W-curves and Mirror Symmetry

T. Jarvis

8 June 2011

イロト イロト イヨト イヨト

2

The theory of Fan-Jarvis-Ruan-Witten

- provides an orbifolded LG A-Model for each quasi-homogeneous singularity W
- is known to satisfy a form of LG-LG mirror symmetry
- fits into the LG-CY correspondence

By singularity we mean

- ► $W \in \mathbb{C}[x_1, ..., x_N]$ is quasi-homogeneous with weights $q_1, ..., q_N \in \mathbb{Q} \cap [0, 1/2]$
- ► W is non-degenerate (isolated singularity at origin)
- ► The weights of *W* are unique (i.e., no term of the form *xy*)

A (1) < A (1) < A (1) </p>

$$\begin{array}{rcl} A_n &=& x^{n+1} & \text{weight } q_x = \frac{1}{(n+1)} \\ E_6 &=& x^3 + y^4 & \text{weights } q_x = 1/3 & q_y = 1/4 \\ E_7 &=& x^3 + xy^3 & \text{weights } q_x = 1/3 & q_y = 2/9 \\ E_8 &=& x^3 + y^5 & \text{weights } q_x = 1/3 & q_y = 1/5 \\ D_n &=& x^{n-1} + xy^2 & \text{weights } q_x = \frac{1}{(n-1)} & q_y = \frac{(n-1)}{2n} \\ P_8 &=& x^3 + y^3 + z^3 & \text{weights } q_x = q_y = q_z = 1/3 \end{array}$$

イロト イロト イヨト イヨト

Э.

There is a canonical automorphism of W defined by

$$J = (\exp(2\pi i q_1, \ldots, 2\pi i q_N) \in (\mathbb{C}^*)^N.$$

The largest group of automorphisms we allow is

$$G_{max} = \{(\alpha_1, \ldots, \alpha_N) \in (\mathbb{C}^*)^N | W(\alpha_1 x_1, \ldots, \alpha_N x_N) = W(x_1, \ldots, x_N)\}$$

A group G is admissible if

$$J \in G \leq G_{max}$$

A B F A B F

Theorem (Fan, Jarvis, Ruan (after Witten))

For each nondegenerate W and admissible G there is a

- Moduli space $\mathscr{W}_{g,k}^{W,G} \longrightarrow \overline{\mathscr{M}}_{g,k}$
- State space $\mathscr{H}_{W,G} = \bigoplus_{\gamma \in G} \mathscr{H}_{\gamma}$
- Pairing $\langle , \rangle : \mathscr{H}_{\gamma} \times \mathscr{H}_{\gamma^{-1}} \longrightarrow \mathbb{C}$
- Virtual Cycle $\left[\mathscr{W}_{g,k}^{W,G} \right]^{vir}$
- Cohomological Field Theory $\{\Lambda_{g,k}^{W,G}\}, \mathcal{H}, \langle, \rangle$

伺 ト イ ヨ ト イ ヨ ト

Associated to the CohFT we get

- ▶ g = 0, n = 3 Frobenius algebra $\mathscr{H}_{W,G}, \star$
- $g = 0, n \ge 3$ Frobenius manifold
- $g \ge 0$ potential $\Phi_{W,G}^{FJRW}$

э

Associated to each singularity W we have

- Frobenius algebra: Milnor ring $\mathbb{C}[x_1, \ldots, x_N]/(\frac{\partial W}{\partial x_1}, \ldots, \frac{\partial W}{\partial x_N})$
- Saito Frobenius manifold associated to W (semi-simple)
- Givental formal potential Φ^{Givental}_W
- In some cases:

Kac-Wakimoto/Drinfeld-Sokolov integrable hierarchy

・ ロ ト ・ 同 ト ・ ヨ ト ・ 日 ト ・

LG-LG mirror symmetry

A-model		B-model			
(FJRW)		<i>g</i> = 0	g=0		
		n = 3	<i>n</i> ≥ 3	$g \ge$	0
Singu-		Milnor	Saito Frob	Givental	DS/KW
larity	Group	Ring	Manifold	Potential	int hier
An	$\langle J \rangle = G_{max}$	A _n	A _n [JKV]	A _n [L,FSZ]	A _n
E_6	$\langle J \rangle = G_{max}$	E ₆	E ₆	E ₆	E ₆
E ₇	$\langle J \rangle = G_{max}$	E ₇	E ₇	E ₇	E ₇
E ₈	$\langle J angle = G_{max}$	E ₈	E ₈	E ₈	E ₈
D _n	$\langle J \rangle$	D _n	D _n	D _n	D _n
n even	$[G_{max}:\langle J\rangle]=2$	$\left[D_n^T / \mathbb{Z}_2 \right]$	$\left[D_{n}^{T}/\mathbb{Z}_{2}\right]$?	?
Dn	G _{max}				
n even		D_n^T	D_n^T	D_n^T	D_n^T
D_n	G _{max}				
n odd		D_n^T	D_n^T	D_n^T	D_n^T
D_n^T	$\langle J \rangle = G_{max}$	D _n	D _n	D _n	D _n

イロト イロト イヨト イヨト

Э.

Berlund-Hübsch duality

For each singularity

$$W = \sum_{i=1}^{N} c_i \prod_{j=1}^{N} x_i^{a_{i_j}}$$

with the same number of monomials as variables (invertible), just transpose the exponent matrix:

$$A:=(a_{ij})\Rightarrow A^{T}=(a_{ji})$$

to get

$$W^{T} = \sum_{i=1}^{N} c_{i} \prod_{j=1}^{N} x_{i}^{a_{ji}}$$

•
$$A_n, E_{6,7,8}, P_8$$
 are all self-dual

$$D_n^T = x^{n-1}y + y^2 \cong A_{2n-3}$$

A B F A B F

Krawitz defines G^{T} in such a way that

- $\bullet |G^{T}| = [G_{max} : G]$
- $G^T \leq SL_N$ iff $J \in G$

Orbifold mirror:

- For Frobenius algebras:
 FJRW (A-model) for W/G is isomorphic to IV-K-K orbifold Milnor ring for W^T/G^T
- Expect same for Frobenius manifolds: (Orbifolded Frobenius manifold is not yet fully defined)

個人 くほん くほん

A-model		B-model			
(FJRW)		g = 0	g=0		
		n = 3	<i>n</i> ≥ 3	$g \ge 0$	
		Milnor	Frob	Givental	
W	G	Ring	Manifold	Potential	
P_8	G _{max}	P ₈	<i>P</i> ₈ [KS]	P ₈ [KS]	
<i>X</i> ₉	G _{max}	X ₉	<i>X</i> ₉ [KS]	<i>X</i> ₉ [KS]	
J_{10}	G _{max}	J ₁₀	J ₁₀ [KS]	J ₁₀ [KS]	
W	G _{max}	W^{T} [AKS]	W^{T} ?	W^{T} ?	
W	$G < G_{max}$	$\left[W^T/G^T\right]$ [FJJ]	$\begin{bmatrix} W^T/G^T \end{bmatrix}$?	$\left[W^{T}/G^{T}\right]?$	
for most				(if SS)	
inv W					

イロト イロト イヨト イヨト

Э.