Sergey Grigorian, Simons Center for Geometry and Physics Stony Brook

StringMath, UPenn, Philadelphia, June 8, 2011

Outline

- I. Motivation
- 2. Basics of the group G_2
- 3. Overview of G_2 structures
- 4. Differential forms on G_2 structure manifolds
- 5. G_2 structure torsion
- 6. Deformations of G_2 structures
- 7. Concluding remarks

1. Motivation

	String theory	M-theory	Math description
No fluxes + SUSY	Calabi-Yau	G_2 holonomy	$ abla \xi = 0$, Ricci flat
Fluxes + SUSY	SU(3) structure	G ₂ structure	$ abla \xi eq 0$, Ricci $ eq 0$

 Supersymmetric vacuum backgrounds successfully classified using holonomy, requiring a non-trivial parallel (covariantly constant) spinor

1. Motivation

	String theory	M-theory	Math description
No fluxes + SUSY	Calabi-Yau	G ₂ holonomy	$ abla \xi = 0$, Ricci flat
Fluxes + SUSY	SU(3) structure	G_2 structure	$ abla \xi eq 0$, Ricci $ eq 0$

- Supersymmetric vacuum backgrounds successfully classified using holonomy, requiring a non-trivial parallel (covariantly constant) spinor
- Supersymmetric flux compactification backgrounds can be classified in terms of G-structures e.g. hep-th/0302158 Gauntlett, Martelli, Waldram for SU(3) structures and hepth/0303127 Kaste, Minasian, Tomasiello for G₂ structures

1. Motivation

	String theory	M-theory	Math description
No fluxes + SUSY	Calabi-Yau	G ₂ holonomy	$ abla \xi = 0$, Ricci flat
Fluxes + SUSY	SU(3) structure	G_2 structure	$ abla \xi eq 0$, Ricci $ eq 0$

- Supersymmetric vacuum backgrounds successfully classified using holonomy, requiring a non-trivial parallel (covariantly constant) spinor
- Supersymmetric flux compactification backgrounds can be classified in terms of G-structures e.g. hep-th/0302158 Gauntlett, Martelli, Waldram for SU(3) structures and hepth/0303127 Kaste, Minasian, Tomasiello for G₂ structures

Note: equations of motion coming from leading terms of IID supergravity require fluxes to vanish if the 7-manifold is compact, so to allow non-zero fluxes either need a non-compact manifold (e.g. hep-th/0010282 Becker and Becker), or higher-order corrections to the action, or sources

- 2. Basics of the group G_2
- The group G_2 can be defined as the automorphism group of the octonion algebra \mathbb{O}

- 2. Basics of the group G_2
- The group G_2 can be defined as the automorphism group of the octonion algebra \mathbb{O}
- Equivalently, G_2 is defined as the subgroup of $GL(7, \mathbb{R})$ that preserves the 3-form φ_0 :

$$\varphi_0 = e^{123} + e^{145} + e^{167} + e^{246} - e^{257} - e^{347} - e^{356}$$

- 2. Basics of the group G_2
- The group G_2 can be defined as the automorphism group of the octonion algebra \mathbb{O}
- Equivalently, G_2 is defined as the subgroup of $GL(7, \mathbb{R})$ that preserves the 3-form φ_0 :

$$\varphi_0 = e^{123} + e^{145} + e^{167} + e^{246} - e^{257} - e^{347} - e^{356}$$

Also preserves the Euclidean inner product on $Im(\mathbb{O}) \cong \mathbb{R}^7$, so is a subgroup of SO(7)

- 2. Basics of the group G_2
- The group G_2 can be defined as the automorphism group of the octonion algebra \mathbb{O}
- Equivalently, G_2 is defined as the subgroup of $GL(7, \mathbb{R})$ that preserves the 3-form φ_0 :

$$\varphi_0 = e^{123} + e^{145} + e^{167} + e^{246} - e^{257} - e^{347} - e^{356}$$

- Also preserves the Euclidean inner product on $Im(\mathbb{O}) \cong \mathbb{R}^7$, so is a subgroup of SO(7)
- Moreover, preserves the Hodge star of φ_0 :

 $*\varphi_0 = dx^{4567} + dx^{2367} + dx^{2345} + dx^{1357} - dx^{1346} - dx^{1256} - dx^{1247}$

- 2. Basics of the group G_2
- The group G_2 can be defined as the automorphism group of the octonion algebra \mathbb{O}
- Equivalently, G_2 is defined as the subgroup of $GL(7, \mathbb{R})$ that preserves the 3-form φ_0 :

$$\varphi_0 = e^{123} + e^{145} + e^{167} + e^{246} - e^{257} - e^{347} - e^{356}$$

- Also preserves the Euclidean inner product on $Im(\mathbb{O}) \cong \mathbb{R}^7$, so is a subgroup of SO(7)
- Moreover, preserves the Hodge star of φ_0 :

 $*\varphi_0 = dx^{4567} + dx^{2367} + dx^{2345} + dx^{1357} - dx^{1346} - dx^{1256} - dx^{1247}$

Note: Generally, we will denote the Hodge dual of φ_0 by ψ

In general, a G-structure on a manifold M is a principal subbundle of the frame bundle with fibre G for some Lie subgroup of $GL(n,\mathbb{R})$

- In general, a G-structure on a manifold M is a principal subbundle of the frame bundle with fibre G for some Lie subgroup of $GL(n, \mathbb{R})$
- On a 7-manifold, G_2 structures are in I-I correspondence with *positive* 3-forms. These are forms for which there is an oriented isomorphism between T_pM and \mathbb{R}^7 identifying φ with the G_2 -invariant 3-form φ_0

- In general, a G-structure on a manifold M is a principal subbundle of the frame bundle with fibre G for some Lie subgroup of $GL(n,\mathbb{R})$
- On a 7-manifold, G_2 structures are in I-I correspondence with *positive* 3-forms. These are forms for which there is an oriented isomorphism between T_pM and \mathbb{R}^7 identifying φ with the G_2 -invariant 3-form φ_0
- A G_2 structure defined by 3-form φ defines a metric on M via

 $g_{ab} \left(\det g\right)^{\frac{1}{2}} = \frac{1}{144} \varphi_{amn} \varphi_{bpq} \varphi_{rst} \hat{\varepsilon}^{mnpqrst}$

- In general, a G-structure on a manifold M is a principal subbundle of the frame bundle with fibre G for some Lie subgroup of $GL(n,\mathbb{R})$
- On a 7-manifold, G_2 structures are in I-I correspondence with *positive* 3-forms. These are forms for which there is an oriented isomorphism between T_pM and \mathbb{R}^7 identifying φ with the G_2 -invariant 3-form φ_0
- A G_2 structure defined by 3-form φ defines a metric on M via

$$g_{ab} \left(\det g\right)^{\frac{1}{2}} = \frac{1}{144} \varphi_{amn} \varphi_{bpq} \varphi_{rst} \hat{\varepsilon}^{mnpqrst}$$

Note: if a 3-form defines a non-degenerate bilinear form this way, then necessarily, it will define either a G_2 structure with positive definite metric or a split G_2 structure, with signature (4,3)

4. Forms on G_2 structure manifolds

A G₂ structure induces a decomposition of p-forms according to irreducible representations of G₂ – 1,7,14 and 27

- 4. Forms on G_2 structure manifolds
- A G₂ structure induces a decomposition of p-forms according to irreducible representations of G₂ – 1, 7, 14 and 27

$$\begin{split} \Lambda^1 &= \Lambda_7^1 & \Lambda^6 = \Lambda_7^6 \\ \Lambda^2 &= \Lambda_7^2 \oplus \Lambda_{14}^2 & \Lambda^5 = \Lambda_7^5 \oplus \Lambda_{14}^5 \\ \Lambda^3 &= \Lambda_1^3 \oplus \Lambda_7^3 \oplus \Lambda_{27}^3 & \Lambda^4 = \Lambda_1^4 \oplus \Lambda_7^4 \oplus \Lambda_{27}^4 \end{split}$$

- 4. Forms on G_2 structure manifolds
- A G₂ structure induces a decomposition of p-forms according to irreducible representations of G₂ – 1,7,14 and 27

$$\begin{split} \Lambda^1 &= \Lambda_7^1 & \Lambda^6 = \Lambda_7^6 \\ \Lambda^2 &= \Lambda_7^2 \oplus \Lambda_{14}^2 & \Lambda^5 = \Lambda_7^5 \oplus \Lambda_{14}^5 \\ \Lambda^3 &= \Lambda_1^3 \oplus \Lambda_7^3 \oplus \Lambda_{27}^3 & \Lambda^4 = \Lambda_1^4 \oplus \Lambda_7^4 \oplus \Lambda_{27}^4 \end{split}$$

 Spaces which correspond to the same representations are isomorphic to each other

- 4. Forms on G_2 structure manifolds
- A G₂ structure induces a decomposition of p-forms according to irreducible representations of G₂ – 1, 7, 14 and 27

$$\begin{split} \Lambda^1 &= \Lambda_7^1 & \Lambda^6 = \Lambda_7^6 \\ \Lambda^2 &= \Lambda_7^2 \oplus \Lambda_{14}^2 & \Lambda^5 = \Lambda_7^5 \oplus \Lambda_{14}^5 \\ \Lambda^3 &= \Lambda_1^3 \oplus \Lambda_7^3 \oplus \Lambda_{27}^3 & \Lambda^4 = \Lambda_1^4 \oplus \Lambda_7^4 \oplus \Lambda_{27}^4 \end{split}$$

- Spaces which correspond to the same representations are isomorphic to each other
- For 3-forms, have $\Lambda_1^3 = \{a\varphi : a \text{ a function}\}$ $\Lambda_7^3 = \{v \lrcorner * \varphi : v \text{ a vector field}\}$ $\Lambda_{27}^3 = \left\{h^d_{\ [a}\varphi_{|d|bc]} : h_{ab} \text{ traceless, symmetric}\right\}$

• Given a G_2 structure defined by a 3-form φ , the intrinsic torsion is determined by $\nabla \varphi$

- Given a G_2 structure defined by a 3-form φ , the intrinsic torsion is determined by $\nabla \varphi$
- For any vector field X,

$$\nabla_X \varphi \in \Lambda^3_7$$

So overall,

 $\nabla \varphi \in \Lambda^1_7 \otimes \Lambda^3_7 \cong W$

- Given a G_2 structure defined by a 3-form φ , the intrinsic torsion is determined by $\nabla \varphi$
- For any vector field X,

$$\nabla_X \varphi \in \Lambda^3_7$$

So overall,

 $\nabla \varphi \in \Lambda^1_7 \otimes \Lambda^3_7 \cong W$

• Pointwise, this is a 49-dimensional space, so the torsion is fully determined by the *full torsion tensor* T_{ab} , which is given by

$$\nabla_a \varphi_{bcd} = T_a \ ^e \psi_{ebcd}$$

- Given a G_2 structure defined by a 3-form φ , the intrinsic torsion is determined by $\nabla \varphi$
- For any vector field X,

$$\nabla_X \varphi \in \Lambda^3_7$$

So overall,

 $\nabla \varphi \in \Lambda^1_7 \otimes \Lambda^3_7 \cong W$

• Pointwise, this is a 49-dimensional space, so the torsion is fully determined by the *full torsion tensor* T_{ab} , which is given by

$$\nabla_a \varphi_{bcd} = T_a \ ^e \psi_{ebcd}$$

From this, get

$$T_{ab} = \frac{1}{24} \left(\nabla_a \varphi_{bcd} \right) \psi_m^{\ bcd}$$

Torsion decomposition

• Can split T_{ab} according to representations of G_2 :

$$T = \tau_1 g + \tau_7 \lrcorner \varphi + \tau_{14} + \tau_{27}$$

$ au_{I}$	function	I-dim rep	W ₁
$ au_7$	I-form	7-dim rep	W ₇
$ au_{14}$	2-form in Λ^2_{14}	14-dim rep	W ₁₄
$ au_{27}$	Traceless, symmetric 2-tensor	27-dim rep	W ₂₇

Torsion decomposition

• Can split T_{ab} according to representations of G_2 :

$$T = \tau_1 g + \tau_7 \lrcorner \varphi + \tau_{14} + \tau_{27}$$

$ au_1$	function	I-dim rep	W ₁
$ au_7$	I-form	7-dim rep	W ₇
$ au_{14}$	2-form in Λ^2_{14}	14-dim rep	W ₁₄
$ au_{27}$	Traceless, symmetric 2-tensor	27-dim rep	W ₂₇

• Hence can split the space W by according to representations:

 $W = W_1 \oplus W_7 \oplus W_{14} \oplus W_{27}$

Different combinations give different torsion classes – 16 in total

Torsion decomposition

• Can split T_{ab} according to representations of G_2 :

$$T = \tau_1 g + \tau_7 \lrcorner \varphi + \tau_{14} + \tau_{27}$$

$ au_1$	function	I-dim rep	W
$ au_7$	l-form	7-dim rep	W ₇
$ au_{14}$	2-form in Λ^2_{14}	14-dim rep	W ₁₄
$ au_{27}$	Traceless, symmetric 2-tensor	27-dim rep	W ₂₇

• Hence can split the space W by according to representations:

 $W = W_1 \oplus W_7 \oplus W_{14} \oplus W_{27}$

Different combinations give different torsion classes – 16 in total

• Determine $d\varphi$ and $d\psi$.

$$d\varphi = 4\tau_1\psi - 3\tau_7 \wedge \varphi - *\tau_{27}$$
$$d\psi = -4\tau_7 \wedge \psi - 2 * \tau_{14}$$

Properties of torsion components

If all torsion components vanish, then we have

$$\nabla \varphi = d\varphi = d\psi = 0$$

which corresponds to G_2 holonomy

Properties of torsion components

If all torsion components vanish, then we have

$$\nabla \varphi = d\varphi = d\psi = 0$$

which corresponds to G_2 holonomy

• Generally, must have $dd\varphi = 0$ and $dd\psi = 0$, so this imposes constraints on the torsion components

Properties of torsion components

If all torsion components vanish, then we have

$$\nabla \varphi = d\varphi = d\psi = 0$$

which corresponds to G_2 holonomy

- Generally, must have $dd\varphi = 0$ and $dd\psi = 0$, so this imposes constraints on the torsion components
- In some specific cases have the following constraints:

Torsion class	Constraint
W_1	$d\tau_1 = 0$
W_7	$d\tau_7 = 0$
W_{14}	$d^*\tau_{14} = 0$
$W_1 \oplus W_7$	$d\tau_1 = \tau_1 \tau_7$
$W_1 \oplus W_{14}$	$\tau_1 \tau_{14} = 0$

- 6. Deformations of G_2 structures
- General question given a 7-manifold, which G_2 structures exist on it?

- General question given a 7-manifold, which G_2 structures exist on it?
- Less ambitious question given a G_2 structure φ with a specific torsion T in some fixed torsion class, which torsion classes can we obtain by adding a 3-form χ to φ :

$$\varphi \longrightarrow \tilde{\varphi} = \varphi + \chi$$

- General question given a 7-manifold, which G_2 structures exist on it?
- Less ambitious question given a G_2 structure φ with a specific torsion T in some fixed torsion class, which torsion classes can we obtain by adding a 3-form χ to φ :

$$\varphi \longrightarrow \tilde{\varphi} = \varphi + \chi$$

Still too hard. More manageable is – given φ with some torsion T, when can find a 3-form χ such that $\tilde{\varphi}$ defines a G_2 structure with a specific torsion \tilde{T}

- General question given a 7-manifold, which G_2 structures exist on it?
- Less ambitious question given a G_2 structure φ with a specific torsion T in some fixed torsion class, which torsion classes can we obtain by adding a 3-form χ to φ :

$$\varphi \longrightarrow \tilde{\varphi} = \varphi + \chi$$

- Still too hard. More manageable is given φ with some torsion T, when can find a 3-form χ such that $\tilde{\varphi}$ defines a G_2 structure with a specific torsion \tilde{T}
- For an arbitrary 3-form χ even this is too difficult for now, but we can restrict χ to lie either in Λ_1^3 or Λ_7^3

- General question given a 7-manifold, which G_2 structures exist on it?
- Less ambitious question given a G_2 structure φ with a specific torsion T in some fixed torsion class, which torsion classes can we obtain by adding a 3-form χ to φ :

$$\varphi \longrightarrow \tilde{\varphi} = \varphi + \chi$$

- Still too hard. More manageable is given φ with some torsion T, when can find a 3-form χ such that $\tilde{\varphi}$ defines a G_2 structure with a specific torsion \tilde{T}
- For an arbitrary 3-form χ even this is too difficult for now, but we can restrict χ to lie either in Λ_1^3 or Λ_7^3
- Alternatively, can consider only infinitesimal behaviour, e.g. Karigiannis math/0702077, SG & Yau 0802.0723, SG 0911.2185

Properties of general deformations

• Under a general deformation, $\varphi \longrightarrow \tilde{\varphi} = \varphi + \chi$, it can be shown that the new metric becomes

$$\widetilde{g}_{ab} = \left(\frac{\det g}{\det \widetilde{g}}\right)^{\frac{1}{2}} s_{ab}$$

Properties of general deformations

• Under a general deformation, $\varphi \longrightarrow \tilde{\varphi} = \varphi + \chi$, it can be shown that the new metric becomes

$$\widetilde{g}_{ab} = \left(\frac{\det g}{\det \widetilde{g}}\right)^{\frac{1}{2}} s_{ab}$$

where

$$s_{ab} = g_{ab} + \frac{1}{2}\chi_{mn(a}\varphi_{b)}^{mn} + \frac{1}{8}\chi_{amn}\chi_{bpq}\psi^{mnpq} + \frac{1}{24}\chi_{amn}\chi_{bpq}\left(*\chi\right)^{mnpq}$$

Properties of general deformations

• Under a general deformation, $\varphi \longrightarrow \tilde{\varphi} = \varphi + \chi$, it can be shown that the new metric becomes

$$\tilde{g}_{ab} = \left(\frac{\det g}{\det \tilde{g}}\right)^{\frac{1}{2}} s_{ab}$$

where

by

$$s_{ab} = g_{ab} + \frac{1}{2}\chi_{mn(a}\varphi_{b)}^{mn} + \frac{1}{8}\chi_{amn}\chi_{bpq}\psi^{mnpq} + \frac{1}{24}\chi_{amn}\chi_{bpq}\left(*\chi\right)^{mnpq}$$

• Moreover, can show that for the new metric, ${}_{*} ilde{arphi}= ilde{\psi}\;$ is given

$$\tilde{\psi}_{abcd} = \left(\frac{\det g}{\det \tilde{g}}\right)^{\frac{5}{2}} \left(\psi^{mnpq} + *\chi^{mnpq}\right) s_{ma} s_{nb} s_{pc} s_{qd}$$

Properties of general deformations

• Under a general deformation, $\varphi \longrightarrow \tilde{\varphi} = \varphi + \chi$, it can be shown that the new metric becomes

$$\tilde{g}_{ab} = \left(\frac{\det g}{\det \tilde{g}}\right)^{\frac{1}{2}} s_{ab}$$

where

by

$$s_{ab} = g_{ab} + \frac{1}{2}\chi_{mn(a}\varphi_{b)}^{mn} + \frac{1}{8}\chi_{amn}\chi_{bpq}\psi^{mnpq} + \frac{1}{24}\chi_{amn}\chi_{bpq}(*\chi)^{mnpq}$$

• Moreover, can show that for the new metric, $\tilde{*}\tilde{arphi}=\tilde{\psi}$ is given

$$\tilde{\psi}_{abcd} = \left(\frac{\det g}{\det \tilde{g}}\right)^{\frac{5}{2}} \left(\psi^{mnpq} + *\chi^{mnpq}\right) s_{ma} s_{nb} s_{pc} s_{qd}$$

• The Levi-Civita connection of the new metric differs by $\delta\Gamma_{a\ c} = \frac{1}{2} \left(\frac{\det g}{\det \tilde{g}} \right)^{\frac{1}{2}} \left(\tilde{g}^{\tilde{b}\tilde{d}} \left(\nabla_{c}s_{ad} + \nabla_{a}s_{cd} - \nabla_{d}s_{ac} \right) - \frac{1}{9} \left(\delta^{b}_{a}\delta^{e}_{c} + \delta^{b}_{c}\delta^{e}_{a} - \tilde{g}_{ac}\tilde{g}^{\tilde{b}\tilde{e}} \right) \tilde{g}^{\tilde{m}\tilde{n}} \nabla_{e}s_{mn} \right)$

The new torsion is now given by

$$\tilde{T}_{am} = \frac{1}{24} \left(\tilde{\nabla}_a \tilde{\varphi}_{bcd} \right) \tilde{\psi}_m^{\ \tilde{b}\tilde{c}\tilde{d}}$$

The new torsion is now given by

$$\tilde{T}_{am} = \frac{1}{24} \left(\tilde{\nabla}_a \tilde{\varphi}_{bcd} \right) \tilde{\psi}_m^{\ \tilde{b}\tilde{c}\tilde{d}}$$

After some manipulations, get the following expression for it:

$$\tilde{T}_{an} = \frac{1}{24} \left(\frac{\det g}{\det \tilde{g}} \right) \left(\left(24T_a^{\ m} + T_a^{\ e} \psi_{ebcd} * \chi^{mbcd} + \psi^{mbcd} \nabla_a \chi_{bcd} + \nabla_a \chi_{bcd} * \chi^{mbcd} \right) s_{mn} - 3 \left(4\varphi_c^{\ bd} + \varphi_{cpq} * \chi^{pqbd} + \chi_{cpq} \psi^{pqbd} + \chi_{cpq} * \chi^{pqbd} \right) \left(\delta_n^c \nabla_b s_{ad} - \frac{1}{9} \delta_a^c \tilde{g}_{bn} \tilde{g}^{\tilde{p}\tilde{q}} \nabla_d s_{pq} \right) \right)$$

The new torsion is now given by

After some manipulations, get the following expression for it:

$$\tilde{T}_{an} = \frac{1}{24} \left(\frac{\det g}{\det \tilde{g}} \right) \left(\left(24T_a^{\ m} + T_a^{\ e} \psi_{ebcd} * \chi^{mbcd} + \psi^{mbcd} \nabla_a \chi_{bcd} + \nabla_a \chi_{bcd} * \chi^{mbcd} \right) s_{mn} - 3 \left(4\varphi_c^{\ bd} + \varphi_{cpq} * \chi^{pqbd} + \chi_{cpq} \psi^{pqbd} + \chi_{cpq} * \chi^{pqbd} \right) \left(\delta_n^c \nabla_b s_{ad} - \frac{1}{9} \delta_a^c \tilde{g}_{bn} \tilde{g}^{\tilde{p}\tilde{q}} \nabla_d s_{pq} \right) \right)$$

Finally, can obtain individual torsion components by projecting onto G₂ representations:

The new torsion is now given by

After some manipulations, get the following expression for it:

$$\tilde{T}_{an} = \frac{1}{24} \left(\frac{\det g}{\det \tilde{g}} \right) \left(\left(24T_a^{\ m} + T_a^{\ e} \psi_{ebcd} * \chi^{mbcd} + \psi^{mbcd} \nabla_a \chi_{bcd} + \nabla_a \chi_{bcd} * \chi^{mbcd} \right) s_{mn} - 3 \left(4\varphi_c^{\ bd} + \varphi_{cpq} * \chi^{pqbd} + \chi_{cpq} \psi^{pqbd} + \chi_{cpq} * \chi^{pqbd} \right) \left(\delta_n^c \nabla_b s_{ad} - \frac{1}{9} \delta_a^c \tilde{g}_{bn} \tilde{g}^{\tilde{p}\tilde{q}} \nabla_d s_{pq} \right) \right)$$

Finally, can obtain individual torsion components by projecting onto G₂ representations:

$$\tilde{\tau}_1 = \frac{1}{7} \tilde{T}_{ab} \tilde{g}^{\tilde{a}\tilde{b}}$$

The new torsion is now given by

$$\tilde{T}_{am} = \frac{1}{24} \left(\tilde{\nabla}_a \tilde{\varphi}_{bcd} \right) \tilde{\psi}_m^{\ \tilde{b}\tilde{c}\tilde{d}}$$

After some manipulations, get the following expression for it:

$$\tilde{T}_{an} = \frac{1}{24} \left(\frac{\det g}{\det \tilde{g}} \right) \left(\left(24T_a^{\ m} + T_a^{\ e} \psi_{ebcd} * \chi^{mbcd} + \psi^{mbcd} \nabla_a \chi_{bcd} + \nabla_a \chi_{bcd} * \chi^{mbcd} \right) s_{mn} - 3 \left(4\varphi_c^{\ bd} + \varphi_{cpq} * \chi^{pqbd} + \chi_{cpq} \psi^{pqbd} + \chi_{cpq} * \chi^{pqbd} \right) \left(\delta_n^c \nabla_b s_{ad} - \frac{1}{9} \delta_a^c \tilde{g}_{bn} \tilde{g}^{\tilde{p}\tilde{q}} \nabla_d s_{pq} \right) \right)$$

Finally, can obtain individual torsion components by projecting onto G_2 representations:

$$\tilde{\tau}_1 = \frac{1}{7} \tilde{T}_{ab} \tilde{g}^{\tilde{a}\tilde{b}} \qquad (\tilde{\tau}_7)_c = \frac{1}{6} \tilde{T}_{ab} \tilde{\varphi}^{\tilde{a}\tilde{b}} \ _c$$

The new torsion is now given by

$$\tilde{T}_{am} = \frac{1}{24} \left(\tilde{\nabla}_a \tilde{\varphi}_{bcd} \right) \tilde{\psi}_m^{\ \tilde{b}\tilde{c}\tilde{d}}$$

After some manipulations, get the following expression for it:

$$\tilde{T}_{an} = \frac{1}{24} \left(\frac{\det g}{\det \tilde{g}} \right) \left(\left(24T_a^{\ m} + T_a^{\ e} \psi_{ebcd} * \chi^{mbcd} + \psi^{mbcd} \nabla_a \chi_{bcd} + \nabla_a \chi_{bcd} * \chi^{mbcd} \right) s_{mn} - 3 \left(4\varphi_c^{\ bd} + \varphi_{cpq} * \chi^{pqbd} + \chi_{cpq} \psi^{pqbd} + \chi_{cpq} * \chi^{pqbd} \right) \left(\delta_n^c \nabla_b s_{ad} - \frac{1}{9} \delta_a^c \tilde{g}_{bn} \tilde{g}^{\tilde{p}\tilde{q}} \nabla_d s_{pq} \right) \right)$$

Finally, can obtain individual torsion components by projecting onto G₂ representations:

$$\tilde{\tau}_1 = \frac{1}{7} \tilde{T}_{ab} \tilde{g}^{\tilde{a}\tilde{b}} \qquad (\tilde{\tau}_7)_c = \frac{1}{6} \tilde{T}_{ab} \tilde{\varphi}^{\tilde{a}\tilde{b}} \ _c$$

$$(\tilde{\tau}_{14})_{an} = \frac{2}{3}\tilde{T}_{[an]} - \frac{1}{6}\tilde{T}_{mp}\tilde{\psi}^{\tilde{m}\tilde{p}}_{an}$$

The new torsion is now given by

$$\tilde{T}_{am} = \frac{1}{24} \left(\tilde{\nabla}_a \tilde{\varphi}_{bcd} \right) \tilde{\psi}_m^{\ \tilde{b}\tilde{c}\tilde{d}}$$

After some manipulations, get the following expression for it:

$$\tilde{T}_{an} = \frac{1}{24} \left(\frac{\det g}{\det \tilde{g}} \right) \left(\left(24T_a^{\ m} + T_a^{\ e} \psi_{ebcd} * \chi^{mbcd} + \psi^{mbcd} \nabla_a \chi_{bcd} + \nabla_a \chi_{bcd} * \chi^{mbcd} \right) s_{mn} - 3 \left(4\varphi_c^{\ bd} + \varphi_{cpq} * \chi^{pqbd} + \chi_{cpq} \psi^{pqbd} + \chi_{cpq} * \chi^{pqbd} \right) \left(\delta_n^c \nabla_b s_{ad} - \frac{1}{9} \delta_a^c \tilde{g}_{bn} \tilde{g}^{\tilde{p}\tilde{q}} \nabla_d s_{pq} \right) \right)$$

Finally, can obtain individual torsion components by projecting onto G₂ representations:

$$\tilde{\tau}_1 = \frac{1}{7} \tilde{T}_{ab} \tilde{g}^{\tilde{a}\tilde{b}} \qquad (\tilde{\tau}_7)_c = \frac{1}{6} \tilde{T}_{ab} \tilde{\varphi}^{\tilde{a}\tilde{b}} \ c$$

 $(\tilde{\tau}_{14})_{an} = \frac{2}{3}\tilde{T}_{[an]} - \frac{1}{6}\tilde{T}_{mp}\tilde{\psi}^{\tilde{m}\tilde{p}}_{an} \qquad (\tilde{\tau}_{27})_{an} = \tilde{T}_{(an)} - \tau_1\tilde{g}_{an}$

• A deformation in Λ_1^3 simply corresponds to a conformal rescaling. For convenience, suppose

$$\tilde{\varphi}=f^3\varphi$$

• A deformation in Λ_1^3 simply corresponds to a conformal rescaling. For convenience, suppose

$$\tilde{\varphi}=f^3\varphi$$

Then, we have

$$egin{aligned} & ilde{g} &= f^2g \ & ilde{\psi} &= f^4\psi \end{aligned}$$

• A deformation in Λ_1^3 simply corresponds to a conformal rescaling. For convenience, suppose

$$\tilde{\varphi}=f^{3}\varphi$$

Then, we have

$$egin{aligned} & ilde{g} &= f^2g \ & ilde{\psi} &= f^4\psi \end{aligned}$$

• The new torsion is also very simply expressed:

$$\tilde{T} = fT - df \lrcorner \varphi$$

• A deformation in Λ_1^3 simply corresponds to a conformal rescaling. For convenience, suppose

$$\tilde{\varphi}=f^{3}\varphi$$

Then, we have

$$egin{aligned} & ilde{g} &= f^2g \ & ilde{\psi} &= f^4\psi \end{aligned}$$

The new torsion is also very simply expressed:

$$\tilde{T} = fT - df \lrcorner \varphi$$

• So this deformation only affects the W_7 torsion component

• A deformation in Λ_1^3 simply corresponds to a conformal rescaling. For convenience, suppose

$$\tilde{\varphi}=f^{3}\varphi$$

Then, we have

$$egin{array}{l} ilde{g} = f^2 g \ ilde{\psi} = f^4 \psi \end{array}$$

The new torsion is also very simply expressed:

$$\tilde{T} = fT - df \lrcorner \varphi$$

 $\tau_{\pi} = \frac{1}{d} d\tau_1$

- So this deformation only affects the W_7 torsion component
- Recall that in $W_1 \oplus W_7$ class, if τ_1 is non-vanishing, then

Hence taking
$$f = \tau_1$$
 will reduce the torsion class to W

• Now suppose the deformation χ lies in Λ_7^3 , and is defined by a vector v: $\chi = v \lrcorner \varphi$

- Now suppose the deformation χ lies in Λ_7^3 , and is defined by a vector v: $\chi = v \lrcorner \varphi$
- For convenience, denote $|v|^2 = M$. Then we have: $\tilde{g}_{ab} = (1+M)^{-\frac{2}{3}} (g_{ab} (1+M) - v_a v_b)$ $\tilde{g}^{\tilde{a}\tilde{b}} = (1+M)^{-\frac{1}{3}} (g^{ab} + v^a v^b)$

- Now suppose the deformation χ lies in Λ_7^3 , and is defined by a vector v: $\chi = v \lrcorner \varphi$
- For convenience, denote $|v|^2 = M$. Then we have: $\tilde{g}_{ab} = (1+M)^{-\frac{2}{3}} (g_{ab} (1+M) - v_a v_b)$ $\tilde{g}^{\tilde{a}\tilde{b}} = (1+M)^{-\frac{1}{3}} (g^{ab} + v^a v^b)$
- The expression for the new torsion is somewhat more complicated

- Now suppose the deformation χ lies in Λ_7^3 , and is defined by a vector v: $\chi = v \lrcorner \varphi$
- For convenience, denote $|v|^2 = M$. Then we have: $\tilde{g}_{ab} = (1+M)^{-\frac{2}{3}} (g_{ab} (1+M) - v_a v_b)$ $\tilde{g}^{\tilde{a}\tilde{b}} = (1+M)^{-\frac{1}{3}} (g^{ab} + v^a v^b)$
- The expression for the new torsion is somewhat more complicated

$$\begin{split} \tilde{T}_{an} &= (1+M)^{-\frac{4}{3}} \left(v_1 \left(v_a v_n - (1+M) g_{an} \right) - \frac{4}{3} \left(1+M \right) v_1 \quad \varphi_{anm} v^m - \left(1+\frac{4}{3}M \right) \varphi_{anm} v_7^m \right. \\ &- \frac{1}{3} \psi_{anmp} v^m v_7^p + \frac{5}{3} v_a \varphi_{nmp} v^m v_7^p + \frac{4}{3} v_n \varphi_{amp} v^m v_7^p + \frac{1}{3} v_7^m v_m \varphi^p_{\ an} v_p + \frac{1}{3} v_n \left(v_7 \right)_a \\ &+ \frac{8}{3} v_a \left(v_7 \right)_n - (1+M) \left(v_{14} \right)_{an} - 2 v_m \left(v_{14} \right)^m_{\ [a} v_n \right] + \frac{1}{3} \varphi_{anm} v_{14}^{mp} v_p + \frac{1}{3} \psi_{anmp} v_q v^m v_{14}^{pq} \\ &- (1+M) \left(v_{27} \right)_{an} + v_m \left(v_{27} \right)^m_{\ a} v_n - (1+M) \varphi^{mp}_{\ a} \left(v_{27} \right)_{pn} v_m - \frac{1}{3} \varphi_{anm} v_{27}^{mp} v_p \\ &+ \frac{1}{3} \psi_{anmp} v^m v_{27}^{pq} v_q + v_a \varphi_{nmp} v^m v_{27}^{pq} v_q - \frac{1}{3} \varphi_{an} \left(v_{27} \right)_{pn} v_m - \frac{1}{3} \varphi_{anm} v_7^m v_p \\ &+ \left(1+M \right)^{-\frac{1}{3}} \left(\tau_{1} g_{an} + \tau_1 \varphi^m_{\ an} v_m + \varphi_{anm} \tau_7^m + v_a \left(\tau_7 \right)_n - g_{an} \tau_7^m v_m + \psi_{anmp} \tau_7^m v^p \\ &+ \left(\tau_{14} \right)_{an} - \varphi_{nmp} v^m \left(\tau_{14} \right)^p_{\ a} + \left(\tau_{27} \right)_{an} + \varphi_{nmp} v^m \left(\tau_{27} \right)^p_{\ a} \end{split}$$

• First solving for various components of ∇v and then carefully considering various consistency conditions, we get the following results for deformations in Λ_7^3

- First solving for various components of ∇v and then carefully considering various consistency conditions, we get the following results for deformations in Λ_7^3
- Theorem I A deformation from W_0 to W_0 exists if and only if $\nabla v = 0$

- First solving for various components of ∇v and then carefully considering various consistency conditions, we get the following results for deformations in Λ_7^3
- Theorem I A deformation from W_0 to W_0 exists if and only if $\nabla v = 0$
- **Theorem 2** There exist no deformations from the strict torsion classes W_1 , W_7 and $W_1 \oplus W_7$ to W_0 and vice versa.

- First solving for various components of ∇v and then carefully considering various consistency conditions, we get the following results for deformations in Λ_7^3
- Theorem I A deformation from W_0 to W_0 exists if and only if $\nabla v = 0$
- **Theorem 2** There exist no deformations from the strict torsion classes W_1 , W_7 and $W_1 \oplus W_7$ to W_0 and vice versa.
- Theorem 3 There exist no deformations from the strict torsion class W_1 to itself.

- First solving for various components of ∇v and then carefully considering various consistency conditions, we get the following results for deformations in Λ_7^3
- Theorem I A deformation from W_0 to W_0 exists if and only if $\nabla v = 0$
- Theorem 2 There exist no deformations from the strict torsion classes W_1 , W_7 and $W_1 \oplus W_7$ to W_0 and vice versa.
- Theorem 3 There exist no deformations from the strict torsion class W_1 to itself.
- Theorem 4 A deformation from the strict class $W_1 \oplus W_7$ to the strict class W_1 exists if and only if the original metric is a warped product with an interval (with a particular warp factor)

7. Concluding remarks

- Even for a relatively simple deformation in Λ_7^3 , the torsion deforms in a very complicated fashion. It would however be interesting to investigate what happens to the 14- and 27-dimensional torsion components
- > Much more difficult would be to perform the same analysis for deformations in Λ^3_{27} .
- However in the case of vanishing torsion this could eventually give some answers whether or not the moduli space of manifolds with G_2 holonomy is unobstructed, perhaps along the lines of the Bogomolov-Tian-Todorov theorem for Calabi-Yau moduli spaces.