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Mirror threefolds

m First family of mirror threefolds which were neither
complete intersection nor toric is due to [Borcea, C.; Voisin,
C.] and relies on the existence of involutions on the product
of a torus with a K3 surface.

m Their construction is very similar to that introduced by
[Vafa, C. & Witten, E.] who take the quotient of a three tori
by a group action, (Z,/27)?, preserving the volume form.

m Interesting Physics [Dixon, L., Harvey, J., Vafa, C. & Witten,
E.]

m Construction of Vafa-Witten generalized and classified by
[Donagi, R. and Faraggi, A.; Donagi A. and Wendland, K.;
D.] taking more general actions (+translations +complex
multiplication)

Can we similarly generalize the construction of Borcea and
Voisin?
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m a torus E with a involution J rer)

m a K3 surface S with a non-symplectic involution j,
i.e. j*|H270(S) = —id

Ingredients =

Definition
The Borcea-Voising threefold associated to the above objects is
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Generalized Borcea-Voisin three- and fourfolds

m X;_1» a Calabi-Yau manifold endowed with a primitive
non-symplectic automorphism j; of order p, prime.
(today, dim X; € {1,2})

m From x : Z/pZ x Z/pZ — Aut(HOPO(X;) x H'%PO(X5))
extract the kernel K isomorphic to Z/pZ.

Definition
The Generalized Borcea-Voising orbifold associated to the
above objects is

_X1><X2

X="K

There might not be a crepant resolution !! J




Key tool: orbifold cohomology [Chen, W. & Ruan Y.]

H:;Z(X/K): @ @ H*—H(g,/\),*—n(g,A)(A)K

g€Conj(K) Aed(g)

Where @(g) is the set of irreducible components fixed by g, and
k(g, ) is the age of g at a point of A.
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p—1 , ,
Hon (X/K) = H (X)X @ @) @) H 0" N=r0') (n)

ANeD(v) i=1

Where @(g) is the set of irreducible components fixed by g, and
k(g, ) is the age of g at a point of A.
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Non-symplectic automorphisms of K3 surfaces

m Need : classification of non-symplectic automorphisms of
prime order on K3 surfaces

m Known! Work of [Nikulin, V.; Xiao, G; Mukai, S.; Oguiso, K.;
Zhang, D.-Q.; Artebani, M. and Sarti, A.; D.; Taki; ...]

m Moreover, action is essentially characterized by rank r of
fixed locus Z on H?(S,Z) and by a where det Z = p?.
In disguise, you have an action on the Gram graph.
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Earlier Work

m p=3,dim X = 3 [Rohde, J.C.] /

m p =4 dim X = 3 [Garbagnati. A] partial

m p=2,dimX =4 [Borcea, C.; Abe, M. and Sato, M.] partial
m p>2,dimX =4 [Cynk, S. and Hulek, K.] partial



' dim | p | # | Eulercharacteristic (x) | Minimal |y]| |
3 3 —62 +12r —38
4 2 888 — 60r> — 60r1 +6r412 -6,0, 18
3 | 299 | 408 — 36, — 36ry +6r1n | —48,0, 24
5 | 28 174—21r2—21r1+§r1r2 24
7 | 15 %—%@—%ﬁ Znn 144
1| 6 | &4-_12n 12,4 %pn, 96
13 1 2184 2184
17 1 1376 1376
19 1 936 936




Mirror Symmetry

Is there a mirror pairing within the realm of our families? I




K3 lattices when p = 2

o
L% 2
o0®
o0+ 0
(N N N N
os00v00
LN N N N N N J
>S00000 00
[ E N NN NN NN
[ R RN RN RN R/
e o0 [ ]

S I G B e B
™ 20 10 0
e =1
+ 0=0

=

| I A A (O A B B |
—
=

—




K3 lattices when p = 2

o
L% 2
o0®
o0+ 0
(N N N N
os00v00
LN N N N N N J
>S00000 00
[ E N NN NN NN
[ R RN RN RN R/
e o0 [ ]

S I G B e B
™ 20 10 0
e =1
+ 0=0

=

| I A A (O A B B |
—
=

—

r<-20-—r



K3 lattices when p > 3
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In dimension 3
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Also, Picard-Fuchs equation highlights lack of solutions with
maximally unipotent monodromy.
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In dimension 4

Problem with singularities

[Batyrev, V. & Dais, D.; Reid, M.] If X has a fixed point of type
%(2, p—1,1,p—2) then X does not admit a crepant resolution.

m For p > 2 all actions have fixed points of the above type —
no resolution...
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The future

How do we build the mirrors of these generalized Borcea-Voisin
varieties? Suggestions?

m Toric Geometry
m LG-model

Thank you
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