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Abstract

A survey of nonperturbative and potentially rigorous definitions of
quantum field theory, and the questions we would like to study with
them.
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Introduction

Quantum field theory and string theory have had a significant impact
on mathematics, and mathematics is essential in studying quantum
field theory and string theory, as we have seen in every talk at this
conference.

This leads to a natural question, which many have raised:

How can we make mathematically precise definitions of quantum field
theory and string theory ?
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Introduction

There is a long history of mathematically precise approaches to
quantum field theory, including

axiomatic quantum field theory
constructive quantum field theory
algebraic quantum field theory
functional integration and approximating expansions
vertex algebras and conformal field theory
probabilistic approaches, such as Schramm-Loewner evolution
chiral algebras and factorization algebras
topological field theory and higher category theory
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Introduction

In this talk, we will
Discuss what ‘mathematical precision’ would mean in this context.
Discuss questions for which this is clearly valuable, independent
of methodological or sociological considerations.
Survey some of the approaches, and discuss next steps we could
take towards answering these questions.
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Mathematics and physics History

One should probably regard mathematics and theoretical physics
before the mid-19th century as subfields within a common intellectual
movement: Newton, Laplace, Lagrange, Gauss et al laid the
foundations of both subjects more or less simultaneously.
This changed, largely during the mid to late 19th century, for many
reasons. Probably the most important of these were simply the overall
increase in accumulated knowledge and in the number of practitioners,
and the diversity of the developments, so that no one person could
keep up with all of them.
Several more specific reasons:

Development of mathematical rigor
Acceptance of nonconstructive methods in mathematics
Development of specialized techniques to meet the needs of
engineers, scientists, etc.
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Mathematics and physics History

Although it is an oversimplification, many have pointed out that by the
mid-20th century, this gradual divergence between mathematics and
theoretical physics had grown into a chasm.

In the thirties, under the demoralizing influence of
quantum-theoretic perturbation theory, the mathematics
required of a theoretical physicist was reduced to a
rudimentary knowledge of the Latin and Greek alphabets.
Res Jost, as quoted in PCT, Spin and Statistics, and All That,
Streater and Wightman, 1964.

I am acutely aware of the fact that the marriage between
mathematics and physics, which was so enormously fruitful in
past centuries, has recently ended in divorce.

Freeman Dyson, Missed Opportunities, 1972.
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Mathematics and physics Math and physics points of view

Things have improved since then, and by now there are several
good-sized communities of mathematicians and physicists with well
established common interests. String-math is a prominent example,
and a few others include mathematical statistical mechanics,
mathematical general relativity, and integrable systems theory. At least
within these communities, we are overcoming the language barriers
and the sociological barriers to interaction.

We are used to the idea that mathematicians and physicists can write
papers about "the same thing" which will read quite differently; in
particular the mathematics paper will read "definition-theorem-proof"
while the physics paper will be "discursive," arguing from example and
intuition to make bold and often correct conjectures. In our subfield,
this has been a very successful mode of interaction.
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Mathematics and physics Math and physics points of view

Although we should continue this successful approach, I believe the
time is coming to also revive the more traditional "mathematical
physics" approach of taking the most important results, and making
rigorous versions of them.
A well known argument for this is that this is the traditional definition of
"mathematical precision" – people prove rigorous theorems, and get
them published in math journals.

While this is a valid argument, I will focus on different arguments in this
talk.
Indeed, many mathematicians say that proving theorems is not the
central goal of mathematics; rather the central goals are
understanding structure and communicating this understanding
to others.
See for example On Proof and Progress in Mathematics, W.P,
Thurston, math/9404236, Bull. AMS.
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Mathematics and physics Foundational topics

Clearly both groups have something to gain from this project, but as a
physicist, I will mostly try here to convince physicists that foundations
can be valuable for us.

Some standard and well developed foundational topics in the literature:

axioms for QFT and reconstruction theorems
perturbation theory around Gaussian integrals
perturbative renormalization theory
quantizing gauge invariant theories: BRST, BV, etc.

Rigorous work has been done on all of these topics. More to the point
here, mathematical work tries to address some central aspects of the
problem:

Geometry of space of fields
Infinite number of degrees of freedom
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Mathematics and physics Foundational topics

There are many topics for which the physics discussion is adequate, or
for which the relevant math has been fairly well incorporated: much of
supersymmetry, solitons and instantons, anomalies and index theory,
fall into this category. Classical and one loop physics have good
mathematical foundations.
Some standard foundational topics in QFT which are not as well
developed:

perturbation and renormalization theory around other solvable
models
exact renormalization group
conformal bootstrap

Large N is another foundational topic which attracts mathematical
interest. I believe there is a good deal of insight from AdS/CFT which
could be brought in.
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Questions requiring better foundations Rigorous use and justification of physics methods

1. Rigorous use and justification of physics methods

This is of course the traditional goal and one can list many possibilities.
Even Feynman agreed that the CPT theorem was a worthy result.

In my opinion, the most promising next goal (in terms of payoff divided
by effort) would be to rigorously justify localization computations in
supersymmetric field theories:

topological quantities in D = 2, (2,2) SCFTs
prepotential in D = 4,N = 2 super-Yang-Mills
Wilson loops in D = 3,4 (Pestun, KWY, et al)

and so on.
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Questions requiring better foundations Connecting approaches to nonperturbative QFT

2. Connecting the various approaches to nonperturbative QFT.

As is familiar and as we will review later, a single QFT has many
definitions: in terms of correlation functions, partition functions, etc.;
using different regulators or UV completions; etc. Most but not all
definitions involve taking limits of some parameter ε→ 0, for example ε
might be a lattice spacing, or it might be 1/N for a family of truncations
to N modes.

A very standard claim is that two definitions agree after taking the limit,
and that the corrections at finite ε can be controlled in some way.
Despite the ubiquity of such claims, few of them have been stated
precisely.
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Questions requiring better foundations Connecting approaches to nonperturbative QFT

In functional analysis, the standard way to formulate such a claim is to
use a norm on function space, for example the Lp norm

||f ||p =

(∫
M
|f |p
)1/p

. (1)

This then defines a family of distances between functions,

dp(f ,g) = ||f − g||p. (2)

Of course there are many more such definitions.

One then states approximation results in terms of the norm, for
example the speed of convergence of a lattice approximation or a
Fourier mode truncation depends on the norm. Which norm one uses
depends on what one wants to do with the function being
approximated, e.g. is it a final result, is it part of an iterative or
perturbative expansion, etc.
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Questions requiring better foundations Connecting approaches to nonperturbative QFT

The natural way to formulate the relation between different
nonperturbative formations of QFT is also in terms of norms and
metrics on the space of QFTs. An example in which this language is
well known is the exact (Wilsonian) renormalization group. The RG
acts on a dimension ∆ coupling as

−µ ∂

∂µ
g∆ = (D −∆)g∆ +O(g2). (3)

One would like to make precise (and then prove) the claim that the RG
is attracted to a critical surface. This can be done by defining a norm
on the space of Wilsonian actions, say

||
∑

i

g iOi || =
∑

i

||g i ||(i), (4)

and showing that distances decrease. This was done in Polchinski
(1985) to prove perturbative renormalizability, and nonperturbatively in
some cases by Brydges and collaborators.
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Questions requiring better foundations Connecting approaches to nonperturbative QFT

A problem with this definition of the distance between theories, is that it
assumes we have a functional integral formulation, and that we can
compute with it. It is also useful to have definitions which depend only
on the correlation functions, or on other universal presentations of the
QFT.

In 1005.2779, and in work to appear with Bachas, Brunner and
Rastelli, we are developing other distances for 2d CFT. For example,
for theories defined using BPZ data (dimensions and o.p.e. coefficients
of primary fields), one can define a distance in terms of differences
between this data. One can then ask "how good" is the approximation
of truncating to a finite number of primary fields, and if there is an
improvement procedure which would converge on the correct CFT
correlation functions.

Using a variety of distances, we could systematize the discussion of
approximate QFTs.
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Questions requiring better foundations Proving that QFTs with specific properties do not exist

3. Proving that QFTs with specific properties do not exist.

Even the most basic questions here lack convincing answers. An
example:

Can we prove that there is no interacting bosonic field theory in D > 4
?

A standard answer to this is

Theorem (Aizenman, 1981)

The continuum limits of Euclidean φ4 lattice fields are free fields in
D > 4.

Michael R. Douglas (Simons Center) Foundations of QFT String-Math 2011 17 / 38



Questions requiring better foundations Proving that QFTs with specific properties do not exist

3. Proving that QFTs with specific properties do not exist.

Even the most basic questions here lack convincing answers. An
example:

Can we prove that there is no interacting bosonic field theory in D > 4
?

A standard answer to this is

Theorem (Aizenman, 1981)

The continuum limits of Euclidean φ4 lattice fields are free fields in
D > 4.

Michael R. Douglas (Simons Center) Foundations of QFT String-Math 2011 17 / 38



Questions requiring better foundations Proving that QFTs with specific properties do not exist

3. Proving that QFTs with specific properties do not exist.

Even the most basic questions here lack convincing answers. An
example:

Can we prove that there is no interacting bosonic field theory in D > 4
?

A standard answer to this is

Theorem (Aizenman, 1981)

The continuum limits of Euclidean φ4 lattice fields are free fields in
D > 4.

Michael R. Douglas (Simons Center) Foundations of QFT String-Math 2011 17 / 38



Questions requiring better foundations Proving that QFTs with specific properties do not exist

This is good as far as it goes, but perhaps there are other actions or
non-lattice definitions which lead to interacting field theories. As
stressed to me by Steve Shenker, there is no difficulty in defining
interacting bosonic statistical field theories in arbitrary D; we must
assume unitarity or reflection positivity to get any contradiction. These
are subtle constraints which perhaps we do not fully understand.

A good reason to reconsider the belief that bosons cannot interact in
D > 4, is that we now believe that there are interacting supersymmetric
field theories in D = 6.
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Questions requiring better foundations Proving that QFTs with specific properties do not exist

We might start from a (1,0) supersymmetric theory in D = 6, say the
theory on an M5-brane near a Horava-Witten boundary. On
compactification, this looks like a super-Yang-Mills theory with matter,
and the vacuum structure can be understood using this picture.
Already in D = 6, we can give vacuum expectation values to the matter
scalars to break the gauge symmetry ("go on the Higgs branch"). After
compactifying to D = 5, we can add fermion masses, to get a bosonic
theory which looks in the IR like a nonlinear sigma model with target
space a moduli space of E8 instantons.
Of course, the UV limit of this theory is not purely bosonic, so the
original question was ambiguous. But under the reasonable
interpretation that any unitary UV completion would be acceptable, the
answer is: no, there are such theories in D = 5.

What about D ≥ 6 ?
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Questions requiring better foundations Rough characterization of the space of QFTs

4. Rough characterization of the space of QFTs.
I have given several talks on this topic, and will be brief here. A priori, it
is clear that any definition of the "space of QFTs" requires choosing
some precise definition of QFT. One then needs some ability to show
that certain QFTs do not exist. The set of QFTs which do exist is then,
in general, too complicated to ever find any complete description.
On the other hand, one can hope to get bounds and approximate
descriptions. Some goals:

Define a "central charge" in each D satisfying a c-theorem.
Is the set of CFTD ’s with c ≤ cmax and ∆1 ≥ ∆min precompact?
Can the set all be described by flows from Gaussian or other
known UV fixed points? Is there a bound on the number of fields
needed to do this?
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Approaches to better foundations Presentation of a QFT

Before surveying some of the existing approaches, let us raise the first
question which arises in any approach, namely:

What data do we use to characterize the QFT?

The standard options from physics are
Correlation functions of local fields
S-matrix
Linear operators on Hilbert space

From this point of view, the problem is to state axioms and construct
models, beginning along the lines suggested by physics, but perhaps
using new concepts and tools. For example, the translation between
correlation functions, a measure on field space, and the operator
interpretation, is surprisingly simple if the starting point satisfies the
right axioms.
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Approaches to better foundations Presentation of a QFT

Mathematics could also suggest other possibilities. While these will
surely (?) have some physical or intuitive interpretation, it might be
difficult to get results that way; rather one needs nontrivial
mathematical facts and techniques to work with these possibilities.

We already see some of this in rational CFT. For example modular
invariance is a strong constraint, which seems to draw its strength from
analytic and even number theoretic facts, which do not have much to
do with standard physics intuition.

Another fascinating example is the probability theory used in SLE.
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Approaches to better foundations Axiomatic QFT

Axiomatic QFT addresses the questions "what is a QFT?" and "what is
the relation between different presentations of a QFT." The standard
answers to the first question include

Wightman axioms (operator formulation of Minkowski QFT)
Osterwalder-Schrader axioms (correlation functions in Euclidean
QFT)
Haag-Kastler axioms (operator algebras independent of
representation)

These were proven equivalent and this justifies the usual focus on
correlation functions in Euclidean QFT. There has been some work on
generalizing this to curved space-time (e.g. Jaffe and Ritter).

We now have various other presentations, such as BPZ data or
partition functions for a CFT, and it would be useful to prove
equivalence theorems for these presentations as well.
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Approaches to better foundations Algebraic approaches

There are two classes of QFT for which we can write down an explicit
operator algebra. One is free bosons, fermions and abelian gauge
fields in D dimensions, which realize the “CCR” (canonical
commutation relation or Heisenberg algebra) and “CAR” algebras.
Take space to be a manifold M, and time to be R, with a product
metric, then the free bosonic field is

φ(x , t) =
∑

N

aNψN(x)e−iωN t + a†Nψ
∗
N(x)eiωN t (5)

in terms of the CCR and eigenfunctions of the (conformal) Laplacian,

[a†M ,aN ] = ωMδM,N ; ∆MψN = ω2
NψN . (6)

For D > 2, the free theories are not fully understood, in a general
curved background or with general boundary conditions. How does
one sew together general manifolds? The partition function (det ∆M)k

is modular invariant on T D, how does this work? Does it have other
interesting structure?
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Approaches to better foundations Algebraic approaches

The other class is the solvable conformal field theories in D = 2 –
minimal models, WZW models, orbifolds, Gepner models, etc. Most of
these are rational CFTs and there is a highly developed mathematical
formalism of vertex operator algebras (Frenkel-Lepowsky-Meurman,
Borcherds, Huang, many others ...).

One can regard this as a deformation of the algebra of functions on the
target space:

f (X (z1))g(X (z2))→ eG(z1,z2) ∂2
∂X(z1)∂X(z2) (fg) (7)

In the best understood cases (WZW models and minimal models), one
can qualitatively understand the theory as obtained by a "RG flow"
from a free field theory. Take the SU(2)k WZW model, it has
c = 3− 6/(k + 2) and the flow eliminates states from the free field
Hilbert space (by null vectors and integrability conditions). A good deal
can be understood by comparison to the large volume limit.
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Approaches to better foundations Algebraic approaches

How different are orbifolds, Gepner models etc. from the large volume
limit? Because the central charge is the same, there has to be some
one-to-one matching between the states, and those of the large
volume limit.

A conjecture: in the large volume limit, one has momentum states,
winding states and oscillator states:

Z =

(
Tr eiτ∆ +

∑
l

eiτ l2
)
× 1
|η(τ)|2n . (8)

While these dimensions will all get α′ corrections, the structure of the
Hilbert space ‘remains the same’ even deep in the stringy regime.
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Approaches to better foundations Algebraic approaches

Rational conformal field theories are a very special case. For example,
(2,2) sigma models with Calabi-Yau target spaces come in families,
parameterized by complex structure and "stringy Kähler structure."
These are all SCFTs, but the subset which is rational is measure zero
and probably not even dense.
As with all CFTs, the non-rational theories must satisfy the conformal
bootstrap equations of BPZ (a generalized associativity condition).
However there is no known way to get these down to a finite number of
equations.

Another way to define these theories is to start at a rational point (say
a Gepner point or orbifold) and add the marginal operators to the
action which deform the complex and "stringy Kähler structure. It is
believed that correlation functions are analytic in these couplings and
that perturbation theory with respect to them is convergent. However
this perturbation theory still needs to be renormalized, and has never
been developed beyond low orders. Proving that it has finite radius of
convergence would be a major advance.
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Approaches to better foundations New approaches from statistical mechanics

In recent years, two Fields medals have been given for rigorous results
in statistical field theory, to Wendelin Werner in 2006 for work on SLE,
and to Stanislav Smirnov in 2010 for proving that various lattice
models have conformal limits.
Schramm-Loewner evolution (SLE) is a rule generating a ‘random
curve’ in D = 2, in terms of a Brownian motion. It describes many
curves arising in 2d CFT, for example the boundary of a percolation
cluster here.
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Approaches to better foundations New approaches from statistical mechanics

An example of Smirnov’s work is his proof that the two-dimensional
square lattice Ising model, in the limit of lattice spacing taken to zero,
becomes the conformal Ising fixed point. The basic variable here is a
free fermion and it was long known that a pair of free fermion operators
correspond to a cut across which the Ising spin changes sign. But
having analytic control over the limit, as opposed to taking the limit of
exact results, seems to be new.

Discrete holomorphic functions:

F(z + ia)− F(z + a) = i(F(z + (1 + i)a)− F(z)) (9)
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Approaches to better foundations Constructive QFT

A good deal of mathematical work starts with the Euclidean functional
integral. There is no essential difficulty in rigorously defining a
Gaussian functional integral, in setting up perturbation theory, and in
developing the BRST and BV formulations (see for example Kevin
Costello’s work).
A major difficulty, indeed many mathematicians would say the main
reason that QFT is still "not rigorous," is that standard perturbation
theory only provides an asymptotic expansion. There is a good reason
for this, namely exact QFT results are not analytic in a finite
neighborhood of zero coupling.

Fixing this problem has been the goal of a great deal of work. The
most developed approaches are the subject of "constructive QFT"
(Glimm/Jaffe/Spencer, Ecole Polytechnique group, Brydges et al,
many others).
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Approaches to better foundations Constructive QFT

One solution to the problem is the "cluster expansion" (Glimm, Jaffe
and Spencer, 1973). This can be explained by the example of φ4

theory with action

S =

∫
RD

1
2

(∂φ)2 + λφ4. (10)

Note that even in D = 0, the λ expansion is asymptotic,∫
dφ e−S =

∑
n≥0

(−λ)n

n!

∫
dφ e−φ

2/2φ4n (11)

=
∑
n≥0

(−λ)n

n!
22n− 1

2 Γ(2n +
1
2

). (12)

On the other hand, for λ > 0, the λφ4 term in the action should make
the integral more convergent than a Gaussian. If we could make use of
this fact, we should get a convergent expansion.
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Approaches to better foundations Constructive QFT

In D = 0, this is easy to do, by decomposing the integration region:∫
dφ e−S =

(∫ −C

−∞
+

∫ C

−C
+

∫ ∞
C

)
dφ e−S (13)

for some C >> 1. After expanding in powers of λ, the middle term
grows no more quickly than C4n/n!, which is convergent. Thus this
series can be summed and the limit C→∞ taken. The other terms
vanish rapidly in the limit, as exp−λC4.

In D > 0, this is not so easy, because the large field behavior is
controlled by the φ4 term which is simple in position space, while
renormalization theory and everything else is simple in momentum
space.
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Approaches to better foundations Constructive QFT

Thus we make a double expansion, first splitting position space into a
union of small cells X (say hypercubes), then decomposing the
integration region for each cell:∫

dφ e−S =
∏

X

(∫ −C

−∞
+

∫ C

−C
+

∫ ∞
C

)
dφX e−S (14)

Cells with |φ| > C get suppressed by the interaction, and the resulting
series is convergent.

Unfortunately, the position space decomposition does not fit very well
with gauge symmetry or supersymmetry, and the resulting expansion
is a combinatorial nightmare. Still, these techniques were applied to
rigorously define the general D = 2 Landau-Ginzburg model, and the
φ4 theory in D = 3.
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Approaches to better foundations Constructive QFT

The D = 2 multiscalar theory with a polynomial potential is a broad
class of models. Furthermore the main difficulty in defining a D = 2
supersymmetric gauged linear sigma model is to define the bosonic
sector. The only divergences and renormalization arise in defining the
interaction. These can be regulated by introducing a cutoff propagator
Gε(x, y) and defining a scale dependent normal ordering operation,

: V(φ(x)) :ε≡ V(φ(x))− Gε(x, x)V′′(φ(x)) + . . . (15)

While the limit ε→ 0 formally exists, the problem with this is that,
considered as a function of φ, the renormalized potential can become
unbounded below. But, since Gε(x, x) ∼ log ε, this is only a problem on
a tiny part of field space, which can be controlled using the kinetic
term.
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Approaches to better foundations Constructive QFT

The cluster expansion can be applied with a wide variety of regulators.
In more recent work (Brydges et al, Rivasseau et al, Feldman et al,
Gallavotti et al), it is often combined with a "multiscale expansion," in
which momentum integrals are decomposed into slices,∫

dDp =
∑

I

∫
dDp f(λIp). (16)

This has been used to construct (for example) the N >> 1 D = 3 fixed
point of the Gross-Neveu and O(N) models, and to define a
nonperturbative exact RG.
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Approaches to better foundations Constructive QFT

The cluster expansion can also be done on the lattice. Gauge theory is
more easily defined on the lattice, and Balaban (1987) is often cited as
the state of the art in this direction.

Supersymmetric theories can also be defined on the lattice. The best
approach (as reviewed by Catterall, Kaplan and Unsal 0903.4881) is to
twist the theory so that the fermions become lattice differential forms,
and one nilpotent supercharge becomes a scalar.
This allows defining the A-twisted D=2 (2,2) SCFT, and the
D = 4,N = 4 SYM twisted so that the scalars transform as 4 + 1 + 1 of
SO(4)′.

With AJ Tolland, we have been looking at justifying instanton
computations in the D = 2 gauged linear sigma model, in other words
making the computations of Witten 1993 and Morrison-Plesser 1994
rigorous. It turns out that a BPS instanton is a discrete holomorphic
map satisfying P(Z(z)) = 0 (modulo gauge equivalence). But since
products of discrete holomorphic functions are not discrete
holomorphic, these are hard equations to solve.
Michael R. Douglas (Simons Center) Foundations of QFT String-Math 2011 36 / 38



Approaches to better foundations Constructive QFT

The cluster expansion can also be done on the lattice. Gauge theory is
more easily defined on the lattice, and Balaban (1987) is often cited as
the state of the art in this direction.

Supersymmetric theories can also be defined on the lattice. The best
approach (as reviewed by Catterall, Kaplan and Unsal 0903.4881) is to
twist the theory so that the fermions become lattice differential forms,
and one nilpotent supercharge becomes a scalar.
This allows defining the A-twisted D=2 (2,2) SCFT, and the
D = 4,N = 4 SYM twisted so that the scalars transform as 4 + 1 + 1 of
SO(4)′.

With AJ Tolland, we have been looking at justifying instanton
computations in the D = 2 gauged linear sigma model, in other words
making the computations of Witten 1993 and Morrison-Plesser 1994
rigorous. It turns out that a BPS instanton is a discrete holomorphic
map satisfying P(Z(z)) = 0 (modulo gauge equivalence). But since
products of discrete holomorphic functions are not discrete
holomorphic, these are hard equations to solve.
Michael R. Douglas (Simons Center) Foundations of QFT String-Math 2011 36 / 38



Approaches to better foundations Constructive QFT

The cluster expansion can also be done on the lattice. Gauge theory is
more easily defined on the lattice, and Balaban (1987) is often cited as
the state of the art in this direction.

Supersymmetric theories can also be defined on the lattice. The best
approach (as reviewed by Catterall, Kaplan and Unsal 0903.4881) is to
twist the theory so that the fermions become lattice differential forms,
and one nilpotent supercharge becomes a scalar.
This allows defining the A-twisted D=2 (2,2) SCFT, and the
D = 4,N = 4 SYM twisted so that the scalars transform as 4 + 1 + 1 of
SO(4)′.

With AJ Tolland, we have been looking at justifying instanton
computations in the D = 2 gauged linear sigma model, in other words
making the computations of Witten 1993 and Morrison-Plesser 1994
rigorous. It turns out that a BPS instanton is a discrete holomorphic
map satisfying P(Z(z)) = 0 (modulo gauge equivalence). But since
products of discrete holomorphic functions are not discrete
holomorphic, these are hard equations to solve.
Michael R. Douglas (Simons Center) Foundations of QFT String-Math 2011 36 / 38



Approaches to better foundations Constructive QFT

The problem that perturbation theory is asymptotic is more general
than any particular approach to perturbation theory (e.g., Feynman
diagrams). For example, recent work on D = 4,N = 4 gauge theory
(BCFW, BCJ, Arkani-Hamed et al, Hodges, many others) has
dramatically simplified the expansion – but presumably it is still
asymptotic. How can we make sense of this theory?

In broader terms, the root cause of the asymptotic nature of
perturbation theory is the large field problem: the interaction is a
singular perturbation, in the sense that it qualitatively changes the
large field behavior of the action.

Perhaps the most direct way to fix this is to consider theories without a
large field region: fermions, or bosons with compact target spaces. It is
well known that fermions are much simpler to define nonperturbatively
(even interacting fermion theories). In quantum mechanics,
considering compact target spaces completely eliminates IR problems.
In QFT, perturbing around such a theory is believed to give a
convergent expansion.
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Approaches to better foundations Constructive QFT

The cluster expansion fixes the problem by decomposing configuration
space into regions, a large field region in which ∃x : |φ(x)| ≥ C and a
complementary small field region, treat the integral differently, and add
the results.
There is some analogy with the usual development of perturbative
renormalization. There, we must also decompose configuration space
into regions, a UV region in which ∃p > Λ : |φ(p)| 6= 0 and the rest.
One can think of the RG or a multiscale expansion as adding up
integrals over these regions.

Perhaps by using a more geometric way of dividing up configuration
space, in which changes of these decompositions correspond to
precise algebraic operations (analogous to the BV formulation of string
field theory), the cluster expansion would look simple and natural.
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Approaches to better foundations Constructive QFT

This stuff [basics of Quantum Field Theory] is not impossible
to learn; after all we teach it to physics graduate students in a
year.

Edward Witten, from the 1997 IAS year on QFT.
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