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Mirror threefolds

First family of mirror threefolds which were neither
complete intersection nor toric is due to [Borcea, C.; Voisin,
C.] and relies on the existence of involutions on the product
of a torus with a K3 surface.

Their construction is very similar to that introduced by
[Vafa, C. & Witten, E.] who take the quotient of a three tori
by a group action, (Z/2Z)2, preserving the volume form.
Interesting Physics [Dixon, L., Harvey, J., Vafa, C. & Witten,
E.]
Construction of Vafa-Witten generalized and classified by
[Donagi, R. and Faraggi, A.; Donagi A. and Wendland, K.;
D.] taking more general actions (+translations +complex
multiplication)

Question
Can we similarly generalize the construction of Borcea and
Voisin?
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Borcea-Voisin threefolds

Ingredients = + + Symmetry

a torus E with a involution i (FREE)

a K3 surface S with a non-symplectic involution j ,
i.e. j∗|H2,0(S) ≡ −id

Definition
The Borcea-Voising threefold associated to the above objects is

X =
Ẽ × X
〈(i , j)〉
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Ẽ × X
〈(i , j)〉



Borcea-Voisin threefolds

Ingredients = + + Symmetry

a torus E with a involution i (FREE)

a K3 surface S with a non-symplectic involution j ,
i.e. j∗|H2,0(S) ≡ −id

Definition
The Borcea-Voising threefold associated to the above objects is

X =
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Generalized Borcea-Voisin three- and fourfolds

Xi=1,2 a Calabi-Yau manifold endowed with a primitive
non-symplectic automorphism ji of order p, prime.
(today, dim Xi ∈ {1,2})
From χ : Z/pZ× Z/pZ→ Aut(H top,0(X1)× H top,0(X2))
extract the kernel K isomorphic to Z/pZ.

Definition
The Generalized Borcea-Voising orbifold associated to the
above objects is

X =
X1 × X2

K

There might not be a crepant resolution !!
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Key tool: orbifold cohomology [Chen, W. & Ruan Y.]

H*,*
orb (X/K ) =

⊕
g∈Conj(K )

⊕
Λ∈Φ(g)

H∗−κ(g,Λ),∗−κ(g,Λ) (Λ)K

Where Φ(g) is the set of irreducible components fixed by g, and
κ(g,Λ) is the age of g at a point of Λ.
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H*,*
orb (X/K ) = H∗,∗ (X )K ⊕

⊕
Λ∈Φ(γ)

p−1⊕
i=1

H∗−κ(γ i ,Λ),∗−κ(γ i ,Λ) (Λ)

Where Φ(g) is the set of irreducible components fixed by g, and
κ(g,Λ) is the age of g at a point of Λ.



Non-symplectic automorphisms of K3 surfaces

Need : classification of non-symplectic automorphisms of
prime order on K3 surfaces

Known! Work of [Nikulin, V.; Xiao, G; Mukai, S.; Oguiso, K.;
Zhang, D.-Q.; Artebani, M. and Sarti, A.; D.; Taki; ...]
Moreover, action is essentially characterized by rank r of
fixed locus Z on H2(S,Z) and by a where det Z = pa.
In disguise, you have an action on the Gram graph.
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Earlier Work

p = 3, dim X = 3 [Rohde, J.C.] �

p = 4 dim X = 3 [Garbagnati. A] partial
p = 2, dim X = 4 [Borcea, C.; Abe, M. and Sato, M.] partial
p > 2, dim X = 4 [Cynk, S. and Hulek, K.] partial
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Results

dim p # Euler characteristic (χ) Minimal |χ|
3 3 −62 + 12r −38
4 2 888− 60r2 − 60r1 + 6r1r2 −6, 0, 18

3 299 408− 36r2 − 36r1 + 6r1r2 −48, 0, 24
5 28 174− 21r2 − 21r1 + 15

2 r1r2 24
7 15 304

3 −
40
3 r2 − 40

3 r1 + 28
3 r1r2 144

11 6 264
5 −

12
5 r2 − 12

5 r1 + 66
5 r1r2 96

13 1 2184 2184
17 1 1376 1376
19 1 936 936



Mirror Symmetry

Question
Is there a mirror pairing within the realm of our families?



K3 lattices when p = 2

r ↔ 20− r
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K3 lattices when p ≥ 3



Do our varieties come in pairs?

p = 2 p > 2
dim X = 3 �

/

dim X = 4
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In dimension 3

Also, Picard-Fuchs equation highlights lack of solutions with
maximally unipotent monodromy.
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In dimension 4

Problem with singularities
[Batyrev, V. & Dais, D.; Reid, M.] If X has a fixed point of type
1
p (2,p − 1,1,p − 2) then X does not admit a crepant resolution.

For p > 2 all actions have fixed points of the above type→
no resolution...
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The future

What’s next?
How do we build the mirrors of these generalized Borcea-Voisin
varieties? Suggestions?

Toric Geometry
LG-model

Thank you
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