$(0,2)$ Quantum Cohomology

Sheldon Katz
University of Illinois at Urbana-Champaign
June 9, 2011
String-Math 2011
University of Pennsylvania

This talk is based on joint work with Ron Donagi, Josh Guffin, and Eric Sharpe

Outline

(1) Background

- Quantum Cohomology
- The half-twisted model
- The Gauged Linear Sigma Model and Toric Geometry
(2) Correlation Functions and Quantum Cohomology
- Correlation Functions
- Quantum Cohomology

Abstract

In this talk, a mathematical definition is given of the topological correlation functions of a $(0,2)$ gauged linear sigma model in the geometric phase of a neighborhood of the $(2,2)$ locus in moduli. The geometric data determining the model is a smooth toric variety X and a deformation E of its tangent bundle $T X$. This definition is consistent with the known results of physics and leads to a proof of the existence of a quantum cohomology ring in complete generality, extending known results of physics.

The A model

- Consider the topological A-model on a compact Kähler manifold (X, g) (no coupling to gravity, a TQFT)
- Observables $H^{*}(X)$
- Correlation functions

- Virtual dimension $D=c_{1}(X) \cdot \beta+\operatorname{dim} X, \quad \sum k_{i}=D$ where B is the B-field

The A model

- Consider the topological A-model on a compact Kähler manifold (X, g) (no coupling to gravity, a TQFT)
- Observables $H^{*}(X)$
- Correlation functions

where B is the B-field

The A model

- Consider the topological A-model on a compact Kähler manifold (X, g) (no coupling to gravity, a TQFT)
- Observables $H^{*}(X)$
- Correlation functions

$$
\left\langle\omega_{1}, \ldots, \omega_{n}\right\rangle_{\beta}, \omega_{i} \in H^{2 k_{i}}(X), \beta \in H_{2}(X, \mathbf{Z})
$$

where B is the B-field

The A model

- Consider the topological A-model on a compact Kähler manifold (X, g) (no coupling to gravity, a TQFT)
- Observables $H^{*}(X)$
- Correlation functions $\left\langle\omega_{1}, \ldots, \omega_{n}\right\rangle_{\beta}, \omega_{i} \in H^{2 k_{i}}(X), \beta \in H_{2}(X, \mathbf{Z})$
- Virtual dimension $D=c_{1}(X) \cdot \beta+\operatorname{dim} X, \quad \sum k_{i}=D$ where B is the B-field

The A model

- Consider the topological A-model on a compact Kähler manifold (X, g) (no coupling to gravity, a TQFT)
- Observables $H^{*}(X)$
- Correlation functions $\left\langle\omega_{1}, \ldots, \omega_{n}\right\rangle_{\beta}, \omega_{i} \in H^{2 k_{i}}(X), \beta \in H_{2}(X, \mathbf{Z})$
- Virtual dimension $D=c_{1}(X) \cdot \beta+\operatorname{dim} X, \quad \sum k_{i}=D$
- $\left\langle\omega_{1}, \ldots, \omega_{n}\right\rangle=\sum_{\beta}\left\langle\omega_{1}, \ldots, \omega_{n}\right\rangle_{\beta} q^{\beta}, q^{\beta}=\exp \left(\int_{\beta}(B+i g)\right)$, where B is the B-field

A Model Lagrangian

$$
\begin{aligned}
\mathcal{L}= & \frac{1}{\alpha^{\prime}} \int_{\Sigma} d^{2} z\left(\left(g_{\mu \nu}+i B_{\mu \nu}\right) \partial \phi^{\mu} \bar{\partial} \phi^{\nu}+\frac{i}{2} g_{\mu \nu} \psi_{+}^{\mu} D_{\bar{z}} \psi_{+}^{\nu}\right. \\
& \left.+\frac{i}{2} g_{\mu \nu} \psi_{-}^{\mu} D_{z} \psi_{-}^{\nu}+R_{i \bar{j} k} \psi_{+}^{i} \psi_{+}^{\bar{\jmath}} \psi_{-}^{k} \psi_{-}^{\bar{I}}\right)
\end{aligned}
$$

The fields have been twisted from the usual sigma model so that

$$
\begin{array}{cc}
\psi_{+}^{i} \in C^{\infty}\left(\phi^{*} T X\right), & \psi_{-}^{i} \in C^{\infty}\left(\bar{K}_{\Sigma} \otimes\left(\phi^{*} T X\right)^{*}\right), \\
\psi_{+}^{\bar{\imath}} \in C^{\infty}\left(K_{\Sigma} \otimes\left(\phi^{*} \overline{T X}\right)^{*}\right), & \psi_{-}^{\bar{i}} \in C^{\infty}\left(\phi^{*} \overline{T X}\right) .
\end{array}
$$

where $\phi: \Sigma \rightarrow X$ is the map from the worldsheet to X.

Quantum Cohomology

- The observables are in 1-1 correspondence with elements of $H^{*}(X)$, generating the quantum cohomology ring by operator product
- In QFT, an operator is zero by definition if after inserting it into a correlation function, all correlation functions vanish after arbitrary additional insertions
- The quantum cohomology ring is the algebra generated by a basis for the cohomology, modulo those products which are zero as operators in the above sense

Quantum Cohomology

- The observables are in 1-1 correspondence with elements of $H^{*}(X)$, generating the quantum cohomology ring by operator product
- In QFT, an operator is zero by definition if after inserting it into a correlation function, all correlation functions vanish after arbitrary additional insertions
- The quantum cohomology ring is the algebra generated by a basis for the cohomology, modulo those products which are zero as operators in the above sense

Quantum Cohomology

- The observables are in 1-1 correspondence with elements of $H^{*}(X)$, generating the quantum cohomology ring by operator product
- In QFT, an operator is zero by definition if after inserting it into a correlation function, all correlation functions vanish after arbitrary additional insertions
- The quantum cohomology ring is the algebra generated by
a basis for the cohomology, modulo those products which
are zero as operators in the above sense

Summary

Quantum Cohomology

- The observables are in 1-1 correspondence with elements of $H^{*}(X)$, generating the quantum cohomology ring by operator product
- In QFT, an operator is zero by definition if after inserting it into a correlation function, all correlation functions vanish after arbitrary additional insertions
- The quantum cohomology ring is the algebra generated by a basis for the cohomology, modulo those products which are zero as operators in the above sense

Quantum Cohomology Relations

In particular, a quantum cohomology relation of the form

$$
\prod_{i=1}^{r} \alpha_{i}=q^{\gamma} \prod_{j=1}^{s} \eta_{j}, \alpha_{i}, \eta_{j} \in H^{*}(X)
$$

is equivalent to the identities

$$
\left\langle\alpha_{1}, \ldots, \alpha_{r}, \omega_{1}, \ldots, \omega_{n}\right\rangle=q^{\gamma}\left\langle\eta_{1}, \ldots, \eta_{s}, \omega_{1}, \ldots, \omega_{n}\right\rangle
$$

for any $\omega_{1}, \ldots, \omega_{n}$, which is in turn equivalent to

$$
\left\langle\alpha_{1}, \ldots, \alpha_{r}, \omega_{1}, \ldots, \omega_{n}\right\rangle_{\beta+\gamma}=\left\langle\eta_{1}, \ldots, \eta_{s}, \omega_{1}, \ldots, \omega_{n}\right\rangle_{\beta}
$$

for any ω_{l} and β.

The A/2 model

The model is a "half-twist" of the $(0,2)$ nonlinear sigma model described by the Lagrangian

$$
\begin{aligned}
\mathcal{L}= & \frac{1}{\alpha^{\prime}} \int_{\Sigma} d^{2} z\left(\left(g_{\mu \nu}+i B_{\mu \nu}\right) \partial \phi^{\mu} \bar{\partial} \phi^{\nu}+\frac{i}{2} g_{\mu \nu} \psi_{+}^{\mu} D_{z} \psi_{+}^{\nu}+\right. \\
& \left.\frac{i}{2} h_{\alpha \beta} \lambda_{-}^{\alpha} D_{z} \lambda_{-}^{\beta}+F_{i \bar{i} a \bar{b}} \psi_{+}^{i} \psi_{+}^{\bar{j}} \lambda_{-}^{a} \lambda_{-}^{\bar{b}}\right)
\end{aligned}
$$

with field content

$$
\begin{array}{cc}
\psi_{+}^{i} \in C^{\infty}\left(\phi^{*} T X\right), & \lambda_{-}^{a} \in C^{\infty}\left(\bar{K}_{\Sigma} \otimes \phi^{*} \bar{E}^{*}\right), \\
\psi_{+}^{\bar{i}} \in C^{\infty}\left(K_{\Sigma} \otimes\left(\phi^{*} T X\right)^{*}\right), & \lambda_{-}^{\bar{a}} \in C^{\infty}\left(\phi^{*} \bar{E}\right),
\end{array}
$$

where E is a holomorphic vector bundle on X.

Anomaly Cancellation

- Anomaly cancellation requires $\Lambda^{\mathrm{top}} E^{*} \cong K_{X}, \operatorname{ch}_{2}(E)=\operatorname{ch}_{2}(T X)$
- We call such a bundle E omalous
- Deformations E of $T X$ are omalous

Anomaly Cancellation

- Anomaly cancellation requires
$\Lambda^{\text {top }} E^{*} \cong K_{X}, \operatorname{ch}_{2}(E)=\operatorname{ch}_{2}(T X)$
- We call such a bundle E omalous
- Deformations E of TX are omalous

Anomaly Cancellation

- Anomaly cancellation requires
$\Lambda^{\mathrm{top}} E^{*} \cong K_{X}, \operatorname{ch}_{2}(E)=\operatorname{ch}_{2}(T X)$
- We call such a bundle E omalous
- Deformations E of $T X$ are omalous

Observables and Correlation Functions

- The half-twisted model is not topological, but has a sector in which the OPE closes [Adams-Distler-Ernebjerg].
- In this sector, the observables are in 1-1 correspondence with the cohomology ring $H^{*}\left(X, \Lambda^{*} E^{*}\right)$, which we call the polymology of (X, E).
- Since $\wedge^{\text {top }} E^{*} \simeq K_{X}$, we have $H^{\text {top }}\left(X, \wedge^{\text {top }} E^{*}\right) \simeq C$, providing a mathematical definition of classical correlation functions.
- Quantum corrections deform the classical polymology ring In many situations, we know from physics that this deformation is an associative ring, the $(0,2)$ quantum cohomology ring.

Observables and Correlation Functions

- The half-twisted model is not topological, but has a sector in which the OPE closes [Adams-Distler-Ernebjerg].
- In this sector, the observables are in 1-1 correspondence with the cohomology ring $H^{*}\left(X, \Lambda^{*} E^{*}\right)$, which we call the polymology of (X, E).
- Since $\wedge^{\text {top }} E^{*} \simeq K_{X}$, we have $H^{\text {top }}\left(X, \wedge^{\text {top }} E^{*}\right) \simeq C$, providing
a mathematical definition of classical correlation functions.
- Quantum corrections deform the classical polymology ring In many situations, we know from physics that this deformation is an associative ring, the $(0,2)$ quantum cohomology ring.

Observables and Correlation Functions

- The half-twisted model is not topological, but has a sector in which the OPE closes [Adams-Distler-Ernebjerg].
- In this sector, the observables are in 1-1 correspondence with the cohomology ring $H^{*}\left(X, \Lambda^{*} E^{*}\right)$, which we call the polymology of (X, E).
- Since $\Lambda^{\text {top }} E^{*} \simeq K_{X}$, we have $H^{\text {top }}\left(X, \Lambda^{\text {top }} E^{*}\right) \simeq \mathbf{C}$, providing a mathematical definition of classical correlation functions.
- Quantum corrections deform the classical polymology ring. In many situations, we know from physics that this deformation is an associative ring, the $(0,2)$ quantum cohomology ring.

Observables and Correlation Functions

- The half-twisted model is not topological, but has a sector in which the OPE closes [Adams-Distler-Ernebjerg].
- In this sector, the observables are in 1-1 correspondence with the cohomology ring $H^{*}\left(X, \Lambda^{*} E^{*}\right)$, which we call the polymology of (X, E).
- Since $\Lambda^{\text {top }} E^{*} \simeq K_{X}$, we have $H^{\text {top }}\left(X, \Lambda^{\text {top }} E^{*}\right) \simeq \mathbf{C}$, providing a mathematical definition of classical correlation functions.
- Quantum corrections deform the classical polymology ring. In many situations, we know from physics that this deformation is an associative ring, the $(0,2)$ quantum cohomology ring.

Calling all Mathematicians

- A rigorous mathematical definition of correlation functions in the $\mathrm{A} / 2$ theory could produce a powerful method for computing Yukawa couplings in heterotic string theory
- Alas, this is beyond today's technology. But we can rigorously define and easily compute correlation functions exactly in the analogous gauged linear sigma model, when E is a deformation of $T X$.
- In this situation, the quantum cohomology ring always exists.

Calling all Mathematicians

- A rigorous mathematical definition of correlation functions in the $\mathrm{A} / 2$ theory could produce a powerful method for computing Yukawa couplings in heterotic string theory
- Alas, this is beyond today's technology. But we can rigorously define and easily compute correlation functions exactly in the analogous gauged linear sigma model, when E is a deformation of TX.
- In this situation, the quantum cohomology ring always exists.

Calling all Mathematicians

- A rigorous mathematical definition of correlation functions in the $\mathrm{A} / 2$ theory could produce a powerful method for computing Yukawa couplings in heterotic string theory
- Alas, this is beyond today's technology. But we can rigorously define and easily compute correlation functions exactly in the analogous gauged linear sigma model, when E is a deformation of $T X$.
- In this situation, the quantum cohomology ring always exists.

Calling all Mathematicians

- A rigorous mathematical definition of correlation functions in the $\mathrm{A} / 2$ theory could produce a powerful method for computing Yukawa couplings in heterotic string theory
- Alas, this is beyond today's technology. But we can rigorously define and easily compute correlation functions exactly in the analogous gauged linear sigma model, when E is a deformation of $T X$.
- In this situation, the quantum cohomology ring always exists.

The Gauged Linear Sigma Model

- The $(0,2)$ gauged linear sigma model (GLSM) is a 2D QFT with $(0,2)$ SUSY. It is obtained from the $(2,2)$ GLSM by decomposing the (2,2) multiplets into $(0,2)$ multiplets, then varying the $(0,2)$ multiplets independently.
- In a certain regime of FI parameters, the moduli space of vacua corresponds to a toric variety X and holomorphic vector bundle E on X.
- To be expeditious, I start with a smooth projective toric variety X and a deformation E of the tangent bundle $T X$, then engineer a $(0,2)$ GLSM from that data.

The Gauged Linear Sigma Model

- The $(0,2)$ gauged linear sigma model (GLSM) is a 2D QFT with $(0,2)$ SUSY. It is obtained from the $(2,2)$ GLSM by decomposing the $(2,2)$ multiplets into $(0,2)$ multiplets, then varying the $(0,2)$ multiplets independently.
- In a certain regime of FI parameters, the moduli space of vacua corresponds to a toric variety X and holomorphic vector bundle E on X.
- To be expeditious, I start with a smooth projective toric variety X and a deformation E of the tangent bundle $T X$ then engineer a $(0,2)$ GLSM from that data.

The Gauged Linear Sigma Model

- The $(0,2)$ gauged linear sigma model (GLSM) is a 2D QFT with $(0,2)$ SUSY. It is obtained from the $(2,2)$ GLSM by decomposing the $(2,2)$ multiplets into $(0,2)$ multiplets, then varying the $(0,2)$ multiplets independently.
- In a certain regime of FI parameters, the moduli space of vacua corresponds to a toric variety X and holomorphic vector bundle E on X.
- To be expeditious, I start with a smooth projective toric variety X and a deformation E of the tangent bundle $T X$ then engineer a $(0,2)$ GLSM from that data.

The Gauged Linear Sigma Model

- The $(0,2)$ gauged linear sigma model (GLSM) is a 2D QFT with $(0,2)$ SUSY. It is obtained from the $(2,2)$ GLSM by decomposing the $(2,2)$ multiplets into $(0,2)$ multiplets, then varying the $(0,2)$ multiplets independently.
- In a certain regime of FI parameters, the moduli space of vacua corresponds to a toric variety X and holomorphic vector bundle E on X.
- To be expeditious, I start with a smooth projective toric variety X and a deformation E of the tangent bundle $T X$, then engineer a $(0,2)$ GLSM from that data.

Toric Geometry: Notation

- T : a torus $T \simeq\left(\mathbf{C}^{*}\right)^{r}$
- $N=\operatorname{Hom}\left(\mathbf{C}^{*}, T\right) \simeq \mathbf{Z}^{r}$ the lattice of 1-parameter subgroups
- $M=\operatorname{Hom}\left(T, \mathbf{C}^{*}\right) \simeq \mathbf{Z}^{r}$ the lattice of characters.
- $\langle\rangle:, M \times N \rightarrow \mathbf{Z}:(m \circ n)(t)=t^{\langle m, n\rangle}$
- Σ complete simplicial fan in $N_{\mathbf{R}}=N \otimes \mathbf{R}$.
- $X=X_{\Sigma}$ the associated complete toric variety, assumed smooth.
- $\Sigma(1)$: the set of 1 -dimensional cones in Σ.
- $S=\mathbf{C}\left[x_{\rho} \mid \rho \in \Sigma(1)\right]$ homogeneous coordinate ring
- T-invariant divisor D_{ρ} defined by $x_{\rho}=0 ; x_{\rho} \in H^{0}\left(\mathcal{O}\left(D_{\rho}\right)\right)$
- $W=H^{2}(X)=\mathbf{C}^{\Sigma(1)} /(M \otimes \mathbf{C})$; divisors mod linear equivalence

Example: $\mathbf{P}^{1} \times \mathbf{P}^{1}$

$$
\begin{gathered}
D_{3}(-1,0) \quad(1,0) D_{1} \\
S=\mathbf{C}\left[x_{1}, x_{2}, x_{3}, x_{4}\right], \quad\left(\left(x_{1}: x_{3}\right),\left(x_{2}, x_{4}\right)\right) \in \mathbf{P}^{1} \times \mathbf{P}^{1} \\
D_{1} \sim D_{3}, D_{2} \sim D_{4}, H_{1}=\left[D_{1}\right]=\left[D_{3}\right], H_{2}=\left[D_{2}\right]=\left[D_{4}\right] \\
W=H^{2}(X, \mathbf{C})=\operatorname{span}\left(H_{1}, H_{2}\right)
\end{gathered}
$$

Relation to GLSM

- There is an open set $U_{\Sigma} \subset \mathbf{C}^{\Sigma(1)}$ invariant under the complexification G_{C} of the gauge group G, so that $X_{\Sigma}=U_{\Sigma} / G_{C}$
- The theory contains gauge fields for G
- Have a charged $(0,2)$ chiral field Φ_{ρ} for each $\rho \in \Sigma(1)$
- In the situation of a deformation of TX, also have fermi fields Λ_{ρ} with the same charges as those of Φ_{ρ}
- The topological observables are generated by $W=H^{2}(X, \mathbf{C})$

Relation to GLSM

- There is an open set $U_{\Sigma} \subset \mathbf{C}^{\Sigma(1)}$ invariant under the complexification G_{C} of the gauge group G, so that $X_{\Sigma}=U_{\Sigma} / G_{C}$
- The theory contains gauge fields for G
- Have a charged $(0,2)$ chiral field Φ_{ρ} for each $\rho \in \Sigma(1)$
- In the situation of a deformation of $T X$, also have fermi fields Λ_{ρ} with the same charges as those of Φ_{f}
- The topological observables are generated by $W=H^{2}(X, \mathbf{C})$

Relation to GLSM

- There is an open set $U_{\Sigma} \subset \mathbf{C}^{\Sigma(1)}$ invariant under the complexification G_{C} of the gauge group G, so that $X_{\Sigma}=U_{\Sigma} / G_{C}$
- The theory contains gauge fields for G
- Have a charged $(0,2)$ chiral field Φ_{ρ} for each $\rho \in \Sigma(1)$
- In the situation of a deformation of $T X$, also have fermi fields Λ_{ρ} with the same charges as those of Φ_{ρ}
- The topological observables are generated by $W=H^{2}(X, \mathbf{C})$

Relation to GLSM

- There is an open set $U_{\Sigma} \subset \mathbf{C}^{\Sigma(1)}$ invariant under the complexification G_{C} of the gauge group G, so that $X_{\Sigma}=U_{\Sigma} / G_{C}$
- The theory contains gauge fields for G
- Have a charged $(0,2)$ chiral field Φ_{ρ} for each $\rho \in \Sigma(1)$
- In the situation of a deformation of TX, also have fermi fields Λ_{ρ} with the same charges as those of Φ_{ρ}
- The topological observables are generated by $W=H^{2}(X, \mathbf{C})$

Relation to GLSM

- There is an open set $U_{\Sigma} \subset \mathbf{C}^{\Sigma(1)}$ invariant under the complexification G_{C} of the gauge group G, so that $X_{\Sigma}=U_{\Sigma} / G_{C}$
- The theory contains gauge fields for G
- Have a charged $(0,2)$ chiral field Φ_{ρ} for each $\rho \in \Sigma(1)$
- In the situation of a deformation of $T X$, also have fermi fields Λ_{ρ} with the same charges as those of Φ_{ρ}
- The topological observables are generated by $W=H^{2}(X, \mathbf{C})$

Relation to GLSM

- There is an open set $U_{\Sigma} \subset \mathbf{C}^{\Sigma(1)}$ invariant under the complexification G_{C} of the gauge group G, so that $X_{\Sigma}=U_{\Sigma} / G_{C}$
- The theory contains gauge fields for G
- Have a charged $(0,2)$ chiral field Φ_{ρ} for each $\rho \in \Sigma(1)$
- In the situation of a deformation of $T X$, also have fermi fields Λ_{ρ} with the same charges as those of Φ_{ρ}
- The topological observables are generated by

$$
W=\dot{H}^{2}(X, \mathbf{C})
$$

Example: $\mathbf{P}^{1} \times \mathbf{P}^{1}$

$$
\begin{aligned}
& D_{2} \\
& (0,1) \\
& D_{3}(-1,0) \\
& G=U(1) \times U(1) \\
& \begin{array}{ccccc}
& \Phi_{1} & \Phi_{2} & \Phi_{3} & \Phi_{4} \\
U(1)_{1} & 1 & 0 & 1 & 0 \\
U(1)_{2} & 0 & 1 & 0 & 1
\end{array}
\end{aligned}
$$

Tangent Bundle and its Deformations

In general,

$$
0 \longrightarrow T^{*} X \longrightarrow \bigoplus_{\rho \in \Sigma(1)} \mathcal{O}\left(-D_{\rho}\right) \longrightarrow W \otimes \mathcal{O} \longrightarrow 0
$$

The rightmost nontrivial map is induced by the canonical sections $x_{\rho} \otimes\left[D_{\rho}\right]$ of $\mathcal{O}\left(D_{\rho} \otimes W\right)$.
Deformation of $T X$

$$
0 \longrightarrow E^{*} \longrightarrow \bigoplus_{\rho \in \Sigma(1)} \mathcal{O}\left(-D_{\rho}\right) \longrightarrow W \otimes \mathcal{O} \longrightarrow 0
$$

by deforming $x_{\rho} \otimes\left[D_{\rho}\right]$ to sections $s_{\rho} \in \mathcal{O}\left(D_{\rho} \otimes W\right)$ sufficiently generic so that the kernel E^{*} is still a vector bundle.

Gauge Sectors

- Fix genus 0 worldsheet $\Sigma=\mathbf{P}^{1}$
- The theory forms sectors according to the topological type of the gauge bundle
- For $\mathbf{P}^{1} \times \mathbf{P}^{1}$, assign chern classes (d, e) to $U(1) \times U(1)$ gauge bundle
- $\Phi_{1}, \Phi_{3}, \Lambda_{1}, \Lambda_{3}$ become global sections of $\mathcal{O}_{\mathbf{P}^{1}}(d)$, charge $(1,0)$
- $\Phi_{2}, \Phi_{4}, \wedge_{2}, \wedge_{4}$ become global sections of $\mathcal{O}_{P^{1}}(e)$, charge $(0,1)$
- The zero modes of the Φ_{i} fill out the GLSM moduli space $X_{(d, e)}=\mathbf{P}^{2 d+1} \times \mathbf{P}^{2 e+1}$, exactly as in the $(2,2)$ situation
- The zero modes of the Ψ_{i} fill out a deformation of the tangent bundle of $X_{(d, e)}$

Gauge Sectors

- Fix genus 0 worldsheet $\Sigma=\mathbf{P}^{1}$
- The theory forms sectors according to the topological type of the gauge bundle
- For $\mathbf{P}^{1} \times \mathbf{P}^{1}$, assign chern classes (d, e) to $U(1) \times U(1)$ gauge bundle
- $\Phi_{1}, \Phi_{3}, \Lambda_{1}, \Lambda_{3}$ become global sections of $O_{\text {pi }}(d)$, charge $(1,0)$
- $\Phi_{2}, \Phi_{4}, \Lambda_{2}, \Lambda_{4}$ become global sections of $\mathcal{O}_{\mathbf{P}^{1}}(e)$, charge $(0,1)$
- The zero modes of the Φ_{i} fill out the GLSM moduli space $X_{(d, e)}=\mathbf{P}^{2 d+1} \times \mathbf{P}^{2 e+1}$, exactly as in the $(2,2)$ situation The zero modes of the ψ_{i} fill out a deformation of the tangent bundle of $X_{(d, e)}$

Gauge Sectors

- Fix genus 0 worldsheet $\Sigma=\mathbf{P}^{1}$
- The theory forms sectors according to the topological type of the gauge bundle
- For $\mathbf{P}^{1} \times \mathbf{P}^{1}$, assign chern classes (d, e) to $U(1) \times U(1)$ gauge bundle
- $\Phi_{1}, \Phi_{3}, \Lambda_{1}, \Lambda_{3}$ become global sections of $\mathcal{O}_{\mathbf{p}^{1}}(d)$, charge
- $\Phi_{2}, \Phi_{4}, \Lambda_{2}, \Lambda_{4}$ become global sections of $\mathcal{O}_{\mathbf{P}^{1}}(e)$, charge $(0,1)$
- The zero modes of the Φ_{i} fill out the GLSM moduli space $X_{(d, e)}=\mathbf{P}^{2 d+1} \times \mathbf{P}^{2 e+1}$, exactly as in the $(2,2)$ situation The zero modes of the ψ_{i} fill out a deformation of the tangent bundle of $X_{(d, e)}$

Gauge Sectors

- Fix genus 0 worldsheet $\Sigma=\mathbf{P}^{1}$
- The theory forms sectors according to the topological type of the gauge bundle
- For $\mathbf{P}^{1} \times \mathbf{P}^{1}$, assign chern classes (d, e) to $U(1) \times U(1)$ gauge bundle
- $\Phi_{1}, \Phi_{3}, \Lambda_{1}, \Lambda_{3}$ become global sections of $\mathcal{O}_{\mathbf{P}^{1}}(d)$, charge $(1,0)$
- $\Phi_{2}, \Phi_{4}, \wedge_{2}, \wedge_{4}$ become global sections of $\mathcal{O}_{\mathbf{P}^{1}}(e)$, charge $(0,1)$
- The zero modes of the Φ_{i} fill out the GLSM moduli space $X_{(d, e)}=\mathbf{P}^{2 d+1} \times \mathbf{P}^{2 e+1}$, exactly as in the $(2,2)$ situation
The zero modes of the Ψ_{i} fill out a deformation of the tangent bundle of $X_{(d, e)}$

Gauge Sectors

- Fix genus 0 worldsheet $\Sigma=\mathbf{P}^{1}$
- The theory forms sectors according to the topological type of the gauge bundle
- For $\mathbf{P}^{1} \times \mathbf{P}^{1}$, assign chern classes (d, e) to $U(1) \times U(1)$ gauge bundle
- $\Phi_{1}, \Phi_{3}, \Lambda_{1}, \Lambda_{3}$ become global sections of $\mathcal{O}_{\mathbf{P}^{1}}(d)$, charge $(1,0)$
- $\Phi_{2}, \Phi_{4}, \Lambda_{2}, \Lambda_{4}$ become global sections of $\mathcal{O}_{\mathbf{P}^{1}}(e)$, charge $(0,1)$
- The zero modes of the Φ_{i} fill out the GLSM moduli space $X_{(d, e)}=\mathbf{P}^{2 d+1} \times \mathbf{P}^{2 e+1}$, exactly as in the $(2,2)$ situation
- The zero modes of the Ψ_{i} fill out a deformation of the tangent bundle of $X_{(d, e)}$

Gauge Sectors

- Fix genus 0 worldsheet $\Sigma=\mathbf{P}^{1}$
- The theory forms sectors according to the topological type of the gauge bundle
- For $\mathbf{P}^{1} \times \mathbf{P}^{1}$, assign chern classes (d, e) to $U(1) \times U(1)$ gauge bundle
- $\Phi_{1}, \Phi_{3}, \Lambda_{1}, \Lambda_{3}$ become global sections of $\mathcal{O}_{\mathbf{P}^{1}}(d)$, charge $(1,0)$
- $\Phi_{2}, \Phi_{4}, \Lambda_{2}, \Lambda_{4}$ become global sections of $\mathcal{O}_{\mathbf{P}^{1}}(e)$, charge $(0,1)$
- The zero modes of the Φ_{i} fill out the GLSM moduli space $X_{(d, e)}=\mathbf{P}^{2 d+1} \times \mathbf{P}^{2 e+1}$, exactly as in the $(2,2)$ situation
- The zero modes of the ψ_{i} fill out a deformation of the tangent bundle of $X_{(d, e)}$

Gauge Sectors

- Fix genus 0 worldsheet $\Sigma=\mathbf{P}^{1}$
- The theory forms sectors according to the topological type of the gauge bundle
- For $\mathbf{P}^{1} \times \mathbf{P}^{1}$, assign chern classes (d, e) to $U(1) \times U(1)$ gauge bundle
- $\Phi_{1}, \Phi_{3}, \Lambda_{1}, \Lambda_{3}$ become global sections of $\mathcal{O}_{\mathbf{P}^{1}}(d)$, charge $(1,0)$
- $\Phi_{2}, \Phi_{4}, \Lambda_{2}, \Lambda_{4}$ become global sections of $\mathcal{O}_{\mathbf{P}^{1}}(e)$, charge $(0,1)$
- The zero modes of the Φ_{i} fill out the GLSM moduli space $X_{(d, e)}=\mathbf{P}^{2 d+1} \times \mathbf{P}^{2 e+1}$, exactly as in the $(2,2)$ situation
- The zero modes of the Ψ_{i} fill out a deformation of the tangent bundle of $X_{(d, e)}$

The General Case

- In general, the topological types of the gauge bundle correspond to homology classes $\beta \in H_{2}(X, \mathbf{Z})$
- Have a GLSM moduli space X_{β} parametrized by the zero modes of the Φ_{β}
- Have a deformation E_{β} of the tangent bundle of X_{β}.

The General Case

- In general, the topological types of the gauge bundle correspond to homology classes $\beta \in H_{2}(X, \mathbf{Z})$
- Have a GLSM moduli space X_{β} parametrized by the zero modes of the Φ_{β}
- Have a deformation E_{β} of the tangent bundle of X_{β}.

The General Case

- In general, the topological types of the gauge bundle correspond to homology classes $\beta \in H_{2}(X, \mathbf{Z})$
- Have a GLSM moduli space X_{β} parametrized by the zero modes of the Φ_{β}
- Have a deformation E_{β} of the tangent bundle of X_{β}.

Classical Correlation Functions

$$
0 \longrightarrow E^{*} \longrightarrow \bigoplus_{\rho \in \Sigma(1)} \mathcal{O}\left(-D_{\rho}\right) \longrightarrow W \otimes \mathcal{O} \longrightarrow 0
$$

$H^{0}\left(\mathcal{O}\left(-D_{\rho}\right)\right)=H^{1}\left(\mathcal{O}\left(-D_{\rho}\right)\right)=0$ gives

$$
\psi: W=H^{0}(W \otimes \mathcal{O}) \simeq H^{1}\left(E^{*}\right)
$$

hence cup product

$$
\psi: \operatorname{Sym}^{k} W \rightarrow H^{k}\left(\Lambda^{k} E^{*}\right)
$$

Fixing a normalization $\int_{X}: H^{\text {top }}\left(X, \Lambda^{\text {top }} E^{*}\right) \simeq \mathbf{C}$, for
$P \in \operatorname{Sym}^{\operatorname{dim}(X)} W$, define the classical correlation function as

$$
\langle P\rangle_{0}=\int_{X} \psi(P)
$$

Classical Correlation Functions, Continued

As we will see, the cup product can be computed explicitly by algebraic geometry. The method builds on the earlier computational methods of [K-Sharpe] and [Guffin-K] developed to verify a conjecture of [Adams-Basu-Sethi], while providing new viewpoints that elucidate more of the structure.

Classical Correlation Functions: $\mathbf{P}^{1} \times \mathbf{P}^{1}$

- Put $Z=\oplus \mathcal{O}\left(-D_{i}\right) \simeq \mathcal{O}(-1,0)^{2} \oplus \mathcal{O}(0,-1)^{2}$. Then the cup product is identified with the extension class of the generalized Koszul complex on the s_{ρ}

$$
0 \rightarrow \Lambda^{2} E^{*} \rightarrow \Lambda^{2} Z \rightarrow Z \otimes W \rightarrow \operatorname{Sym}^{2} W \otimes \mathcal{O} \rightarrow 0
$$

- This can be broken up into short exact sequences

- The cup product factors as $\operatorname{Sym}^{2} W \rightarrow H^{1}\left(S_{1}\right) \rightarrow H^{2}\left(\Lambda^{2} E^{*}\right)$
- We also see from $H^{i}(Z \otimes W)=0$ that $\operatorname{Sym}^{2} W \rightarrow H^{1}\left(S_{1}\right)$ is an isomorphism, while $H^{1}\left(S_{1}\right) \rightarrow H^{2}\left(\Lambda^{2} E^{*}\right)$ is surjective
and has kernel generated by $H^{1}\left(\wedge^{2} Z\right)$

Classical Correlation Functions: $\mathbf{P}^{1} \times \mathbf{P}^{1}$

- Put $Z=\oplus \mathcal{O}\left(-D_{i}\right) \simeq \mathcal{O}(-1,0)^{2} \oplus \mathcal{O}(0,-1)^{2}$. Then the cup product is identified with the extension class of the generalized Koszul complex on the s_{ρ}

$$
0 \rightarrow \Lambda^{2} E^{*} \rightarrow \Lambda^{2} Z \rightarrow Z \otimes W \rightarrow \operatorname{Sym}^{2} W \otimes \mathcal{O} \rightarrow 0
$$

- This can be broken up into short exact sequences

$$
\begin{aligned}
& 0 \rightarrow \Lambda^{2} E^{*} \rightarrow \Lambda^{2} Z \rightarrow S_{1} \rightarrow 0 \\
& 0 \rightarrow S_{1} \rightarrow Z \otimes W \rightarrow \operatorname{Sym}^{2} W \otimes \mathcal{O} \rightarrow 0
\end{aligned}
$$

- The cup product factors as $\operatorname{Sym}^{2} W \rightarrow H^{1}\left(S_{1}\right) \rightarrow H^{2}\left(\Lambda^{2} E^{*}\right)$
- We also see from $H^{i}(Z \otimes W)=0$ that $\operatorname{Sym}^{2} W \rightarrow H^{1}\left(S_{1}\right)$ is an isomorphism, while $H^{1}\left(S_{1}\right) \rightarrow H^{2}\left(\Lambda^{2} E^{*}\right)$ is surjective
and has kernel generated by $H^{1}\left(\Lambda^{2} Z\right)$

Classical Correlation Functions: $\mathbf{P}^{1} \times \mathbf{P}^{1}$

- Put $Z=\oplus \mathcal{O}\left(-D_{i}\right) \simeq \mathcal{O}(-1,0)^{2} \oplus \mathcal{O}(0,-1)^{2}$. Then the cup product is identified with the extension class of the generalized Koszul complex on the s_{ρ}

$$
0 \rightarrow \Lambda^{2} E^{*} \rightarrow \Lambda^{2} Z \rightarrow Z \otimes W \rightarrow \operatorname{Sym}^{2} W \otimes \mathcal{O} \rightarrow 0
$$

- This can be broken up into short exact sequences

$$
\begin{aligned}
& 0 \rightarrow \Lambda^{2} E^{*} \rightarrow \Lambda^{2} Z \rightarrow S_{1} \rightarrow 0 \\
& 0 \rightarrow S_{1} \rightarrow Z \otimes W \rightarrow \operatorname{Sym}^{2} W \otimes \mathcal{O} \rightarrow 0
\end{aligned}
$$

- The cup product factors as $\operatorname{Sym}^{2} W \rightarrow H^{1}\left(S_{1}\right) \rightarrow H^{2}\left(\Lambda^{2} E^{*}\right)$ an isomorphism, while $H^{1}\left(S_{1}\right) \rightarrow H^{2}\left(\Lambda^{2} E^{*}\right)$ is surjective and has kernel generated by $H^{1}\left(\Lambda^{2} Z\right)$

Classical Correlation Functions: $\mathbf{P}^{1} \times \mathbf{P}^{1}$

- Put $Z=\oplus \mathcal{O}\left(-D_{i}\right) \simeq \mathcal{O}(-1,0)^{2} \oplus \mathcal{O}(0,-1)^{2}$. Then the cup product is identified with the extension class of the generalized Koszul complex on the s_{ρ}

$$
0 \rightarrow \Lambda^{2} E^{*} \rightarrow \Lambda^{2} Z \rightarrow Z \otimes W \rightarrow \operatorname{Sym}^{2} W \otimes \mathcal{O} \rightarrow 0
$$

- This can be broken up into short exact sequences

$$
\begin{aligned}
& 0 \rightarrow \Lambda^{2} E^{*} \rightarrow \Lambda^{2} Z \rightarrow S_{1} \rightarrow 0 \\
& 0 \rightarrow S_{1} \rightarrow Z \otimes W \rightarrow \operatorname{sym}^{2} W \otimes \mathcal{O} \rightarrow 0
\end{aligned}
$$

- The cup product factors as $\operatorname{Sym}^{2} W \rightarrow H^{1}\left(S_{1}\right) \rightarrow H^{2}\left(\Lambda^{2} E^{*}\right)$
- We also see from $H^{i}(Z \otimes W)=0$ that $\operatorname{Sym}^{2} W \rightarrow H^{1}\left(S_{1}\right)$ is an isomorphism, while $H^{1}\left(S_{1}\right) \rightarrow H^{2}\left(\Lambda^{2} E^{*}\right)$ is surjective and has kernel generated by $H^{1}\left(\Lambda^{2} Z\right)$.

$\mathbf{P}^{1} \times \mathbf{P}^{1}$, Continued

- $Z=\mathcal{O}(-1,0)^{2} \oplus \mathcal{O}(0,-1)^{2}$ gives $\Lambda^{2} Z=\mathcal{O}(-2,0) \oplus \mathcal{O}(-1,-1)^{4} \oplus \mathcal{O}(0,-2)$
- Only nonzero contributions $H^{1}(\mathcal{O}(-2,0))$ and $H^{1}(\mathcal{O}(0,-2))$ to $H^{1}\left(\Lambda^{2} Z\right)$ arise from the respective pairs of divisors $\left\{D_{1}, D_{3}\right\} ;\left\{D_{2}, D_{4}\right\}$, which do not intersect in X. More generally, these are the primitive collections of toric geometry.
- Chasing through the diagrams gives an explicit polynomial $Q \in \operatorname{Sym}^{2} W$ associated with the generator of $H^{1}(\mathcal{O}(-2,0))$ and another $\tilde{Q} \in S^{2} \mathrm{Sm}^{2} W$ associated with the generator of $H^{1}(\mathcal{O}(0,-2))$, which lie in the kernel of the cup product.
- In summary, we have computed the polymology of (X, E) as

$$
H^{*}\left(\wedge^{*} E^{*}\right)=\operatorname{Sym} W /(Q, \tilde{Q})
$$

$\mathbf{P}^{1} \times \mathbf{P}^{1}$, Continued

- $Z=\mathcal{O}(-1,0)^{2} \oplus \mathcal{O}(0,-1)^{2}$ gives
$\Lambda^{2} Z=\mathcal{O}(-2,0) \oplus \mathcal{O}(-1,-1)^{4} \oplus \mathcal{O}(0,-2)$
- Only nonzero contributions $H^{1}(\mathcal{O}(-2,0))$ and $H^{1}(\mathcal{O}(0,-2))$ to $H^{1}\left(\Lambda^{2} Z\right)$ arise from the respective pairs of divisors $\left\{D_{1}, D_{3}\right\} ;\left\{D_{2}, D_{4}\right\}$, which do not intersect in X. More generally, these are the primitive collections of toric geometry.
- Chasing through the diagrams gives an explicit polynomial $Q \in \operatorname{Sym}^{2} W$ associated with the generator of $H^{1}(\mathcal{O}(-2,0))$ and another $\tilde{Q} \in \operatorname{Sym}^{2} W$ associated with the generator of $H^{+}(O(0,-2))$, which lie in the kernel of the cup product.
- In summary, we have computed the polymology of (X, E) as

$\mathbf{P}^{1} \times \mathbf{P}^{1}$, Continued

- $Z=\mathcal{O}(-1,0)^{2} \oplus \mathcal{O}(0,-1)^{2}$ gives
$\Lambda^{2} Z=\mathcal{O}(-2,0) \oplus \mathcal{O}(-1,-1)^{4} \oplus \mathcal{O}(0,-2)$
- Only nonzero contributions $H^{1}(\mathcal{O}(-2,0))$ and $H^{1}(\mathcal{O}(0,-2))$ to $H^{1}\left(\Lambda^{2} Z\right)$ arise from the respective pairs of divisors $\left\{D_{1}, D_{3}\right\} ;\left\{D_{2}, D_{4}\right\}$, which do not intersect in X. More generally, these are the primitive collections of toric geometry.
- Chasing through the diagrams gives an explicit polynomial $Q \in \operatorname{Sym}^{2} W$ associated with the generator of $H^{1}(\mathcal{O}(-2,0))$ and another $\tilde{Q} \in \operatorname{Sym}^{2} W$ associated with the generator of $H^{1}(\mathcal{O}(0,-2))$, which lie in the kernel of the cup product.
- In summary, we have computed the polymology of (X, E) as

$\mathbf{P}^{1} \times \mathbf{P}^{1}$, Continued

- $Z=\mathcal{O}(-1,0)^{2} \oplus \mathcal{O}(0,-1)^{2}$ gives $\Lambda^{2} Z=\mathcal{O}(-2,0) \oplus \mathcal{O}(-1,-1)^{4} \oplus \mathcal{O}(0,-2)$
- Only nonzero contributions $H^{1}(\mathcal{O}(-2,0))$ and $H^{1}(\mathcal{O}(0,-2))$ to $H^{1}\left(\Lambda^{2} Z\right)$ arise from the respective pairs of divisors $\left\{D_{1}, D_{3}\right\} ;\left\{D_{2}, D_{4}\right\}$, which do not intersect in X. More generally, these are the primitive collections of toric geometry.
- Chasing through the diagrams gives an explicit polynomial $Q \in \operatorname{Sym}^{2} W$ associated with the generator of $H^{1}(\mathcal{O}(-2,0))$ and another $\tilde{Q} \in \operatorname{Sym}^{2} W$ associated with the generator of $H^{1}(\mathcal{O}(0,-2))$, which lie in the kernel of the cup product.
- In summary, we have computed the polymology of (X, E) as

$$
H^{*}\left(\wedge^{*} E^{*}\right)=\operatorname{Sym} W /(Q, \tilde{Q})
$$

Explicit Calculation

- Since $H^{0}\left(\mathcal{O}\left(D_{1}\right)\right)=H^{0}\left(\mathcal{O}\left(D_{3}\right)\right)$ is spanned by x_{1} and x_{3}, can write

$$
s_{1}=w_{11} x_{1}+w_{13} x_{3}, \quad s_{3}=w_{31} x_{1}+w_{33} x_{3}
$$

for certain $w_{i j} \in W$.

- Putting

$$
A=\left(\begin{array}{ll}
w_{11} & w_{13} \\
w_{31} & w_{33}
\end{array}\right)
$$

we compute $Q=\operatorname{det}(A)$.

- The computation of \tilde{Q} is analogous.
- Since the polymology is finite dimensional, Q, \tilde{Q} have no common factors and it follows that the top part $\operatorname{dim} \operatorname{Sym}^{2} W /(Q, \tilde{Q})$ of the polymology is one dimensional

Explicit Calculation

- Since $H^{0}\left(\mathcal{O}\left(D_{1}\right)\right)=H^{0}\left(\mathcal{O}\left(D_{3}\right)\right)$ is spanned by x_{1} and x_{3}, can write

$$
s_{1}=w_{11} x_{1}+w_{13} x_{3}, \quad s_{3}=w_{31} x_{1}+w_{33} x_{3}
$$

for certain $w_{i j} \in W$.

- Putting

$$
A=\left(\begin{array}{ll}
w_{11} & w_{13} \\
w_{31} & w_{33}
\end{array}\right)
$$

we compute $Q=\operatorname{det}(A)$.
The computation of Q is analogous.

- Since the polymology is finite dimensional, Q, \tilde{Q} have no common factors and it follows that the top part $\operatorname{dim} S^{2} m^{2} W /(Q, \tilde{Q})$ of the polymology is one dimensional

Explicit Calculation

- Since $H^{0}\left(\mathcal{O}\left(D_{1}\right)\right)=H^{0}\left(\mathcal{O}\left(D_{3}\right)\right)$ is spanned by x_{1} and x_{3}, can write

$$
s_{1}=w_{11} x_{1}+w_{13} x_{3}, \quad s_{3}=w_{31} x_{1}+w_{33} x_{3}
$$

for certain $w_{i j} \in W$.

- Putting

$$
A=\left(\begin{array}{ll}
w_{11} & w_{13} \\
w_{31} & w_{33}
\end{array}\right)
$$

we compute $Q=\operatorname{det}(A)$.

- The computation of \tilde{Q} is analogous.
- Since the polymology is finite dimensional, Q, \tilde{Q} have no common factors and it follows that the top part $\operatorname{dim} \operatorname{Sym}^{2} W /(Q, \tilde{Q})$ of the polymology is one dimensional

Explicit Calculation

- Since $H^{0}\left(\mathcal{O}\left(D_{1}\right)\right)=H^{0}\left(\mathcal{O}\left(D_{3}\right)\right)$ is spanned by x_{1} and x_{3}, can write

$$
s_{1}=w_{11} x_{1}+w_{13} x_{3}, \quad s_{3}=w_{31} x_{1}+w_{33} x_{3}
$$

for certain $w_{i j} \in W$.

- Putting

$$
A=\left(\begin{array}{ll}
w_{11} & w_{13} \\
w_{31} & w_{33}
\end{array}\right)
$$

we compute $Q=\operatorname{det}(A)$.

- The computation of \tilde{Q} is analogous.
- Since the polymology is finite dimensional, Q, \tilde{Q} have no common factors and it follows that the top part $\operatorname{dim} \operatorname{Sym}^{2} W /(Q, \tilde{Q})$ of the polymology is one dimensional

Conclusion of the Calculation

The computation of the classical correlation functions $\langle P\rangle_{0}$ with $P \in \operatorname{Sym}^{2} W$ becomes trivial: take the image of P in the quotient $\operatorname{Sym}^{2} W /(Q, \tilde{Q})$ and this is the unnormalized correlation function. Choose your favorite isomorphism of this
1 dimensional vector space with \mathbf{C} if you want to normalize.

Classical Polymology, General Case

- In general, the same construction gives the classical polymology $H^{*}\left(X, \Lambda^{*} E^{*}\right)$ as a quotient $\operatorname{Sym} W / I$.
- To each primitive collection $\left\{D_{i_{1}}, \ldots, D_{i_{k}}\right\}$ which we index by $K=\left\{i_{1}, \ldots, i_{k}\right\}$, get a nonvanishing cohomology $H^{k-1}\left(X, \mathcal{O}\left(-\sum D_{i_{j}}\right)\right) \simeq \mathbf{C}$ and a generator Q_{K} of I.
- Each Q_{K} is explicitly computable as a product of determinants of the linear coefficients of the s_{ρ} used to define E.
- I is simply the ideal generated by all of the Q_{K}, so is independent of nonlinear deformations!
If $E=T X$, then Q_{K} is just the product $\left[D_{i_{1}}\right] \cdots\left[D_{i_{K}}\right]$ occuring in the definition of the Stanley-Reisner ideal. Thus our computation of the polymology reduces to the familiar toric description of $H^{*}(X)$, as it should.

Classical Polymology, General Case

- In general, the same construction gives the classical polymology $H^{*}\left(X, \Lambda^{*} E^{*}\right)$ as a quotient SymW/I.
- To each primitive collection $\left\{D_{i_{1}}, \ldots, D_{i_{k}}\right\}$ which we index by $K=\left\{i_{1}, \ldots, i_{k}\right\}$, get a nonvanishing cohomology $H^{k-1}\left(X, \mathcal{O}\left(-\sum D_{i_{j}}\right)\right) \simeq \mathbf{C}$ and a generator Q_{K} of I.
- Each Q_{K} is explicitly computable as a product of determinants of the linear coefficients of the s_{ρ} used to define E.
- I is simply the ideal generated by all of the Q_{K}, so is independent of nonlinear deformations! If $E=T X$, then Q_{K} is just the product $\left[D_{i_{1}}\right] \cdots\left[D_{i_{k}}\right]$ occuring in the definition of the Stanley-Reisner ideal Thus our computation of the polymology reduces to the familiar toric description of $H^{*}(X)$, as it should

Classical Polymology, General Case

- In general, the same construction gives the classical polymology $H^{*}\left(X, \Lambda^{*} E^{*}\right)$ as a quotient Sym W / I.
- To each primitive collection $\left\{D_{i_{1}}, \ldots, D_{i_{k}}\right\}$ which we index by $K=\left\{i_{1}, \ldots, i_{k}\right\}$, get a nonvanishing cohomology $H^{k-1}\left(X, \mathcal{O}\left(-\sum D_{i_{j}}\right)\right) \simeq \mathbf{C}$ and a generator Q_{K} of I.
- Each Q_{K} is explicitly computable as a product of determinants of the linear coefficients of the s_{ρ} used to define E.
- I is simply the ideal generated by all of the Q_{K}, so is independent of nonlinear deformations!
- If $E=T X$, then Q_{K} is just the product $\left[D_{i_{1}}\right] \ldots\left[D_{i_{k}}\right]$

Thus our computation of the polymology reduces to the familiar toric description of $H^{*}(X)$, as it should.

Classical Polymology, General Case

- In general, the same construction gives the classical polymology $H^{*}\left(X, \Lambda^{*} E^{*}\right)$ as a quotient SymW/I.
- To each primitive collection $\left\{D_{i_{1}}, \ldots, D_{i_{k}}\right\}$ which we index by $K=\left\{i_{1}, \ldots, i_{k}\right\}$, get a nonvanishing cohomology $H^{k-1}\left(X, \mathcal{O}\left(-\sum D_{i_{j}}\right)\right) \simeq \mathbf{C}$ and a generator Q_{K} of I.
- Each Q_{K} is explicitly computable as a product of determinants of the linear coefficients of the s_{ρ} used to define E.
- I is simply the ideal generated by all of the Q_{K}, so is independent of nonlinear deformations!

Classical Polymology, General Case

- In general, the same construction gives the classical polymology $H^{*}\left(X, \Lambda^{*} E^{*}\right)$ as a quotient SymW/I.
- To each primitive collection $\left\{D_{i_{1}}, \ldots, D_{i_{k}}\right\}$ which we index by $K=\left\{i_{1}, \ldots, i_{k}\right\}$, get a nonvanishing cohomology $H^{k-1}\left(X, \mathcal{O}\left(-\sum D_{i_{j}}\right)\right) \simeq \mathbf{C}$ and a generator Q_{K} of I.
- Each Q_{K} is explicitly computable as a product of determinants of the linear coefficients of the s_{ρ} used to define E.
- I is simply the ideal generated by all of the Q_{K}, so is independent of nonlinear deformations!
- If $E=T X$, then Q_{K} is just the product $\left[D_{i_{1}}\right] \cdots\left[D_{i_{k}}\right]$ occuring in the definition of the Stanley-Reisner ideal. Thus our computation of the polymology reduces to the familiar toric description of $H^{*}(X)$, as it should.

More Details of the Computation

- Primitive collections are compatible with linear equivalence: if K is a primitive collection and $\rho \in K$, then if $D_{\rho} \sim D_{\rho^{\prime}}$ it can be shown that $\rho^{\prime} \in K$. Each K can therefore be partitioned into a set T_{K}^{+}of linear equivalence classes.
- Among the sections of $H^{0}\left(\mathcal{O}\left(D_{\rho}\right)\right)$ are the sections
expressed as a linear combination of the $X_{\rho^{\prime}}$ for $D_{\rho^{\prime}}$ in the
linear equivalence class of D_{ρ}. The deformations of $T X$
with these terms and no others have been called linear deformations in the physics literature. Fixing a linear
equivalence class c, the linear terms associated with the S_{ρ} for all $\rho \in c$ form a square matrix. Let Q_{C} be its determinant.

More Details of the Computation

- Primitive collections are compatible with linear equivalence: if K is a primitive collection and $\rho \in K$, then if $D_{\rho} \sim D_{\rho^{\prime}}$ it can be shown that $\rho^{\prime} \in K$. Each K can therefore be partitioned into a set T_{K}^{+}of linear equivalence classes.
- Among the sections of $H^{0}\left(\mathcal{O}\left(D_{\rho}\right)\right)$ are the sections expressed as a linear combination of the $x_{\rho^{\prime}}$ for $D_{\rho^{\prime}}$ in the linear equivalence class of D_{ρ}. The deformations of $T X$ with these terms and no others have been called linear deformations in the physics literature. Fixing a linear equivalence class c, the linear terms associated with the s_{ρ} for all $\rho \in c$ form a square matrix. Let Q_{c} be its determinant.

More Details of the Computation

- Primitive collections are compatible with linear equivalence: if K is a primitive collection and $\rho \in K$, then if $D_{\rho} \sim D_{\rho^{\prime}}$ it can be shown that $\rho^{\prime} \in K$. Each K can therefore be partitioned into a set T_{K}^{+}of linear equivalence classes.
- Among the sections of $H^{0}\left(\mathcal{O}\left(D_{\rho}\right)\right)$ are the sections expressed as a linear combination of the $x_{\rho^{\prime}}$ for $D_{\rho^{\prime}}$ in the linear equivalence class of D_{ρ}. The deformations of $T X$ with these terms and no others have been called linear deformations in the physics literature. Fixing a linear equivalence class c, the linear terms associated with the s_{ρ} for all $\rho \in c$ form a square matrix. Let Q_{c} be its determinant.
-

$$
Q_{K}=\prod_{c \in T_{K}^{+}} Q_{c}
$$

Nonclassical Correlation Functions

- Since X_{β} is a toric variety and E_{β} is a deformation of $T X_{\beta}$, we only have to describe its primitive collections K_{β} and the $Q_{K_{\beta}}$ in terms of the classical data.

> Recall from [Morrison-Plesser] that the fan for X_{β} is obtained from that of X by replacing each edge $\rho \in \Sigma(1)$ with $h^{0}\left(D_{\rho} \cdot \beta\right):=h^{0}\left(\mathbf{P}^{1}, \mathcal{O}_{\mathbf{P}^{1}}\left(D_{\rho} \cdot \beta\right)\right)$ edges $\rho_{1} \ldots, \rho_{h^{0}\left(D_{\rho} \cdot \beta\right)}$, keeping the same gauge group and charges, and charactering the fan by requiring that the primitive collections K_{β} of X_{β} are in 1-1 correspondence with the primitive collections K for X, associating to K the collection of divisors

Nonclassical Correlation Functions

- Since X_{β} is a toric variety and E_{β} is a deformation of $T X_{\beta}$, we only have to describe its primitive collections K_{β} and the $Q_{K_{\beta}}$ in terms of the classical data.
- Recall from [Morrison-Plesser] that the fan for X_{β} is obtained from that of X by replacing each edge $\rho \in \Sigma(1)$ with $h^{0}\left(D_{\rho} \cdot \beta\right):=h^{0}\left(\mathbf{P}^{1}, \mathcal{O}_{\mathbf{P}^{1}}\left(D_{\rho} \cdot \beta\right)\right)$ edges $\rho_{1} \ldots, \rho_{h^{0}\left(D_{\rho} \cdot \beta\right)}$, keeping the same gauge group and charges, and charactering the fan by requiring that the primitive collections K_{β} of X_{β} are in 1-1 correspondence with the primitive collections K for X, associating to K the collection of divisors

$$
K_{\beta}=\left\{\rho_{i} \mid \rho \in K\right\}
$$

- The result is Q_{K}

Nonclassical Correlation Functions

- Since X_{β} is a toric variety and E_{β} is a deformation of $T X_{\beta}$, we only have to describe its primitive collections K_{β} and the $Q_{K_{\beta}}$ in terms of the classical data.
- Recall from [Morrison-Plesser] that the fan for X_{β} is obtained from that of X by replacing each edge $\rho \in \Sigma(1)$ with $h^{0}\left(D_{\rho} \cdot \beta\right):=h^{0}\left(\mathbf{P}^{1}, \mathcal{O}_{\mathbf{P}^{1}}\left(D_{\rho} \cdot \beta\right)\right)$ edges $\rho_{1} \ldots, \rho_{h^{0}\left(D_{\rho} \cdot \beta\right)}$, keeping the same gauge group and charges, and charactering the fan by requiring that the primitive collections K_{β} of X_{β} are in 1-1 correspondence with the primitive collections K for X, associating to K the collection of divisors

$$
K_{\beta}=\left\{\rho_{i} \mid \rho \in K\right\}
$$

- The result is $Q_{K_{\beta}}=\prod_{c \in T_{K}^{+}} Q_{c}^{h^{0}\left(D_{c} \cdot \beta\right)}$.

Correlation Functions in sector β, naive attempt

Putting everything together, we learn that the polymology of X_{β} is $\operatorname{Sym} W /\left(I_{\beta}\right)$,

$$
I_{\beta}=\left(\prod_{c \in T_{K}^{+}} Q_{c}^{h^{0}\left(D_{c} \cdot \beta\right)} \mid K \text { a primitive collection for } \mathrm{X}\right)
$$

Example: $\mathbf{P}^{1} \times \mathbf{P}^{1}$

- For $\beta=(d, e)$, have $h^{0}\left(H_{1} \cdot \beta\right)=d+1, h^{0}\left(H_{2} \cdot \beta\right)=e+1$, so the polynomial in sector β is

$$
\operatorname{Sym} W /\left(Q^{d+1}, \tilde{Q}^{e+1}\right)
$$

- This is all that is need to compute correlation functions as elements of the 1 dimensional vector space $S_{y m}{ }^{2 d+2 e+2} W /\left(Q^{d+1}, \tilde{Q}^{e+1}\right)$.

Example: $\mathbf{P}^{1} \times \mathbf{P}^{1}$

- For $\beta=(d, e)$, have $h^{0}\left(H_{1} \cdot \beta\right)=d+1, h^{0}\left(H_{2} \cdot \beta\right)=e+1$, so the polynomial in sector β is

$$
\operatorname{Sym} W /\left(Q^{d+1}, \tilde{Q}^{e+1}\right)
$$

- This is all that is need to compute correlation functions as elements of the 1 dimensional vector space

$$
\operatorname{Sym}^{2 d+2 e+2} W /\left(Q^{d+1}, \tilde{Q}^{e+1}\right)
$$

A Problem

This is still not enough to compute correlation functions: $\operatorname{dim} X_{\beta} \neq c_{1}(X) \cdot \beta+\operatorname{dim} X$ in general. We need four-fermi terms, an analogue of the virtual fundamental class of Gromov-Witten theory.

Four-fermi Terms and Correlation Functions

- Put $h^{1}(s)=h^{1}\left(\mathcal{O}_{\mathbf{P}^{1}}(s)\right)$. Then

$$
F_{\beta}=\prod_{c} Q_{c}^{h^{1}\left(D_{c} \cdot \beta\right)}
$$

where the product is taken over all linear equivalence classes c (i.e. without regard to any primitive collections).

- If $P \in \operatorname{Sym}^{k} X$ with $k=c_{1}(X) \cdot \beta+\operatorname{dim}(X)$, then we can define the correlation function as

where the brackets denote the equivalence class of $P F_{\beta}$ in

Four-fermi Terms and Correlation Functions

- Put $h^{1}(s)=h^{1}\left(\mathcal{O}_{\mathbf{P}^{1}}(s)\right)$. Then

$$
F_{\beta}=\prod_{c} Q_{c}^{h^{1}\left(D_{c} \cdot \beta\right)}
$$

where the product is taken over all linear equivalence classes c (i.e. without regard to any primitive collections).

- We have $c_{1}(X) \cdot \beta+\operatorname{dim}(X)+\operatorname{deg}\left(F_{\beta}\right)=\operatorname{dim} X_{\beta}$.

If $P \in \operatorname{Sym}^{k} X$ with $k=c_{1}(X) \cdot \beta+\operatorname{dim}(X)$, then we can
define the correlation function as

where the brackets denote the equivalence class of $P F_{\beta}$ in
the 1 dimensional vector space $\operatorname{Sym}^{\operatorname{dim} x_{\beta} W / I_{\beta} \text {. }}$

Four-fermi Terms and Correlation Functions

- Put $h^{1}(s)=h^{1}\left(\mathcal{O}_{\mathbf{P}^{1}}(s)\right)$. Then

$$
F_{\beta}=\prod_{c} Q_{c}^{h^{1}\left(D_{c} \cdot \beta\right)}
$$

where the product is taken over all linear equivalence classes c (i.e. without regard to any primitive collections).

- We have $c_{1}(X) \cdot \beta+\operatorname{dim}(X)+\operatorname{deg}\left(F_{\beta}\right)=\operatorname{dim} X_{\beta}$.
- If $P \in \operatorname{Sym}^{k} X$ with $k=c_{1}(X) \cdot \beta+\operatorname{dim}(X)$, then we can define the correlation function as

$$
\langle P\rangle_{\beta}=\left[P F_{\beta}\right]
$$

where the brackets denote the equivalence class of $P F_{\beta}$ in the 1 dimensional vector space $\operatorname{Sym}^{\operatorname{dim} X_{\beta}} W / I_{\beta}$.

Comparing sectors: $\mathbf{P}^{\mathbf{1}} \times \mathbf{P}^{\mathbf{1}}$

- We already know a ring that surjects onto the quantum cohomology ring: SymW. We only have to identify the operator identities that they satisfy to identify the quantum cohomology ring
- Remaining problem: correlation functions from different sectors live in different vector spaces.
- If $\beta=(d, e)$ and $\beta^{\prime}=\left(d^{\prime}, e^{\prime}\right)$ with $d^{\prime} \geq d$ and $e^{\prime} \geq e$, there
is a natural map of polymologies

which restricts to an isomorphism $f_{\beta^{\prime} \beta}$ from

Comparing sectors: $\mathbf{P}^{\mathbf{1}} \times \mathbf{P}^{\mathbf{1}}$

- We already know a ring that surjects onto the quantum cohomology ring: SymW. We only have to identify the operator identities that they satisfy to identify the quantum cohomology ring
- Remaining problem: correlation functions from different sectors live in different vector spaces.
- If $\beta=(d, e)$ and $\beta^{\prime}=\left(d^{\prime}, e^{\prime}\right)$ with $d^{\prime} \geq d$ and $e^{\prime} \geq e$, there is a natural map of polymologies

which restricts to an isomorphism $f_{\beta^{\prime} \beta}$ from

Comparing sectors: $\mathbf{P}^{\mathbf{1}} \times \mathbf{P}^{\mathbf{1}}$

- We already know a ring that surjects onto the quantum cohomology ring: SymW. We only have to identify the operator identities that they satisfy to identify the quantum cohomology ring
- Remaining problem: correlation functions from different sectors live in different vector spaces.
- If $\beta=(d, e)$ and $\beta^{\prime}=\left(d^{\prime}, e^{\prime}\right)$ with $d^{\prime} \geq d$ and $e^{\prime} \geq e$, there is a natural map of polymologies

$$
\operatorname{Sym} W /\left(Q^{d+1}, \tilde{Q}^{e+1}\right) \xrightarrow{Q^{d^{\prime}-d} \tilde{Q}^{e^{\prime}-e}} \operatorname{Sym} W /\left(Q^{d^{\prime}+1}, \tilde{Q}^{e^{\prime}+1}\right)
$$

which restricts to an isomorphism $f_{\beta^{\prime} \beta}$ from

$$
\begin{aligned}
& \operatorname{Sym}^{2 d+2 e+2} W /\left(Q^{d+1}, \tilde{Q}^{e+1}\right) \text { to } \\
& \operatorname{Sym}^{2 d^{\prime}+2 e^{\prime}+2} W /\left(Q^{d^{\prime}+1}, \tilde{Q}^{e^{\prime}+1}\right)
\end{aligned}
$$

Comparing Sectors, Concluded

The maps $f_{\beta^{\prime} \beta}$ are compatible and form a direct system. The direct limit is a one-dimensional vector space V containing all the correlation functions. In particular, correlation functions in different sectors can be compared.

Quantum Cohomology: $\mathbf{P}^{1} \times \mathbf{P}^{1}$

We can now state the quantum cohomology relations for $\mathbf{P}^{\mathbf{1}} \times \mathbf{P}^{1}$:

$$
Q=q_{1}, \quad \tilde{Q}=q_{2} .
$$

Here, the q_{i} are the GLSM version of the Kähler terms of the NLSM, depending on the FI parameters.

Verification of QC Relations for $\mathbf{P}^{1} \times \mathbf{P}^{1}$

We have to show that for any $P \in \operatorname{Sym}^{2 d+2 e+2} W$ we have

$$
\langle Q P\rangle_{d+1, e}=\langle P\rangle_{d, e}
$$

But since $f_{\beta^{\prime} \beta}$ is multiplication by Q in this case, this amounts to the tautology $Q P=Q(P)$.

General Case

- The general case is similar. We say that β^{\prime} dominates β if the fan for $X_{\beta^{\prime}}$ can be obtained from the fan for X_{β} by adding more edges to each linear equivalence class.
- Equivalent to $h^{0}\left(D_{C} \cdot \beta^{\prime}\right) \geq h^{0}\left(D_{C} \cdot \beta\right)$ for all c.
- These polymologies can be identified by multiplication by

leading to a direct system.
- Now quantum cohomology relations have a precise mathematical meaning.

General Case

- The general case is similar. We say that β^{\prime} dominates β if the fan for $X_{\beta^{\prime}}$ can be obtained from the fan for X_{β} by adding more edges to each linear equivalence class.
- Equivalent to $h^{0}\left(D_{c} \cdot \beta^{\prime}\right) \geq h^{0}\left(D_{c} \cdot \beta\right)$ for all c.
- These polymologies can be identified by multiplication by

leading to a direct system.
- Now quantum cohomology relations have a precise mathematical meaning.

General Case

- The general case is similar. We say that β^{\prime} dominates β if the fan for $X_{\beta^{\prime}}$ can be obtained from the fan for X_{β} by adding more edges to each linear equivalence class.
- Equivalent to $h^{0}\left(D_{c} \cdot \beta^{\prime}\right) \geq h^{0}\left(D_{c} \cdot \beta\right)$ for all c.
- These polymologies can be identified by multiplication by

$$
\prod_{c} Q_{c}^{h^{0}\left(D_{c} \cdot \beta^{\prime}\right)-h^{0}\left(D_{C} \cdot \beta\right)}
$$

leading to a direct system.

- Now quantum cohomology relations have a precise mathematical meaning.

General Case

- The general case is similar. We say that β^{\prime} dominates β if the fan for $X_{\beta^{\prime}}$ can be obtained from the fan for X_{β} by adding more edges to each linear equivalence class.
- Equivalent to $h^{0}\left(D_{c} \cdot \beta^{\prime}\right) \geq h^{0}\left(D_{c} \cdot \beta\right)$ for all c.
- These polymologies can be identified by multiplication by

$$
\prod_{c} Q_{c}^{h^{0}\left(D_{c} \cdot \beta^{\prime}\right)-h^{0}\left(D_{c} \cdot \beta\right)}
$$

leading to a direct system.

- Now quantum cohomology relations have a precise mathematical meaning.

Batyrev's Relations

- We need a notion due to Batyrev. Let $v_{\rho} \in N$ be the primitive integral generator of $\rho \in \Sigma(1)$. Let K be a primitive collection.
- Consider $v_{K}=\sum_{\rho \in K} V_{\rho}$. Then there is a unique cone $\sigma \in \Sigma$ such that v_{K} is in the relative interior of σ.
- Batyrev shows that this qives a unique relation $\sum a_{\rho} v_{\rho}=0$ with the properties $a_{\rho}=1$ if $\rho \in K, a_{\rho}<0$ if $\rho \in \sigma(1)$, and $a_{\rho}=0$ otherwise.
- Furthermore, Batyrev shows that there is a unique $\beta_{K} \in H_{2}(X, Z)$ such that $D_{\rho} \cdot \beta_{K}=a_{\rho}$ for all $\rho \in \Sigma(1)$.

Batyrev's Relations

- We need a notion due to Batyrev. Let $v_{\rho} \in N$ be the primitive integral generator of $\rho \in \Sigma(1)$. Let K be a primitive collection.
- Consider $v_{K}=\sum_{\rho \in K} v_{\rho}$. Then there is a unique cone $\sigma \in \Sigma$ such that v_{K} is in the relative interior of σ.
- Batyrev shows that this gives a unique relation $\sum a_{\rho} v_{\rho}=0$ with the properties $a_{\rho}=1$ if $\rho \in K, a_{\rho}<0$ if $\rho \in \sigma(1)$, and $a_{\rho}=0$ otherwise.
- Furthermore, Batyrev shows that there is a unique $\beta_{K} \in H_{2}(X, \mathbf{Z})$ such that $D_{\rho} \cdot \beta_{K}=a_{\rho}$ for all $\rho \in \Sigma(1)$.

Batyrev's Relations

- We need a notion due to Batyrev. Let $v_{\rho} \in N$ be the primitive integral generator of $\rho \in \Sigma(1)$. Let K be a primitive collection.
- Consider $v_{K}=\sum_{\rho \in K} v_{\rho}$. Then there is a unique cone $\sigma \in \Sigma$ such that v_{K} is in the relative interior of σ.
- Batyrev shows that this gives a unique relation $\sum a_{\rho} v_{\rho}=0$ with the properties $a_{\rho}=1$ if $\rho \in K, a_{\rho}<0$ if $\rho \in \sigma(1)$, and $a_{\rho}=0$ otherwise.
- Furthermore, Batyrev shows that there is a unique $\beta_{K} \in H_{2}(X, Z)$ such that $D_{\rho} \cdot \beta_{K}=a_{\rho}$ for all $\rho \in \Sigma(1)$.

Batyrev's Relations

- We need a notion due to Batyrev. Let $v_{\rho} \in N$ be the primitive integral generator of $\rho \in \Sigma(1)$. Let K be a primitive collection.
- Consider $v_{K}=\sum_{\rho \in K} v_{\rho}$. Then there is a unique cone $\sigma \in \Sigma$ such that v_{K} is in the relative interior of σ.
- Batyrev shows that this gives a unique relation $\sum a_{\rho} v_{\rho}=0$ with the properties $a_{\rho}=1$ if $\rho \in K, a_{\rho}<0$ if $\rho \in \sigma(1)$, and $a_{\rho}=0$ otherwise.
- Furthermore, Batyrev shows that there is a unique $\beta_{K} \in H_{2}(X, \mathbf{Z})$ such that $D_{\rho} \cdot \beta_{K}=a_{\rho}$ for all $\rho \in \Sigma(1)$.

Quantum Cohomology Relations: General Case

- We can show that the edges of the cone σ in Batyrev's relation respects linear equivalence in the same way that K does. So we can partition $\sigma(1)$ into linear equivalence classes denoted T_{K}^{-}. Then the quantum cohomology relations are:
- This agrees with and extends the results of [Melnikov, McOrist].
- For $E=T X$, this is precisely the quantum cohomology relation proposed by Batyrev.

Quantum Cohomology Relations: General Case

- We can show that the edges of the cone σ in Batyrev's relation respects linear equivalence in the same way that K does. So we can partition $\sigma(1)$ into linear equivalence classes denoted T_{K}^{-}. Then the quantum cohomology relations are:
-

$$
\prod_{c \in T_{K}^{+}} Q_{c}=q^{\beta_{K}} \prod_{c \in T_{K}^{-}} Q_{c}^{-D_{c} \cdot \beta_{K}}
$$

- This agrees with and extends the results of [Melnikov, McOrist].
- For $E=T X$, this is precisely the quantum cohomology relation proposed by Batyrev.

Quantum Cohomology Relations: General Case

- We can show that the edges of the cone σ in Batyrev's relation respects linear equivalence in the same way that K does. So we can partition $\sigma(1)$ into linear equivalence classes denoted T_{K}^{-}. Then the quantum cohomology relations are:
-

$$
\prod_{c \in T_{K}^{+}} Q_{c}=q^{\beta_{K}} \prod_{c \in T_{K}^{-}} Q_{c}^{-D_{c} \cdot \beta_{K}}
$$

- This agrees with and extends the results of [Melnikov, McOrist].
For $E=T X$, this is precisely the quantum cohomology
relation proposed by Batyrev.

Quantum Cohomology Relations: General Case

- We can show that the edges of the cone σ in Batyrev's relation respects linear equivalence in the same way that K does. So we can partition $\sigma(1)$ into linear equivalence classes denoted T_{K}^{-}. Then the quantum cohomology relations are:
-

$$
\prod_{c \in T_{K}^{+}} Q_{c}=q^{\beta_{K}} \prod_{c \in T_{K}^{-}} Q_{c}^{-D_{c} \cdot \beta_{K}}
$$

- This agrees with and extends the results of [Melnikov, McOrist].
- For $E=T X$, this is precisely the quantum cohomology relation proposed by Batyrev.

Summary

- $(0,2)$ correlation functions for deformations of tangent bundles of smooth toric varieties are now a mathematically precise notion.
- The deduced quantum cohomology relations agree with those found by techniques in physics
- The results are independent of nonlinear deformations

Summary

- $(0,2)$ correlation functions for deformations of tangent bundles of smooth toric varieties are now a mathematically precise notion.
- The deduced quantum cohomology relations agree with those found by techniques in physics
- The results are independent of nonlinear deformations

Summary

- $(0,2)$ correlation functions for deformations of tangent bundles of smooth toric varieties are now a mathematically precise notion.
- The deduced quantum cohomology relations agree with those found by techniques in physics
- The results are independent of nonlinear deformations

