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 The group G2 can be defined as the automorphism group of

the octonion algebra

 Equivalently, G2 is defined as the subgroup of that

preserves the 3-form 0:

 Also preserves the Euclidean inner product on , so

is a subgroup of SO(7)

 Moreover, preserves the Hodge star of 0:

Note: Generally, we will denote the Hodge dual of 0 by y
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3. Overview of G2 structures

 In general, a G-structure on a manifold M is a principal
subbundle of the frame bundle with fibre G for some Lie
subgroup of

 On a 7-manifold, G2 structures are in 1-1 correspondence

with positive 3-forms. These are forms for which there is an

oriented isomorphism between and identifying 

with the G2-invariant 3-form 0

 A G2 structure defined by 3-form  defines a metric on M via

Note: if a 3-form defines a non-degenerate bilinear form this way, then

necessarily, it will define either a G2 structure with positive definite metric or

a split G2 structure, with signature (4,3)
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 A G2 structure induces a decomposition of p-forms according

to irreducible representations of G2 – 1, 7, 14 and 27

4. Forms on G2 structure manifolds

 Spaces which correspond to the same representations are
isomorphic to each other

 For 3-forms, have
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 Given a G2 structure defined by a 3-form , the intrinsic

torsion is determined by

 For any vector field X,

So overall,

 Pointwise, this is a 49-dimensional space, so the torsion is fully

determined by the full torsion tensor , which is given by

 From this, get
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 Can split        according to representations of G2:  

t1 function 1-dim rep W1

t7 1-form 7-dim rep W7

t14 2-form in 14-dim rep W14

t27 Traceless, symmetric 2-tensor 27-dim rep W27

 Hence can split the space W by according to representations:

Different combinations give different torsion classes – 16 in total

 Determine d and dy:
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 If all torsion components vanish, then we have

which corresponds to G2 holonomy

 Generally, must have dd = 0 and ddy = 0, so this imposes

constraints on the torsion components

Torsion class Constraint

 In some specific cases have the following constraints:
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6. Deformations of G2 structures 

 General question – given a 7-manifold, which G2 structures

exist on it?

 Still too hard. More manageable is – given  with some torsion

T, when can find a 3-form c such that defines a G2 structure

with a specific torsion

 Less ambitious question – given a G2 structure  with a

specific torsion T in some fixed torsion class, which torsion

classes can we obtain by adding a 3-form c to :

 For an arbitrary 3-form c even this is too difficult for now, but

we can restrict c to lie either in or

 Alternatively, can consider only infinitesimal behaviour, e.g.

Karigiannis math/0702077, SG &Yau 0802.0723, SG 0911.2185
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Properties of general deformations

 Under a general deformation, , it can be

shown that the new metric becomes

where

 Moreover, can show that for the new metric, is given

by

 The Levi-Civita connection of the new metric differs by
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Conformal deformations

 A deformation in simply corresponds to a conformal

rescaling. For convenience, suppose

 Then, we have

 The new torsion is also very simply expressed:

 So this deformation only affects the W7 torsion component

 Recall that in class, ift1 is non-vanishing, then

Hence taking f = t1 will reduce the torsion class to
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Specific cases

 First solving for various components of and then carefully

considering various consistency conditions, we get the

following results for deformations in

 Theorem 2 There exist no deformations from the strict

torsion classes , and to and vice versa.

 Theorem 1 A deformation from to exists if and only

if

 Theorem 3 There exist no deformations from the strict

torsion class to itself.

 Theorem 4 A deformation from the strict class to
the strict class exists if and only if the original metric is a
warped product with an interval (with a particular warp
factor)



7. Concluding remarks

 Even for a relatively simple deformation in , the torsion

deforms in a very complicated fashion. It would however be

interesting to investigate what happens to the 14- and 27-

dimensional torsion components

 Much more difficult would be to perform the same analysis for

deformations in .

 However in the case of vanishing torsion this could eventually

give some answers whether or not the moduli space of

manifolds with G2 holonomy is unobstructed, perhaps along

the lines of the Bogomolov-Tian-Todorov theorem for Calabi-

Yau moduli spaces.


