction is very similar to that introduced by [Vafa, C. \& Witten, E.] who take the quotient of a three tori by a group action, $(\mathbb{Z} / 2 \mathbb{Z})^{2}$, preserving the volume form.

Mirror threefolds

■ First family of mirror threefolds which were neither complete intersection nor toric is due to [Borcea, C.; Voisin, C.] and relies on the existence of involutions on the product of a torus with a K3 surface.

- Their construction is very similar to that introduced by [Vafa, C. \& Witten, E.] who take the quotient of a three tori by a group action, $(\mathbb{Z} / 2 \mathbb{Z})^{2}$, preserving the volume form.
■ Interesting Physics [Dixon, L., Harvey, J., Vafa, C. \& Witten, E.]

Mirror threefolds

■ First family of mirror threefolds which were neither complete intersection nor toric is due to [Borcea, C.; Voisin, C.] and relies on the existence of involutions on the product of a torus with a K3 surface.

- Their construction is very similar to that introduced by [Vafa, C. \& Witten, E.] who take the quotient of a three tori by a group action, $(\mathbb{Z} / \mathbb{Z})^{2}$, preserving the volume form.
$■$ Interesting Physics [Dixon, L., Harvey, J., Vafa, C. \& Witten, E.]
- Construction of Vafa-Witten generalized and classified by [Donagi, R. and Faraggi, A.; Donagi A. and Wendland, K.; D.] taking more general actions (+translations +complex multiplication)

Mirror threefolds

- First family of mirror threefolds which were neither complete intersection nor toric is due to [Borcea, C.; Voisin, C.] and relies on the existence of involutions on the product of a torus with a K3 surface.
- Their construction is very similar to that introduced by [Vafa, C. \& Witten, E.] who take the quotient of a three tori by a group action, $(\mathbb{Z} / \mathbb{Z})^{2}$, preserving the volume form.
■ Interesting Physics [Dixon, L., Harvey, J., Vafa, C. \& Witten, E.]
- Construction of Vafa-Witten generalized and classified by [Donagi, R. and Faraggi, A.; Donagi A. and Wendland, K.; D.] taking more general actions (+translations +complex multiplication)

Question

Can we similarly generalize the construction of Borcea and Voisin?

Borcea-Voisin threefolds

Ingredients $=0+\infty+$ Symmetry

Borcea-Voisin threefolds

Ingredients $=++\infty+$ Symmetry

■ a torus E with a involution $i_{\text {(FREE) }}$

Borcea-Voisin threefolds

■ a torus E with a involution $i_{\text {(FREE) }}$

- a K3 surface S with a non-symplectic involution j, i.e. $\left.j^{*}\right|_{H^{2,0}(S)} \equiv$-id

Borcea-Voisin threefolds

Ingredients $=++\infty+$ Symmetry

- a torus E with a involution $i_{\text {(FREE) }}$
- a K3 surface S with a non-symplectic involution j, i.e. $\left.j^{*}\right|_{H^{2,0}(S)} \equiv$-id

Definition

The Borcea-Voising threefold associated to the above objects is

$$
X=\frac{\widetilde{E \times X}}{\langle(i, j)\rangle}
$$

Generalized Borcea-Voisin three- and fourfolds

Generalized Borcea-Voisin three- and fourfolds

■ $X_{i=1,2}$ a Calabi-Yau manifold endowed with a primitive non-symplectic automorphism j_{i} of order p, prime. (today, $\operatorname{dim} X_{i} \in\{1,2\}$)

Generalized Borcea-Voisin three- and fourfolds

■ $X_{i=1,2}$ a Calabi-Yau manifold endowed with a primitive non-symplectic automorphism j_{i} of order p, prime. (today, $\operatorname{dim} X_{i} \in\{1,2\}$)
$■$ From $\chi: \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z} \rightarrow \operatorname{Aut}\left(H^{\text {top,0 }}\left(X_{1}\right) \times H^{\text {top,0 }}\left(X_{2}\right)\right)$ extract the kernel K isomorphic to $\mathbb{Z} / p \mathbb{Z}$.

Generalized Borcea-Voisin three- and fourfolds

- $X_{i=1,2}$ a Calabi-Yau manifold endowed with a primitive non-symplectic automorphism j_{i} of order p, prime. (today, $\operatorname{dim} X_{i} \in\{1,2\}$)
$■$ From $\chi: \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z} \rightarrow \operatorname{Aut}\left(H^{\text {top,0 }}\left(X_{1}\right) \times H^{\text {top,0 }}\left(X_{2}\right)\right)$ extract the kernel K isomorphic to $\mathbb{Z} / p \mathbb{Z}$.

Definition

The Generalized Borcea-Voising orbifold associated to the above objects is

$$
X=\frac{X_{1} \times X_{2}}{K}
$$

Generalized Borcea-Voisin three- and fourfolds

- $X_{i=1,2}$ a Calabi-Yau manifold endowed with a primitive non-symplectic automorphism j_{i} of order p, prime. (today, $\operatorname{dim} X_{i} \in\{1,2\}$)
$■$ From $\chi: \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z} \rightarrow \operatorname{Aut}\left(H^{\text {top,0 }}\left(X_{1}\right) \times H^{\text {top,0 }}\left(X_{2}\right)\right)$ extract the kernel K isomorphic to $\mathbb{Z} / p \mathbb{Z}$.

Definition

The Generalized Borcea-Voising orbifold associated to the above objects is

$$
X=\frac{X_{1} \times X_{2}}{K}
$$

Generalized Borcea-Voisin three- and fourfolds

- $X_{i=1,2}$ a Calabi-Yau manifold endowed with a primitive non-symplectic automorphism j_{i} of order p, prime. (today, $\operatorname{dim} X_{i} \in\{1,2\}$)
$■$ From $\chi: \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z} \rightarrow \operatorname{Aut}\left(H^{\text {top,0 }}\left(X_{1}\right) \times H^{\text {top,0 }}\left(X_{2}\right)\right)$ extract the kernel K isomorphic to $\mathbb{Z} / p \mathbb{Z}$.

Definition

The Generalized Borcea-Voising orbifold associated to the above objects is

$$
X=\frac{X_{1} \times X_{2}}{K}
$$

There might not be a crepant resolution !!

Key tool: orbifold cohomology [Chen, W. \& Ruan Y.]

$$
\mathrm{H}_{\mathrm{orb}}^{*, *}(X / K)=\bigoplus_{g \in \operatorname{Conj}(K)} \bigoplus_{\Lambda \in \Phi(g)} H^{*-\kappa(g, \Lambda), *-\kappa(g, \Lambda)}(\Lambda)^{K}
$$

Where $\Phi(g)$ is the set of irreducible components fixed by g, and $\kappa(g, \Lambda)$ is the age of g at a point of Λ.

Key tool: orbifold cohomology [Chen, W. \& Ruan Y.]

$$
H_{\mathrm{orb}}^{*, *}(X / K)=H^{*, *}(X)^{K} \oplus \bigoplus_{\Lambda \in \Phi(\gamma)} \bigoplus_{i=1}^{p-1} H^{*-\kappa\left(\gamma^{i}, \Lambda\right), *-\kappa\left(\gamma^{i}, \Lambda\right)}(\Lambda)
$$

Where $\Phi(g)$ is the set of irreducible components fixed by g, and $\kappa(g, \Lambda)$ is the age of g at a point of Λ.

Non-symplectic automorphisms of K3 surfaces

$■$ Need: classification of non-symplectic automorphisms of prime order on K3 surfaces

Non-symplectic automorphisms of K3 surfaces

$■$ Need: classification of non-symplectic automorphisms of prime order on K3 surfaces
■ Known! Work of [Nikulin, V.; Xiao, G; Mukai, S.; Oguiso, K.; Zhang, D.-Q.; Artebani, M. and Sarti, A.; D.; Taki; ...]

Non-symplectic automorphisms of K3 surfaces

$■$ Need: classification of non-symplectic automorphisms of prime order on K3 surfaces
■ Known! Work of [Nikulin, V.; Xiao, G; Mukai, S.; Oguiso, K.; Zhang, D.-Q.; Artebani, M. and Sarti, A.; D.; Taki; ...]
■ Moreover, action is essentially characterized by rank r of fixed locus Z on $H^{2}(S, \mathbb{Z})$ and by a where $\operatorname{det} Z=p^{a}$.

Non-symplectic automorphisms of K3 surfaces

■ Need: classification of non-symplectic automorphisms of prime order on K3 surfaces
■ Known! Work of [Nikulin, V.; Xiao, G; Mukai, S.; Oguiso, K.; Zhang, D.-Q.; Artebani, M. and Sarti, A.; D.; Taki; ...]
■ Moreover, action is essentially characterized by rank r of fixed locus Z on $H^{2}(S, \mathbb{Z})$ and by a where $\operatorname{det} Z=p^{a}$. In disguise, you have an action on the Gram graph.

Local picture $(p=3)$

$$
\begin{gathered}
\left(\begin{array}{lll}
\zeta_{3}^{2} & & \\
& \zeta_{3}^{2} & \\
& & \zeta_{3}^{2}
\end{array}\right) \\
\frac{1}{3}(2,2,2)
\end{gathered}
$$

Local picture $(p=3)$

$$
\begin{gathered}
\left(\begin{array}{lll}
\zeta_{3}^{2} & & \\
& \zeta_{3}^{2} & \\
& & \zeta_{3}^{2}
\end{array}\right) \\
\frac{1}{3}(2,2,2)
\end{gathered}
$$

Local picture $(p=3)$

$$
\begin{gathered}
\left(\begin{array}{lll}
\zeta_{3}^{2} & & \\
& \zeta_{3}^{2} & \\
& & \zeta_{3}^{2}
\end{array}\right) \\
\frac{1}{3}(2,2,2)
\end{gathered}
$$

Local picture $(p=3)$

$$
\begin{gathered}
\left(\begin{array}{lll}
\zeta_{3}^{2} & & \\
& \zeta_{3}^{2} & \\
& & \zeta_{3}^{2}
\end{array}\right) \\
\frac{1}{3}(2,2,2)
\end{gathered}
$$

Point \times Point $=$ Point

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & & \\
& \zeta_{3} & \\
& & \zeta_{3}^{2}
\end{array}\right) \\
\frac{1}{3}(0,1,2)
\end{gathered}
$$

Curve \times Point $=$ Curve

Earlier Work

$\square p=3, \operatorname{dim} X=3$ [Rohde, J.C.] \checkmark

Earlier Work

$\square p=3, \operatorname{dim} X=3$ [Rohde, J.C.] \checkmark

- $p=4 \operatorname{dim} X=3$ [Garbagnati. A] partial

Earlier Work

■ $p=3, \operatorname{dim} X=3$ [Rohde, J.C.]

- $p=4 \operatorname{dim} X=3$ [Garbagnati. A] partial

■ $p=2, \operatorname{dim} X=4$ [Borcea, C.; Abe, M. and Sato, M.] partial

Earlier Work

■ $p=3, \operatorname{dim} X=3$ [Rohde, J.C.] \checkmark

- $p=4 \operatorname{dim} X=3$ [Garbagnati. A] partial

■ $p=2, \operatorname{dim} X=4$ [Borcea, C.; Abe, M. and Sato, M.] partial
$\square p>2, \operatorname{dim} X=4$ [Cynk, S. and Hulek, K.] partial

Results

dim	p	$\#$	Euler characteristic (χ)	Minimal $\|\chi\|$
3	3		$-62+12 r$	-38
4	2		$888-60 r_{2}-60 r_{1}+6 r_{1} r_{2}$	$-6,0,18$
	3	299	$408-36 r_{2}-36 r_{1}+6 r_{1} r_{2}$	$-48,0,24$
	5	28	$174-21 r_{2}-21 r_{1}+\frac{15}{2} r_{1} r_{2}$	24
	7	15	$\frac{304}{3}-\frac{40}{3} r_{2}-\frac{40}{3} r_{1}+\frac{28}{3} r_{1} r_{2}$	144
	11	6	$\frac{264}{5}-\frac{12}{5} r_{2}-\frac{12}{5} r_{1}+\frac{66}{5} r_{1} r_{2}$	96
	13	1	2184	2184
	17	1	1376	1376
	19	1	936	936

Mirror Symmetry

Question
Is there a mirror pairing within the realm of our families?

K3 lattices when $p=2$

K3 lattices when $p=2$

$$
r \leftrightarrow 20-r
$$

K3 lattices when $p \geq 3$

Do our varieties come in pairs?

	$p=2$	$p>2$
$\operatorname{dim} X=3$	\checkmark	
$\operatorname{dim} X=4$		

Do our varieties come in pairs?

	$p=2$	$p>2$
$\operatorname{dim} X=3$	\checkmark	
$\operatorname{dim} X=4$	\checkmark	

Do our varieties come in pairs?

	$p=2$	$p>2$
$\operatorname{dim} X=3$	\checkmark	\odot
$\operatorname{dim} X=4$	\checkmark	

Do our varieties come in pairs?

	$p=2$	$p>2$
$\operatorname{dim} X=3$	\checkmark	\odot
$\operatorname{dim} X=4$	\checkmark	\odot

In dimension 3

In dimension 3

Also, Picard-Fuchs equation highlights lack of solutions with maximally unipotent monodromy.

In dimension 4

Problem with singularities

[Batyrev, V. \& Dais, D.; Reid, M.] If X has a fixed point of type $\frac{1}{p}(2, p-1,1, p-2)$ then X does not admit a crepant resolution.

In dimension 4

Problem with singularities

[Batyrev, V. \& Dais, D.; Reid, M.] If X has a fixed point of type $\frac{1}{p}(2, p-1,1, p-2)$ then X does not admit a crepant resolution.

In dimension 4

Problem with singularities

[Batyrev, V. \& Dais, D.; Reid, M.] If X has a fixed point of type $\frac{1}{p}(2, p-1,1, p-2)$ then X does not admit a crepant resolution.

■ For $p>2$ all actions have fixed points of the above type \rightarrow no resolution...

The future

What's next?

How do we build the mirrors of these generalized Borcea-Voisin varieties? Suggestions?

- Toric Geometry

■ LG-model

The future

What's next?

How do we build the mirrors of these generalized Borcea-Voisin varieties? Suggestions?

- Toric Geometry

■ LG-model

Thank you

