Remarks on Fully Extended 3-Dimensional Topological Field Theories

Dan Freed University of Texas at Austin

June 6, 2011

Work in progress with Constantin Teleman

Manifolds and Algebra: Abelian Groups

Pontrjagin and Thom introduced abelian groups Ω_k of manifolds called bordism groups—equivalence classes of closed k-manifolds:

The abelian group operation is disjoint union. (Cartesian product defines a ring structure on $\bigoplus_k \Omega_k$)

1

Manifolds and Algebra: Abelian Groups

Pontrjagin and Thom introduced abelian groups Ω_k of manifolds called bordism groups—equivalence classes of closed k-manifolds:

The abelian group operation is disjoint union. (Cartesian product defines a ring structure on $\bigoplus_k \Omega_k$)

Thom showed how to compute Ω_k via homotopy theory: $\Omega_k = \pi_k MO$. Different answers for different flavors of manifolds: oriented, spin, almost complex, framed, ...

Manifolds and Algebra: Abelian Groups

Pontrjagin and Thom introduced abelian groups Ω_k of manifolds called bordism groups—equivalence classes of closed k-manifolds:

The abelian group operation is disjoint union. (Cartesian product defines a ring structure on $\bigoplus_k \Omega_k$)

Thom showed how to compute Ω_k via homotopy theory: $\Omega_k = \pi_k MO$. Different answers for different flavors of manifolds: oriented, spin, almost complex, framed, ...

Many applications in homotopy theory: (i) framed bordism groups are stable homotopy groups of spheres (Pontrjagin-Thom construction); (ii) complex cobordism is universal among certain cohomology theories (Quillen)

A more elaborate algebraic structure is obtained if we (i) do not identify bordant manifolds and (ii) remember the bordisms. So fix n and introduce a **bordism category** Bo_n whose objects are closed (n-1)-manifolds and morphisms are compact n-manifolds $X: Y_0 \to Y_1$

Domain/ Incoming

Codomain/ Outgoing

A more elaborate algebraic structure is obtained if we (i) do not identify bordant manifolds and (ii) remember the bordisms. So fix n and introduce a **bordism category** Bo_n whose objects are closed (n-1)-manifolds and morphisms are compact n-manifolds $X: Y_0 \to Y_1$

Domain/ Incoming

X

Codomain/ Outgoing

 $Y_0 \xrightarrow{X} Y_1 \xrightarrow{X'} Y_2$

Identify diffeomorphic bordisms. Composition is gluing of manifolds:

X'

A more elaborate algebraic structure is obtained if we (i) do not identify bordant manifolds and (ii) remember the bordisms. So fix n and introduce a **bordism category** Bo_n whose objects are closed (n-1)-manifolds and morphisms are compact n-manifolds $X: Y_0 \to Y_1$

Domain/ Incoming

X

Codomain/ Outgoing

 $Y_0 \xrightarrow{X} Y_1 \xrightarrow{X'} Y_2$

Identify diffeomorphic bordisms. Composition is gluing of manifolds:

X'

Disjoint union gives a symmetric monoidal structure on Bo_n .

A more elaborate algebraic structure is obtained if we (i) do not identify bordant manifolds and (ii) remember the bordisms. So fix n and introduce a **bordism category** Bo_n whose objects are closed (n-1)-manifolds and morphisms are compact n-manifolds $X: Y_0 \to Y_1$

Domain/ Incoming

Х

Codomain/ Outgoing

 $Y_0 \xrightarrow{X} Y_1 \xrightarrow{X'} Y_2$

Identify diffeomorphic bordisms. Composition is gluing of manifolds:

Disjoint union gives a symmetric monoidal structure on Bo_n .

Recover the abelian group Ω_{n-1} by declaring all morphisms to be invertible=*iso*morphisms. New information from non-invertibility.

 $\operatorname{Vect}_{\mathbb{C}}$ = symmetric monoidal category (\otimes) of complex vector spaces.

Definition: An *n*-dimensional TQFT is a homomorphism

 $F: \operatorname{Bo}_n \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

 $\operatorname{Vect}_{\mathbb{C}}$ = symmetric monoidal category (\otimes) of complex vector spaces.

Definition: An *n*-dimensional TQFT is a homomorphism

 $F: \operatorname{Bo}_n \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

This slick definition encodes an algebraic understanding of field theory descended from Witten, Quillen, Segal, Atiyah, Segal defines conformal and more general QFTs via *geometric* bordism categories.

 $\operatorname{Vect}_{\mathbb{C}}$ = symmetric monoidal category (\otimes) of complex vector spaces.

Definition: An *n*-dimensional TQFT is a homomorphism

 $F: \operatorname{Bo}_n \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

This slick definition encodes an algebraic understanding of field theory descended from Witten, Quillen, Segal, Atiyah, Segal defines conformal and more general QFTs via *geometric* bordism categories.

locality (compositions) multiplicativity (monoidal structure)

 $\operatorname{Vect}_{\mathbb{C}}$ = symmetric monoidal category (\otimes) of complex vector spaces.

Definition: An *n*-dimensional TQFT is a homomorphism

 $F: \operatorname{Bo}_n \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

This slick definition encodes an algebraic understanding of field theory descended from Witten, Quillen, Segal, Atiyah, Segal defines conformal and more general QFTs via *geometric* bordism categories.

locality (compositions) multiplicativity (monoidal structure)

 E_n -algebra structure on $S^{n-1} \in Bo_n$ via the generalized "pair of pants": $D^n \setminus (D^n \amalg D^n) \colon S^{n-1} \amalg S^{n-1} \longrightarrow S^{n-1}$

= • •

- +- +- +

 $\operatorname{Vect}_{\mathbb{C}}$ = symmetric monoidal category (\otimes) of complex vector spaces.

Definition: An *n*-dimensional TQFT is a homomorphism

 $F: \operatorname{Bo}_n \longrightarrow \operatorname{Vect}_{\mathbb{C}}$

This slick definition encodes an algebraic understanding of field theory descended from Witten, Quillen, Segal, Atiyah, Segal defines conformal and more general QFTs via *geometric* bordism categories.

locality (compositions) multiplicativity (monoidal structure)

 E_n -algebra structure on $S^{n-1} \in Bo_n$ via the generalized "pair of pants":

 $D^n \backslash (D^n \amalg D^n) \colon S^{n-1} \amalg S^{n-1} \longrightarrow S^{n-1}$

- +- +- +

Therefore, $F(S^{n-1}) \in \mathbf{Vect}_{\mathbb{C}}$ is also an E_n -algebra (OPE)

A more refined version of Bo_n is a *topological category* with a *space* of *n*-dimensional bordisms between fixed (n-1)-manifolds.

A more refined version of Bo_n is a *topological category* with a *space* of *n*-dimensional bordisms between fixed (n-1)-manifolds.

Algebraic topology provides a construction which inverts all morphisms: topological category \rightarrow topological space. With abelian group structure: symmetric monoidal topological category \rightarrow spectrum.

A more refined version of Bo_n is a *topological category* with a *space* of *n*-dimensional bordisms between fixed (n-1)-manifolds.

Algebraic topology provides a construction which inverts all morphisms: topological category \rightarrow topological space. With abelian group structure: symmetric monoidal topological category \rightarrow spectrum.

Galatius-Madsen-Tillmann-Weiss (2006) identify the spectrum $|Bo_n| = MT$. For framed manifolds it is the sphere spectrum.

A more refined version of Bo_n is a topological category with a space of *n*-dimensional bordisms between fixed (n-1)-manifolds.

Algebraic topology provides a construction which inverts all morphisms: topological category \rightarrow topological space. With abelian group structure: symmetric monoidal topological category \rightarrow spectrum.

Galatius-Madsen-Tillmann-Weiss (2006) identify the spectrum $|\operatorname{Bo}_n| = MT$. For framed manifolds it is the sphere spectrum.

Remark: Topological spaces give rise to (higher) categories in which all morphisms are invertible: the fundamental *groupoid*

A more refined version of Bo_n is a *topological category* with a *space* of *n*-dimensional bordisms between fixed (n-1)-manifolds.

Algebraic topology provides a construction which inverts all morphisms: topological category \rightarrow topological space. With abelian group structure: symmetric monoidal topological category \rightarrow spectrum.

Galatius-Madsen-Tillmann-Weiss (2006) identify the spectrum $|Bo_n| = MT$. For framed manifolds it is the sphere spectrum.

Remark: Topological spaces give rise to (higher) categories in which all morphisms are invertible: the fundamental *groupoid*

Definition (F.-Moore): A field theory $\alpha \colon \operatorname{Bo}_n \to \operatorname{Vect}_{\mathbb{C}}$ is invertible if $\alpha(Y^{n-1}) \in \operatorname{Vect}_{\mathbb{C}}$ is a line and $\alpha(X^n)$ is an isomorphism between lines for all Y, X.

A more refined version of Bo_n is a *topological category* with a *space* of *n*-dimensional bordisms between fixed (n-1)-manifolds.

Algebraic topology provides a construction which inverts all morphisms: topological category \rightarrow topological space. With abelian group structure: symmetric monoidal topological category \rightarrow spectrum.

Galatius-Madsen-Tillmann-Weiss (2006) identify the spectrum $|Bo_n| = MT$. For framed manifolds it is the sphere spectrum.

Remark: Topological spaces give rise to (higher) categories in which all morphisms are invertible: the fundamental *groupoid*

Definition (F.-Moore): A field theory $\alpha \colon \operatorname{Bo}_n \to \operatorname{Vect}_{\mathbb{C}}$ is invertible if $\alpha(Y^{n-1}) \in \operatorname{Vect}_{\mathbb{C}}$ is a line and $\alpha(X^n)$ is an isomorphism between lines for all Y, X.

 α factors through MT spectrum \Rightarrow homotopy theory techniques

The notion of extended QFT was explored in various guises in the early '90s by several mathematicians and has great current interest:

The notion of **extended QFT** was explored in various guises in the early '90s by several mathematicians and has great current interest:

• 2-dimensional theories often include categories attached to a point: D-branes, Fukaya category, ...

The notion of **extended QFT** was explored in various guises in the early '90s by several mathematicians and has great current interest:

- 2-dimensional theories often include categories attached to a point: D-branes, Fukaya category, ...
- 4-dimensional supersymmetric gauge theories have categories of line operators. Also, the category attached to a surface plays a key role in the geometric Langlands story.

The notion of **extended QFT** was explored in various guises in the early '90s by several mathematicians and has great current interest:

- 2-dimensional theories often include categories attached to a point: D-branes, Fukaya category, ...
- 4-dimensional supersymmetric gauge theories have categories of line operators. Also, the category attached to a surface plays a key role in the geometric Langlands story.
- Chern-Simons (1-2-3) theory F has a linear category $F(S^1)$. For gauge group G two descriptions of $F(S^1)$: positive energy representations of LG, or representations of a quantum group.

The notion of **extended QFT** was explored in various guises in the early '90s by several mathematicians and has great current interest:

- 2-dimensional theories often include categories attached to a point: D-branes, Fukaya category, ...
- 4-dimensional supersymmetric gauge theories have categories of line operators. Also, the category attached to a surface plays a key role in the geometric Langlands story.
- Chern-Simons (1-2-3) theory F has a linear category $F(S^1)$. For gauge group G two descriptions of $F(S^1)$: positive energy representations of LG, or representations of a quantum group.

A fully extended theory (down to 0-manifolds) is completely local \Rightarrow powerful computational techniques, simpler classification

The notion of **extended QFT** was explored in various guises in the early '90s by several mathematicians and has great current interest:

- 2-dimensional theories often include categories attached to a point: D-branes, Fukaya category, ...
- 4-dimensional supersymmetric gauge theories have categories of line operators. Also, the category attached to a surface plays a key role in the geometric Langlands story.
- Chern-Simons (1-2-3) theory F has a linear category $F(S^1)$. For gauge group G two descriptions of $F(S^1)$: positive energy representations of LG, or representations of a quantum group.

A fully extended theory (down to 0-manifolds) is completely local \Rightarrow powerful computational techniques, simpler classification

Longstanding Question: Can 1-2-3 Chern-Simons theory be extended to a 0-1-2-3 theory? If so, what is attached to a point?

The notion of **extended QFT** was explored in various guises in the early '90s by several mathematicians and has great current interest:

- 2-dimensional theories often include categories attached to a point: D-branes, Fukaya category, ...
- 4-dimensional supersymmetric gauge theories have categories of line operators. Also, the category attached to a surface plays a key role in the geometric Langlands story.
- Chern-Simons (1-2-3) theory F has a linear category $F(S^1)$. For gauge group G two descriptions of $F(S^1)$: positive energy representations of LG, or representations of a quantum group.

A fully extended theory (down to 0-manifolds) is completely local \Rightarrow powerful computational techniques, simpler classification

Longstanding Question: Can 1-2-3 Chern-Simons theory be extended to a 0-1-2-3 theory? If so, what is attached to a point?

Partial results in special cases (F., Walker, F.-Hopkins-Lurie-Teleman, Kapustin-Saulina, Bartels-Douglas-Henriques).

Objects are compact 0-manifolds, 1-morphisms are compact 1-manifolds with boundary, 2-morphisms are compact 2-manifolds with corners, ...

Objects are compact 0-manifolds, 1-morphisms are compact 1-manifolds with boundary, 2-morphisms are compact 2-manifolds with corners, ...

Definition: An extended *n*-dimensional TQFT is a homomorphism $F: \operatorname{Bord}_n \longrightarrow \mathcal{C}$

for some (∞, n) -category \mathcal{C} .

Objects are compact 0-manifolds, 1-morphisms are compact 1-manifolds with boundary, 2-morphisms are compact 2-manifolds with corners, ...

x Y_1 **Z** $Z_0 \underbrace{\bigvee_{Y_0}}_{Y_1} Z_1$

Definition: An extended *n*-dimensional TQFT is a homomorphism $F: \operatorname{Bord}_n \longrightarrow \mathcal{C}$ for some (∞, n) -category \mathcal{C} .

For example, if n = 3 then typically $F(S^1)$ is a \mathbb{C} -linear category, also an E_2 -algebra. $E_2(\mathbf{Cat}_{\mathbb{C}}) = \beta \otimes \mathbf{Cat}_{\mathbb{C}}$ are braided tensor categories.

A powerful theorem in topological field theory, conjectured by Baez-Dolan then elaborated and proved by Lurie (w/Hopkins for n = 2), asserts that an extended TQFT is determined by its value on a point.

A powerful theorem in topological field theory, conjectured by Baez-Dolan then elaborated and proved by Lurie (w/Hopkins for n = 2), asserts that an extended TQFT is determined by its value on a point.

Theorem: For framed manifolds the map $\operatorname{Hom}(\operatorname{Bord}_n, \mathcal{C}) \longrightarrow \mathcal{C}$ $F \longmapsto F(\operatorname{pt})$

is an isomorphism onto the fully dualizable objects in \mathcal{C} .

A powerful theorem in topological field theory, conjectured by Baez-Dolan then elaborated and proved by Lurie (w/Hopkins for n = 2), asserts that an extended TQFT is determined by its value on a point.

Theorem: For framed manifolds the map $\operatorname{Hom}(\operatorname{Bord}_n, \mathcal{C}) \longrightarrow \mathcal{C}$ $F \longmapsto F(\operatorname{pt})$

is an isomorphism onto the fully dualizable objects in \mathcal{C} .

Remark: This is really a theorem about framed $Bord_n$, asserting that it is freely generated by a single generator.

A powerful theorem in topological field theory, conjectured by Baez-Dolan then elaborated and proved by Lurie (w/Hopkins for n = 2), asserts that an extended TQFT is determined by its value on a point.

Theorem: For framed manifolds the map $\operatorname{Hom}(\operatorname{Bord}_n, \mathcal{C}) \longrightarrow \mathcal{C}$ $F \longmapsto F(\operatorname{pt})$

is an isomorphism onto the fully dualizable objects in \mathcal{C} .

Remark: This is really a theorem about framed $Bord_n$, asserting that it is freely generated by a single generator.

The proof, only sketched heretofore, has at its heart a contractibility theorem in *Morse theory* (Igusa, Galatius). There are variations for other bordism categories of manifolds, also manifolds with singularities.

A powerful theorem in topological field theory, conjectured by Baez-Dolan then elaborated and proved by Lurie (w/Hopkins for n = 2), asserts that an extended TQFT is determined by its value on a point.

Theorem: For framed manifolds the map $\operatorname{Hom}(\operatorname{Bord}_n, \mathcal{C}) \longrightarrow \mathcal{C}$ $F \longmapsto F(\operatorname{pt})$

is an isomorphism onto the fully dualizable objects in \mathcal{C} .

Remark: This is really a theorem about framed $Bord_n$, asserting that it is freely generated by a single generator.

The proof, only sketched heretofore, has at its heart a contractibility theorem in *Morse theory* (Igusa, Galatius). There are variations for other bordism categories of manifolds, also manifolds with singularities.

Full dualizable is a finiteness condition. For example, in a TQFT the vector spaces attached to closed (n-1)-manifolds are finite dimensional. In an extended theory F(pt) satisfies analogous finiteness conditions.

Spheres and Invertibility

Theorem (F.-Teleman): Let α : Bord_n $\rightarrow C$ be an extended TQFT such that $\alpha(S^k)$ is invertible. Then if $n \ge 2k$ the field theory α is invertible.
Theorem (F.-Teleman): Let α : Bord_n $\rightarrow C$ be an extended TQFT such that $\alpha(S^k)$ is invertible. Then if $n \ge 2k$ the field theory α is invertible.

Thus $\alpha(X)$ is invertible for all manifolds X. This means α factors through the Madsen-Tillmann spectrum constructed from Bord_n, so is amenable to homotopy theory techniques.

Theorem (F.-Teleman): Let α : Bord_n $\rightarrow C$ be an extended TQFT such that $\alpha(S^k)$ is invertible. Then if $n \ge 2k$ the field theory α is invertible.

Thus $\alpha(X)$ is invertible for all manifolds X. This means α factors through the Madsen-Tillmann spectrum constructed from Bord_n, so is amenable to homotopy theory techniques.

Remark 1: We have only checked the details carefully for *oriented* manifolds; it is probably true for *stably framed* manifolds as well.

Theorem (F.-Teleman): Let α : Bord_n $\rightarrow C$ be an extended TQFT such that $\alpha(S^k)$ is invertible. Then if $n \ge 2k$ the field theory α is invertible.

Thus $\alpha(X)$ is invertible for all manifolds X. This means α factors through the Madsen-Tillmann spectrum constructed from Bord_n, so is amenable to homotopy theory techniques.

Remark 1: We have only checked the details carefully for *oriented* manifolds; it is probably true for *stably framed* manifolds as well.

Remark 2: Again this is a theorem about $Bord_n$, asserting that if we *localize* by inverting S^k , then every manifold is inverted.

Theorem (F.-Teleman): Let α : Bord_n $\rightarrow C$ be an extended TQFT such that $\alpha(S^k)$ is invertible. Then if $n \ge 2k$ the field theory α is invertible.

Thus $\alpha(X)$ is invertible for all manifolds X. This means α factors through the Madsen-Tillmann spectrum constructed from Bord_n, so is amenable to homotopy theory techniques.

Remark 1: We have only checked the details carefully for *oriented* manifolds; it is probably true for *stably framed* manifolds as well.

Remark 2: Again this is a theorem about $Bord_n$, asserting that if we *localize* by inverting S^k , then every manifold is inverted.

Remark 3: As I explain later we apply this to n = 4, k = 2, and $C = \beta \otimes \operatorname{Cat}_{\mathbb{C}}$ the symmetric monoidal 4-category of braided tensor categories. Then α is the **anomaly** theory for Chern-Simons, and we construct Chern-Simons as a 0-1-2-3 *anomalous* theory.

Proof Sketch

First, by the cobordism hypothesis (easy part) it suffices to prove that $\alpha(\text{pt}_+)$ is invertible; '+' denotes the orientation. We omit ' α ' and simply say ' pt_+ is invertible'.

Proof Sketch

First, by the cobordism hypothesis (easy part) it suffices to prove that $\alpha(\text{pt}_+)$ is invertible; '+' denotes the orientation. We omit ' α ' and simply say ' pt_+ is invertible'.

We prove the 0-manifolds pt_+ and pt_- are inverse:

$$S^{0} = \operatorname{pt}_{+} \amalg \operatorname{pt}_{-} = \operatorname{pt}_{+} \otimes \operatorname{pt}_{-} \cong \varnothing^{0} = 1$$

Time

f∨

with inverse isomorphisms given by

$$f = D^1 \colon 1 \longrightarrow S^0$$
$$f^{\vee} = D^1 \colon S^0 \longrightarrow 1$$

Proof Sketch

First, by the cobordism hypothesis (easy part) it suffices to prove that $\alpha(\text{pt}_+)$ is invertible; '+' denotes the orientation. We omit ' α ' and simply say ' pt_+ is invertible'.

We prove the 0-manifolds pt_+ and pt_- are inverse:

$$S^0 = \mathrm{pt}_+ \amalg \mathrm{pt}_- = \mathrm{pt}_+ \otimes \mathrm{pt}_- \cong \varnothing^0 = 1$$

Time

f∨

with inverse isomorphisms given by

$$f = D^1 \colon 1 \longrightarrow S^0$$
$$f^{\vee} = D^1 \colon S^0 \longrightarrow 1$$

We arrive at a statement about 1-manifolds: the compositions

$$f^{\vee} \circ f = S^1 \colon 1 \longrightarrow 1$$
$$f \circ f^{\vee} \qquad \colon S^0 \longrightarrow S$$

are the identity.

Lemma: Suppose \mathcal{D} is a symmetric monoidal category, $x \in \mathcal{D}$ is invertible, and $g: 1 \to x$ and $h: x \to 1$ satisfy $h \circ g = \mathrm{id}_1$. Then $g \circ h = \mathrm{id}_x$ and so each of g, h is an isomorphism.

Lemma: Suppose \mathcal{D} is a symmetric monoidal category, $x \in \mathcal{D}$ is invertible, and $g: 1 \to x$ and $h: x \to 1$ satisfy $h \circ g = \mathrm{id}_1$. Then $g \circ h = \mathrm{id}_x$ and so each of g, h is an isomorphism.

Proof sketch: x^{-1} is a dual of x, $g^{\vee} = x^{-1}g \colon x^{-1} \to 1$, $h^{\vee} = x^{-1}h \colon 1 \to x^{-1}$, so the lemma follows from $(h \circ g)^{\vee} = \operatorname{id}_1$.

Lemma: Suppose \mathcal{D} is a symmetric monoidal category, $x \in \mathcal{D}$ is invertible, and $g: 1 \to x$ and $h: x \to 1$ satisfy $h \circ g = \mathrm{id}_1$. Then $g \circ h = \mathrm{id}_x$ and so each of g, h is an isomorphism.

Proof sketch: x^{-1} is a dual of x, $g^{\vee} = x^{-1}g \colon x^{-1} \to 1$, $h^{\vee} = x^{-1}h \colon 1 \to x^{-1}$, so the lemma follows from $(h \circ g)^{\vee} = \mathrm{id}_1$.

Apply the lemma to the 2-morphisms

 $g = D^2 \colon 1 \longrightarrow S^1$ $h = S^1 \times S^1 \backslash D^2 \colon S^1 \longrightarrow 1$

Conclude that $S^1 \cong 1$ and $S^2 = g^{\vee} \circ g$ is invertible. Also, $g \circ g^{\vee} = \operatorname{id}_{S^1} \otimes S^2$, a simple surgery. Recall that we must prove that the compositions

$$f^{\vee} \circ f = S^1 \colon 1 \longrightarrow 1$$
$$f \circ f^{\vee} \qquad \colon S^0 \longrightarrow S^0$$

are the identity. We just did the first.

Recall that we must prove that the compositions

$$f^{\vee} \circ f = S^1 \colon 1 \longrightarrow 1$$
$$f \circ f^{\vee} \qquad \colon S^0 \longrightarrow S^0$$

are the identity. We just did the first.

For the second the identity is $and we will show that the saddle <math>\sigma: f \circ f^{\vee} \to \mathrm{id}_{S^0}$ is an isomorphism with inverse $\sigma^{\vee} \otimes S^2$.

The saddle σ is diffeomorphic to $D^1 \times D^1$, which is a manifold with corners. Its dual σ^{\vee} is the time-reversed bordism.

Inside each composition $\sigma^{\vee} \circ \sigma$ and $\sigma \circ \sigma^{\vee}$ we find a cylinder $\mathrm{id}_{S^1} = D^1 \times S^1$, which is $(S^2)^{-1} \otimes g \circ g^{\vee} = (S^2)^{-1} \otimes (S^0 \times D^2)$ by a previous argument. Making the replacement we get the desired isomorphisms to identity maps.

Inside each composition $\sigma^{\vee} \circ \sigma$ and $\sigma \circ \sigma^{\vee}$ we find a cylinder $\mathrm{id}_{S^1} = D^1 \times S^1$, which is $(S^2)^{-1} \otimes g \circ g^{\vee} = (S^2)^{-1} \otimes (S^0 \times D^2)$ by a previous argument. Making the replacement we get the desired isomorphisms to identity maps.

This completes the proof of the theorem in n = 2 dimensions.

Inside each composition $\sigma^{\vee} \circ \sigma$ and $\sigma \circ \sigma^{\vee}$ we find a cylinder $\mathrm{id}_{S^1} = D^1 \times S^1$, which is $(S^2)^{-1} \otimes g \circ g^{\vee} = (S^2)^{-1} \otimes (S^0 \times D^2)$ by a previous argument. Making the replacement we get the desired isomorphisms to identity maps.

This completes the proof of the theorem in n = 2 dimensions.

In higher dimensions we see a kind of **Poincaré duality** phenomenon: we prove invertibility by assuming it in the middle dimension. A new ingredient—a dimensional reduction argument—also appears.

Application to Modular Tensor Categories

Let F denote the usual quantum Chern-Simons 1-2-3 theory for some gauge group G. It was introduced by Witten and constructed by **Reshetikhin-Turaev** from quantum group data. The latter construction works for any modular tensor category A, a braided tensor category which satisfies finiteness conditions (semisimple with finitely many simples, duality, etc.) and a nondegeneracy condition (the S matrix is invertible). Then F is a 1-2-3 theory with $F(S^1) = A$.

Application to Modular Tensor Categories

Let F denote the usual quantum Chern-Simons 1-2-3 theory for some gauge group G. It was introduced by Witten and constructed by Reshetikhin-Turaev from quantum group data. The latter construction works for any modular tensor category A, a braided tensor category which satisfies finiteness conditions (semisimple with finitely many simples, duality, etc.) and a nondegeneracy condition (the S matrix is invertible). Then F is a 1-2-3 theory with $F(S^1) = A$.

Let A be a braided tensor category with braiding $\beta(x, y) \colon x \otimes y \to y \otimes x$.

Theorem: The nondegeneracy condition on A is equivalent to

 $\{x \in A : \beta(y, x) \circ \beta(x, y) = \mathrm{id}_{x \otimes y} \text{ for all } y \in A\} = \{\mathrm{multiples of } 1 \in A\}.$

This is proved by Müger and others.

Application to Modular Tensor Categories

Let F denote the usual quantum Chern-Simons 1-2-3 theory for some gauge group G. It was introduced by Witten and constructed by Reshetikhin-Turaev from quantum group data. The latter construction works for any modular tensor category A, a braided tensor category which satisfies finiteness conditions (semisimple with finitely many simples, duality, etc.) and a nondegeneracy condition (the S matrix is invertible). Then F is a 1-2-3 theory with $F(S^1) = A$.

Let A be a braided tensor category with braiding $\beta(x, y) \colon x \otimes y \to y \otimes x$. **Theorem:** The nondegeneracy condition on A is equivalent to

 $\{x \in A : \beta(y, x) \circ \beta(x, y) = \operatorname{id}_{x \otimes y} \text{ for all } y \in A\} = \{ \text{multiples of } 1 \in A \}.$

This is proved by Müger and others.

Recall that $\beta \otimes \operatorname{Cat}_{\mathbb{C}} = E_2(\operatorname{Cat}_{\mathbb{C}}).$

Braided tensor categories form the objects of a 4-category!

object	category number		
element of $\mathbb C$	-1		
C-vector space	0		
$\mathbf{Vect}_{\mathbb{C}}$	1		
$\mathbf{Cat}_{\mathbb{C}}$	2		
$\otimes \mathbf{Cat}_{\mathbb{C}} = E_1(\mathbf{Cat}_{\mathbb{C}})$	3 -	++-	-
$\beta \otimes \mathbf{Cat}_{\mathbb{C}} = E_2(\mathbf{Cat}_{\mathbb{C}})$	4	••	

Braided tensor categories form the objects of a 4-category!

object	category number	
element of $\mathbb C$	-1	
\mathbb{C} -vector space	0	
$\mathbf{Vect}_{\mathbb{C}}$	1	
$\mathbf{Cat}_{\mathbb{C}}$	2	
$\otimes \mathbf{Cat}_{\mathbb{C}} = E_1(\mathbf{Cat}_{\mathbb{C}})$	3 -	+- +- +
$\beta \otimes \mathbf{Cat}_{\mathbb{C}} = E_2(\mathbf{Cat}_{\mathbb{C}})$	4	••

Morita: Morphisms of tensor categories are **bimodules** and morphisms of braided tensor categories are tensor categories which are bimodules.

Braided tensor categories form the objects of a 4-category!

Morita: Morphisms of tensor categories are **bimodules** and morphisms of braided tensor categories are tensor categories which are bimodules.

So, given sufficient finiteness, a braided tensor category determines (using the cobordism hypothesis) an extended 4-dimensional TQFT

 $\alpha\colon \operatorname{Bord}_4 \to \beta \otimes \operatorname{Cat}_{\mathbb{C}}$

 $\alpha(S^2) = \{x \in A : \beta(y, x) \circ \beta(x, y) = \operatorname{id}_{x \otimes y} \text{ for all } y \in A\} \in \operatorname{Cat}_{\mathbb{C}}$

Recall that for a modular tensor category this "higher center" of A is the tensor unit $1 = \text{Vect}_{\mathbb{C}}$, which in particular is invertible.

 $\alpha(S^2) = \{x \in A : \beta(y, x) \circ \beta(x, y) = \operatorname{id}_{x \otimes y} \text{ for all } y \in A\} \in \operatorname{Cat}_{\mathbb{C}}$ Recall that for a modular tensor category this "higher center" of A is the tensor unit $1 = \operatorname{Vect}_{\mathbb{C}}$, which in particular is invertible.

Thus, modulo careful verification of finiteness conditions, we have

Corollary: A modular tensor category $A \in \beta \otimes \mathbf{Cat}_{\mathbb{C}}$ is invertible, so determines an invertible field theory α : Bord₄ $\rightarrow \beta \otimes \mathbf{Cat}_{\mathbb{C}}$.

 $\alpha(S^2) = \{x \in A : \beta(y, x) \circ \beta(x, y) = \operatorname{id}_{x \otimes y} \text{ for all } y \in A\} \in \operatorname{Cat}_{\mathbb{C}}$ Recall that for a modular tensor category this "higher center" of A is the tensor unit $1 = \operatorname{Vect}_{\mathbb{C}}$, which in particular is invertible.

Thus, modulo careful verification of finiteness conditions, we have

Corollary: A modular tensor category $A \in \beta \otimes \mathbf{Cat}_{\mathbb{C}}$ is invertible, so determines an invertible field theory $\alpha \colon \operatorname{Bord}_4 \to \beta \otimes \mathbf{Cat}_{\mathbb{C}}$.

Remark: This is a theorem in algebra, proved using the universal "algebra", rather (∞, n) -category, of manifolds with corners.

 $\alpha(S^2) = \{x \in A : \beta(y, x) \circ \beta(x, y) = \operatorname{id}_{x \otimes y} \text{ for all } y \in A\} \in \operatorname{Cat}_{\mathbb{C}}$ Recall that for a modular tensor category this "higher center" of A is the tensor unit $1 = \operatorname{Vect}_{\mathbb{C}}$, which in particular is invertible.

Thus, modulo careful verification of finiteness conditions, we have

Corollary: A modular tensor category $A \in \beta \otimes \mathbf{Cat}_{\mathbb{C}}$ is invertible, so determines an invertible field theory $\alpha \colon \operatorname{Bord}_4 \to \beta \otimes \mathbf{Cat}_{\mathbb{C}}$.

Remark: This is a theorem in algebra, proved using the universal "algebra", rather (∞, n) -category, of manifolds with corners.

We believe that this is the anomaly theory for a 0-1-2-3 extension of the 1-2-3 theory F with $F(S^1) = A$. In the remainder of the lecture I will explain this idea.

The top-level values of an *n*-dimensional field theory $F \colon Bo_n \to \mathbf{Vect}_{\mathbb{C}}$ are complex numbers $F(X^n) \in \mathbb{C}$, the *partition function* of a closed *n*-manifold. In an **anomalous field theory** f there is a complex line L_X associated to X and the partition function $f(X) \in L_X$ lies in that line.

The top-level values of an *n*-dimensional field theory $F \colon Bo_n \to \mathbf{Vect}_{\mathbb{C}}$ are complex numbers $F(X^n) \in \mathbb{C}$, the *partition function* of a closed *n*-manifold. In an **anomalous field theory** f there is a complex line L_X associated to X and the partition function $f(X) \in L_X$ lies in that line.

The lines L_X obey locality and multiplicativity laws, so typically belong to an (n + 1)-dimensional *invertible* field theory $\alpha \colon \operatorname{Bo}_{n+1} \to \operatorname{Vect}_{\mathbb{C}}$.

The top-level values of an *n*-dimensional field theory $F: Bo_n \to \operatorname{Vect}_{\mathbb{C}}$ are complex numbers $F(X^n) \in \mathbb{C}$, the *partition function* of a closed *n*-manifold. In an **anomalous field theory** f there is a complex line L_X associated to X and the partition function $f(X) \in L_X$ lies in that line.

The lines L_X obey locality and multiplicativity laws, so typically belong to an (n + 1)-dimensional *invertible* field theory $\alpha \colon \operatorname{Bo}_{n+1} \to \operatorname{Vect}_{\mathbb{C}}$.

f is an n-dimensional theory with values in the (n + 1)-dimensional theory α . We write $f: 1 \to \alpha$ in the sense that $f(X): 1 \to \alpha(X)$ for all X. (1 is the trivial theory.) If α is invertible we say f is anomalous with anomaly α . The same ideas apply in *extended* field theories.

The top-level values of an *n*-dimensional field theory $F \colon Bo_n \to \operatorname{Vect}_{\mathbb{C}}$ are complex numbers $F(X^n) \in \mathbb{C}$, the *partition function* of a closed *n*-manifold. In an **anomalous field theory** f there is a complex line L_X associated to X and the partition function $f(X) \in L_X$ lies in that line.

The lines L_X obey locality and multiplicativity laws, so typically belong to an (n + 1)-dimensional *invertible* field theory $\alpha \colon \operatorname{Bo}_{n+1} \to \operatorname{Vect}_{\mathbb{C}}$.

f is an n-dimensional theory with values in the (n + 1)-dimensional theory α . We write $f: 1 \to \alpha$ in the sense that $f(X): 1 \to \alpha(X)$ for all X. (1 is the trivial theory.) If α is invertible we say f is anomalous with anomaly α . The same ideas apply in *extended* field theories.

Remark: The notion of α -valued field theory makes sense even if α is not invertible and also for non-topological field theories. Examples: (i) n = 2 chiral WZW valued in topological Chern-Simons, (ii) n = 6 (0,2)-(super)conformal field theory valued in a 7-dimensional theory.

The top-level values of an *n*-dimensional field theory $F: Bo_n \to \operatorname{Vect}_{\mathbb{C}}$ are complex numbers $F(X^n) \in \mathbb{C}$, the *partition function* of a closed *n*-manifold. In an **anomalous field theory** f there is a complex line L_X associated to X and the partition function $f(X) \in L_X$ lies in that line.

The lines L_X obey locality and multiplicativity laws, so typically belong to an (n + 1)-dimensional *invertible* field theory $\alpha \colon \operatorname{Bo}_{n+1} \to \operatorname{Vect}_{\mathbb{C}}$.

f is an n-dimensional theory with values in the (n + 1)-dimensional theory α . We write $f: 1 \to \alpha$ in the sense that $f(X): 1 \to \alpha(X)$ for all X. (1 is the trivial theory.) If α is invertible we say f is anomalous with anomaly α . The same ideas apply in *extended* field theories.

Remark: The notion of α -valued field theory makes sense even if α is not invertible and also for non-topological field theories. Examples: (i) n = 2 chiral WZW valued in topological Chern-Simons, (ii) n = 6 (0,2)-(super)conformal field theory valued in a 7-dimensional theory.

Remark: This is a specialization of the notion of a **domain wall**.

Recall that a modular tensor category A determines an invertible extended field theory α : Bord₄ $\rightarrow \beta \otimes \mathbf{Cat}_{\mathbb{C}}$ with values in the 4-category of braided tensor categories, or equivalently E_2 -algebras in $\mathbf{Cat}_{\mathbb{C}}$.

Recall that a modular tensor category A determines an invertible extended field theory α : Bord₄ $\rightarrow \beta \otimes \mathbf{Cat}_{\mathbb{C}}$ with values in the 4-category of braided tensor categories, or equivalently E_2 -algebras in $\mathbf{Cat}_{\mathbb{C}}$.

An ordinary algebra A is in a natural way a left A-module. This holds for E_2 -algebras, and in that context the module defines a morphism $A: 1 \to A$ in the 4-category $\beta \otimes \mathbf{Cat}_{\mathbb{C}}$.

Recall that a modular tensor category A determines an invertible extended field theory α : Bord₄ $\rightarrow \beta \otimes \mathbf{Cat}_{\mathbb{C}}$ with values in the 4-category of braided tensor categories, or equivalently E_2 -algebras in $\mathbf{Cat}_{\mathbb{C}}$.

An ordinary algebra A is in a natural way a left A-module. This holds for E_2 -algebras, and in that context the module defines a morphism $A: 1 \to A$ in the 4-category $\beta \otimes \mathbf{Cat}_{\mathbb{C}}$.

Let A be a modular tensor category. Modulo careful verification of finiteness conditions, a version of the cobordism hypothesis constructs from the module A a 0-1-2-3-dimensional anomalous field theory $f: 1 \rightarrow \alpha$ with anomaly α .

Recall that a modular tensor category A determines an invertible extended field theory α : Bord₄ $\rightarrow \beta \otimes \mathbf{Cat}_{\mathbb{C}}$ with values in the 4-category of braided tensor categories, or equivalently E_2 -algebras in $\mathbf{Cat}_{\mathbb{C}}$.

An ordinary algebra A is in a natural way a left A-module. This holds for E_2 -algebras, and in that context the module defines a morphism $A: 1 \to A$ in the 4-category $\beta \otimes \mathbf{Cat}_{\mathbb{C}}$.

Let A be a modular tensor category. Modulo careful verification of finiteness conditions, a version of the cobordism hypothesis constructs from the module A a 0-1-2-3-dimensional anomalous field theory $f: 1 \rightarrow \alpha$ with anomaly α .

Claim: On 1-, 2-, and 3-dimensional manifolds we can trivialize the anomaly α and so identify f with the Reshetikhin-Turaev 1-2-3 theory F associated to the modular tensor category A.

Recall that a modular tensor category A determines an invertible extended field theory α : Bord₄ $\rightarrow \beta \otimes \mathbf{Cat}_{\mathbb{C}}$ with values in the 4-category of braided tensor categories, or equivalently E_2 -algebras in $\mathbf{Cat}_{\mathbb{C}}$.

An ordinary algebra A is in a natural way a left A-module. This holds for E_2 -algebras, and in that context the module defines a morphism $A: 1 \to A$ in the 4-category $\beta \otimes \mathbf{Cat}_{\mathbb{C}}$.

Let A be a modular tensor category. Modulo careful verification of finiteness conditions, a version of the cobordism hypothesis constructs from the module A a 0-1-2-3-dimensional anomalous field theory $f: 1 \rightarrow \alpha$ with anomaly α .

Claim: On 1-, 2-, and 3-dimensional manifolds we can trivialize the anomaly α and so identify f with the Reshetikhin-Turaev 1-2-3 theory F associated to the modular tensor category A.

For example, the composition $1 \xrightarrow{f(S^1)} \alpha(S^1) \xrightarrow{\alpha(D^2)} 1$ is $F(S^1) = A$, where the bordism $D^2: S^1 \to 1$ is used to trivialize the anomaly on S^1 .