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Manifolds and Algebra: Abelian Groups

Pontrjagin and Thom introduced abelian groups Ωk of manifolds called
bordism groups—equivalence classes of closed k-manifolds:

Y
X

0 Y1

The abelian group operation is disjoint union. (Cartesian product
defines a ring structure on

À

k Ωk)

Thom showed how to compute Ωk via homotopy theory: Ωk “ πkMO.
Different answers for different flavors of manifolds: oriented, spin,
almost complex, framed, . . .

Many applications in homotopy theory: (i) framed bordism groups are
stable homotopy groups of spheres (Pontrjagin-Thom construction);
(ii) complex cobordism is universal among certain cohomology theories
(Quillen)



Manifolds and Algebra: Abelian Groups

Pontrjagin and Thom introduced abelian groups Ωk of manifolds called
bordism groups—equivalence classes of closed k-manifolds:

Y
X

0 Y1

The abelian group operation is disjoint union. (Cartesian product
defines a ring structure on

À

k Ωk)

Thom showed how to compute Ωk via homotopy theory: Ωk “ πkMO.
Different answers for different flavors of manifolds: oriented, spin,
almost complex, framed, . . .

Many applications in homotopy theory: (i) framed bordism groups are
stable homotopy groups of spheres (Pontrjagin-Thom construction);
(ii) complex cobordism is universal among certain cohomology theories
(Quillen)



Manifolds and Algebra: Abelian Groups

Pontrjagin and Thom introduced abelian groups Ωk of manifolds called
bordism groups—equivalence classes of closed k-manifolds:

Y
X

0 Y1

The abelian group operation is disjoint union. (Cartesian product
defines a ring structure on

À

k Ωk)

Thom showed how to compute Ωk via homotopy theory: Ωk “ πkMO.
Different answers for different flavors of manifolds: oriented, spin,
almost complex, framed, . . .

Many applications in homotopy theory: (i) framed bordism groups are
stable homotopy groups of spheres (Pontrjagin-Thom construction);
(ii) complex cobordism is universal among certain cohomology theories
(Quillen)



Manifolds and Algebra: Symmetric Monoidal Categories

A more elaborate algebraic structure is obtained if we (i) do not identify
bordant manifolds and (ii) remember the bordisms. So fix n and
introduce a bordism category Bon whose objects are closed
pn ´ 1q-manifolds and morphisms are compact n-manifolds X : Y0 Ñ Y1

Y
X

0 Y1
TimeDomain/

OutgoingIncoming Codomain/

Identify diffeomorphic bordisms. Composition is gluing of manifolds:

Y0 Y1 Y2X X’
Y0

X
ÝÑ Y1

X 1

ÝÑ Y2

Disjoint union gives a symmetric monoidal structure on Bon.

Recover the abelian group Ωn´1 by declaring all morphisms to be
invertible=isomorphisms. New information from non-invertibility.
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Topological Quantum Field Theory

VectC = symmetric monoidal category (b) of complex vector spaces.

Definition: An n-dimensional TQFT is a homomorphism

F : Bon ÝÑ VectC

This slick definition encodes an algebraic understanding of field theory
descended from Witten, Quillen, Segal, Atiyah, . . . . Segal defines
conformal and more general QFTs via geometric bordism categories.

locality (compositions)
multiplicativity (monoidal structure)

En-algebra structure on Sn´1 P Bon via the generalized “pair of pants”:

DnzpDn > Dnq : Sn´1 > Sn´1 ÝÑ Sn´1

+_ +++ _ _
=

Therefore, F pSn´1q P VectC is also an En-algebra (OPE)
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Manifolds and Algebra: Topological Categories

A more refined version of Bon is a topological category with a space of
n-dimensional bordisms between fixed pn ´ 1q-manifolds.

Algebraic topology provides a construction which inverts all morphisms:
topological category Ñ topological space. With abelian group structure:
symmetric monoidal topological category Ñ spectrum.

Galatius-Madsen-Tillmann-Weiss (2006) identify the spectrum
| Bon | “ MT . For framed manifolds it is the sphere spectrum.

Remark: Topological spaces give rise to
(higher) categories in which all morphisms
are invertible: the fundamental groupoid

x

y

Definition (F.-Moore): A field theory α : Bon Ñ VectC is invertible if
αpY n´1q P VectC is a line and αpXnq is an isomorphism between lines
for all Y, X.

α factors through MT spectrum ñ homotopy theory techniques
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Extended Field Theories

The notion of extended QFT was explored in various guises in the early
’90s by several mathematicians and has great current interest:

• 2-dimensional theories often include categories attached to a point:
D-branes, Fukaya category, . . .

• 4-dimensional supersymmetric gauge theories have categories of line
operators. Also, the category attached to a surface plays a key role
in the geometric Langlands story.

• Chern-Simons (1-2-3) theory F has a linear category F pS1q. For
gauge group G two descriptions of F pS1q: positive energy
representations of LG, or representations of a quantum group.

A fully extended theory (down to 0-manifolds) is completely local ñ

powerful computational techniques, simpler classification

Longstanding Question: Can 1-2-3 Chern-Simons theory be
extended to a 0-1-2-3 theory? If so, what is attached to a point?

Partial results in special cases (F., Walker, F.-Hopkins-Lurie-Teleman,
Kapustin-Saulina, Bartels-Douglas-Henriques).
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Manifolds and Algebra: p8, nq-Categories

A new algebraic gadget: the bordism p8, nq-category Bordn.

Bon: pn ´ 1q-manifolds and n-manifolds with boundary
Bordn: 0-, 1-, . . . , n-manifolds with corners

Objects are compact 0-manifolds, 1-morphisms are compact 1-manifolds
with boundary, 2-morphisms are compact 2-manifolds with corners, . . .

Z Z

Y

YX0 1

0

1 Z0

Y0 ))

Y1

55
�� ��
�� X Z1

Definition: An extended n-dimensional TQFT is a homomorphism

F : Bordn ÝÑ C

for some p8, nq-category C.

For example, if n “ 3 then typically F pS1q is a C-linear category, also
an E2-algebra. E2pCatCq “ βbCatC are braided tensor categories.
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The Cobordism Hypothesis

A powerful theorem in topological field theory, conjectured by
Baez-Dolan then elaborated and proved by Lurie (w/Hopkins for n “ 2),
asserts that an extended TQFT is determined by its value on a point.

Theorem: For framed manifolds the map

Hom
`

Bordn, C
˘

ÝÑ C
F ÞÝÑ F pptq

is an isomorphism onto the fully dualizable objects in C.

Remark: This is really a theorem about framed Bordn, asserting that
it is freely generated by a single generator.

The proof, only sketched heretofore, has at its heart a contractibility
theorem in Morse theory (Igusa, Galatius). There are variations for
other bordism categories of manifolds, also manifolds with singularities.

Full dualizable is a finiteness condition. For example, in a TQFT the
vector spaces attached to closed pn ´ 1q-manifolds are finite dimensional.
In an extended theory F pptq satisfies analogous finiteness conditions.
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Spheres and Invertibility

Theorem (F.-Teleman): Let α : Bordn Ñ C be an extended TQFT
such that αpSkq is invertible. Then if n ě 2k the field theory α is
invertible.

Thus αpXq is invertible for all manifolds X. This means α factors
through the Madsen-Tillmann spectrum constructed from Bordn, so is
amenable to homotopy theory techniques.

Remark 1: We have only checked the details carefully for oriented
manifolds; it is probably true for stably framed manifolds as well.
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Proof Sketch

First, by the cobordism hypothesis (easy part) it suffices to prove that
αppt`q is invertible; ‘`’ denotes the orientation. We omit ‘α’ and
simply say ‘pt` is invertible’.

We prove the 0-manifolds pt` and pt´ are inverse:

S0 “ pt` > pt´ “ pt` b pt´ – H0 “ 1

with inverse isomorphisms given by

f “ D1 : 1 ÝÑ S0

f_ “ D1 : S0 ÝÑ 1

_

+

_

+

f f v

Time

We arrive at a statement about 1-manifolds: the compositions

f_ ˝ f “ S1 : 1 ÝÑ 1

f ˝ f_ : S0 ÝÑ S0

are the identity. +

_

+ff voff vo

_
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Let’s now consider n “ 2 where we assume that S1 is invertible. We
apply an easy algebraic lemma which asserts that invertible objects are
dualizable and the dualization data is invertible. For S1 these data are
dual cylinders, and so the composition S1 ˆ S1 is also invertible.

Lemma: Suppose D is a symmetric monoidal category, x P D is
invertible, and g : 1 Ñ x and h : x Ñ 1 satisfy h ˝ g “ id1. Then
g ˝ h “ idx and so each of g, h is an isomorphism.

Proof sketch: x´1 is a dual of x, g_ “ x´1g : x´1 Ñ 1,
h_ “ x´1h : 1 Ñ x´1, so the lemma follows from ph ˝ gq_ “ id1.

Apply the lemma to the 2-morphisms

g “ D2 : 1 ÝÑ S1

h “ S1 ˆ S1zD2 : S1 ÝÑ 1

Conclude that S1 – 1 and S2 “ g_ ˝ g is invertible.
Also, g ˝ g_ “ idS1 bS2, a simple surgery.



Let’s now consider n “ 2 where we assume that S1 is invertible. We
apply an easy algebraic lemma which asserts that invertible objects are
dualizable and the dualization data is invertible. For S1 these data are
dual cylinders, and so the composition S1 ˆ S1 is also invertible.

Lemma: Suppose D is a symmetric monoidal category, x P D is
invertible, and g : 1 Ñ x and h : x Ñ 1 satisfy h ˝ g “ id1. Then
g ˝ h “ idx and so each of g, h is an isomorphism.

Proof sketch: x´1 is a dual of x, g_ “ x´1g : x´1 Ñ 1,
h_ “ x´1h : 1 Ñ x´1, so the lemma follows from ph ˝ gq_ “ id1.

Apply the lemma to the 2-morphisms

g “ D2 : 1 ÝÑ S1

h “ S1 ˆ S1zD2 : S1 ÝÑ 1

Conclude that S1 – 1 and S2 “ g_ ˝ g is invertible.
Also, g ˝ g_ “ idS1 bS2, a simple surgery.



Let’s now consider n “ 2 where we assume that S1 is invertible. We
apply an easy algebraic lemma which asserts that invertible objects are
dualizable and the dualization data is invertible. For S1 these data are
dual cylinders, and so the composition S1 ˆ S1 is also invertible.

Lemma: Suppose D is a symmetric monoidal category, x P D is
invertible, and g : 1 Ñ x and h : x Ñ 1 satisfy h ˝ g “ id1. Then
g ˝ h “ idx and so each of g, h is an isomorphism.

Proof sketch: x´1 is a dual of x, g_ “ x´1g : x´1 Ñ 1,
h_ “ x´1h : 1 Ñ x´1, so the lemma follows from ph ˝ gq_ “ id1.

Apply the lemma to the 2-morphisms

g “ D2 : 1 ÝÑ S1

h “ S1 ˆ S1zD2 : S1 ÝÑ 1

Conclude that S1 – 1 and S2 “ g_ ˝ g is invertible.
Also, g ˝ g_ “ idS1 bS2, a simple surgery.



Let’s now consider n “ 2 where we assume that S1 is invertible. We
apply an easy algebraic lemma which asserts that invertible objects are
dualizable and the dualization data is invertible. For S1 these data are
dual cylinders, and so the composition S1 ˆ S1 is also invertible.

Lemma: Suppose D is a symmetric monoidal category, x P D is
invertible, and g : 1 Ñ x and h : x Ñ 1 satisfy h ˝ g “ id1. Then
g ˝ h “ idx and so each of g, h is an isomorphism.

Proof sketch: x´1 is a dual of x, g_ “ x´1g : x´1 Ñ 1,
h_ “ x´1h : 1 Ñ x´1, so the lemma follows from ph ˝ gq_ “ id1.

Apply the lemma to the 2-morphisms

g “ D2 : 1 ÝÑ S1

h “ S1 ˆ S1zD2 : S1 ÝÑ 1

Conclude that S1 – 1 and S2 “ g_ ˝ g is invertible.
Also, g ˝ g_ “ idS1 bS2, a simple surgery.



Recall that we must prove that the compositions

f_ ˝ f “ S1 : 1 ÝÑ 1

f ˝ f_ : S0 ÝÑ S0

are the identity. We just did the first. +
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For the second the identity is
_

+

_

+
and we will show that the saddle

σ : f ˝ f_ Ñ idS0 is an isomorphism with inverse σ_ b S2.

The saddle σ is diffeomorphic
to D1 ˆ D1, which is a manifold
with corners. Its dual σ_ is the
time-reversed bordism.
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Inside each composition σ_ ˝ σ and σ ˝ σ_ we find a cylinder
idS1 “ D1 ˆ S1, which is pS2q´1 b g ˝ g_ “ pS2q´1 b pS0 ˆ D2q by a
previous argument. Making the replacement we get the desired
isomorphisms to identity maps.

This completes the proof of the theorem in n “ 2 dimensions.

In higher dimensions we see a kind of Poincaré duality phenomenon: we
prove invertibility by assuming it in the middle dimension. A new
ingredient—a dimensional reduction argument—also appears.
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Application to Modular Tensor Categories

Let F denote the usual quantum Chern-Simons 1-2-3 theory for some
gauge group G. It was introduced by Witten and constructed by
Reshetikhin-Turaev from quantum group data. The latter construction
works for any modular tensor category A, a braided tensor category
which satisfies finiteness conditions (semisimple with finitely many
simples, duality, etc.) and a nondegeneracy condition (the S matrix is
invertible). Then F is a 1-2-3 theory with F pS1q “ A.

Let A be a braided tensor category with braiding βpx, yq : x b y Ñ y b x.

Theorem: The nondegeneracy condition on A is equivalent to

tx P A : βpy, xq ˝ βpx, yq “ idxby for all y P Au “ tmultiples of 1 P Au.

This is proved by Müger and others.

Recall that βbCatC “ E2pCatCq.
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Braided tensor categories form the objects of a 4-category!

object category number

element of C ´1

C-vector space 0

VectC 1

CatC 2

bCatC “ E1pCatCq 3

βbCatC “ E2pCatCq 4
+_ +++ _ _

Morita: Morphisms of tensor categories are bimodules and morphisms of
braided tensor categories are tensor categories which are bimodules.

So, given sufficient finiteness, a braided tensor category determines
(using the cobordism hypothesis) an extended 4-dimensional TQFT

α : Bord4 Ñ βbCatC
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In the theory α we compute

αpS2q “ tx P A : βpy, xq ˝ βpx, yq “ idxby for all y P Au P CatC

Recall that for a modular tensor category this “higher center” of A is
the tensor unit 1 “ VectC, which in particular is invertible.

Thus, modulo careful verification of finiteness conditions, we have

Corollary: A modular tensor category A P βbCatC is invertible, so
determines an invertible field theory α : Bord4 Ñ βbCatC.

Remark: This is a theorem in algebra, proved using the universal
“algebra”, rather p8, nq-category, of manifolds with corners.

We believe that this is the anomaly theory for a 0-1-2-3 extension of the
1-2-3 theory F with F pS1q “ A. In the remainder of the lecture I will
explain this idea.
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Anomalous Field Theories

The top-level values of an n-dimensional field theory F : Bon Ñ VectC
are complex numbers F pXnq P C, the partition function of a closed
n-manifold. In an anomalous field theory f there is a complex line LX

associated to X and the partition function fpXq P LX lies in that line.

The lines LX obey locality and multiplicativity laws, so typically belong
to an pn ` 1q-dimensional invertible field theory α : Bon`1 Ñ VectC.

f is an n-dimensional theory with values in the pn ` 1q-dimensional
theory α. We write f : 1 Ñ α in the sense that fpXq : 1 Ñ αpXq for
all X. (1 is the trivial theory.) If α is invertible we say f is anomalous
with anomaly α. The same ideas apply in extended field theories.

Remark: The notion of α-valued field theory makes sense even if α is
not invertible and also for non-topological field theories. Examples:
(i) n “ 2 chiral WZW valued in topological Chern-Simons, (ii) n “ 6
(0,2)-(super)conformal field theory valued in a 7-dimensional theory.

Remark: This is a specialization of the notion of a domain wall.
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Fully Extended Chern-Simons

Recall that a modular tensor category A determines an invertible
extended field theory α : Bord4 Ñ βbCatC with values in the 4-category
of braided tensor categories, or equivalently E2-algebras in CatC.

An ordinary algebra A is in a natural way a left A-module. This holds
for E2-algebras, and in that context the module defines a morphism
A : 1 Ñ A in the 4-category βbCatC.

Let A be a modular tensor category. Modulo careful verification of
finiteness conditions, a version of the cobordism hypothesis constructs
from the module A a 0-1-2-3-dimensional anomalous field theory
f : 1 Ñ α with anomaly α.

Claim: On 1-, 2-, and 3-dimensional manifolds we can trivialize the
anomaly α and so identify f with the Reshetikhin-Turaev 1-2-3
theory F associated to the modular tensor category A.

For example, the composition 1
fpS1q
ÝÝÝÑ αpS1q

αpD2q
ÝÝÝÝÑ 1 is F pS1q “ A,

where the bordism D2 : S1 Ñ 1 is used to trivialize the anomaly on S1.
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