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Abstract

In this talk, a mathematical definition is given of the topological
correlation functions of a (0, 2) gauged linear sigma model in
the geometric phase of a neighborhood of the (2,2) locus in
moduli. The geometric data determining the model is a smooth
toric variety X and a deformation E of its tangent bundle TX.
This definition is consistent with the known results of physics
and leads to a proof of the existence of a quantum cohomology
ring in complete generality, extending known results of physics.
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The A model

@ Consider the topological A-model on a compact Kéhler
manifold (X, g) (no coupling to gravity, a TQFT)
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The A model

@ Consider the topological A-model on a compact Kéhler
manifold (X, g) (no coupling to gravity, a TQFT)

@ Observables H*(X)
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The A model

@ Consider the topological A-model on a compact Kéhler
manifold (X, g) (no coupling to gravity, a TQFT)
@ Observables H*(X)

@ Correlation functions
(Wi, ... ,wn)g, Wi € H2kf(X), B € Ho(X,2Z)
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The A model

@ Consider the topological A-model on a compact Kéhler
manifold (X, g) (no coupling to gravity, a TQFT)

@ Observables H*(X)

@ Correlation functions
(Wi, ..., wn)g, wi € H?K(X), B € Hao(X,2Z)
@ Virtual dimension D = ¢{(X) - 8 + dim X, S ki=D
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The A model

@ Consider the topological A-model on a compact Kéhler
manifold (X, g) (no coupling to gravity, a TQFT)

@ Observables H*(X)
@ Correlation functions
(Wi, ..., wn)g, wi € H?K(X), B € Hao(X,2Z)
@ Virtual dimension D = ¢{(X) - 8 + dim X, S ki=D

@ (wi,...,wn) =D plwi,.. L wn)pq®, q° = exp([3(B +9)),
where B is the B-field
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A Model Lagrangian

L= 3 Jp P2 (G + 1Bu) 06"00" + JGuuv!; Dau;
+ 3G D + Ryl kel )

The fields have been twisted from the usual sigma model so
that

Y€ Cx (¢ TX), W e C (?z@; (qs*ﬁ)*),
e €= (Ke @ (6" TX)"), W€ C® (¢ TX).

where ¢ : ¥ — X is the map from the worldsheet to X.
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Quantum Cohomology

@ The observables are in 1-1 correspondence with elements
of H*(X), generating the quantum cohomology ring by
operator product
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Quantum Cohomology

@ The observables are in 1-1 correspondence with elements
of H*(X), generating the quantum cohomology ring by
operator product

@ In QFT, an operator is zero by definition if after inserting it

into a correlation function, all correlation functions vanish
after arbitrary additional insertions
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Quantum Cohomology

@ The observables are in 1-1 correspondence with elements
of H*(X), generating the quantum cohomology ring by
operator product

@ In QFT, an operator is zero by definition if after inserting it
into a correlation function, all correlation functions vanish
after arbitrary additional insertions

@ The quantum cohomology ring is the algebra generated by

a basis for the cohomology, modulo those products which
are zero as operators in the above sense
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Quantum Cohomology Relations

In particular, a quantum cohomology relation of the form
r S
[Tei=a []w cnneH(X)
i=1 j=1
is equivalent to the identities
{0y .y QW ywn) = QN oo Ny Wey -+ -, W)
for any wq, ..., wn, Which is in turn equivalent to
(Qfs ey we, W) By = (T - -y Ny W, - - -, W)

for any w; and 3.
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The A/2 model

The model is a “half-twist" of the (0, 2) nonlinear sigma model
described by the Lagrangian

L= & Js Pz (g + iBw) aﬁb’ig@by + %g/uﬂl)i Dzl +
ShapX2 DY+ Fpgul 2200 )
with field content

Y€ C (¢ TX), e e (KrooE),
wi € C® (K @ (¢*TX)"), A\ e C™ (d)*?),

where E is a holomorphic vector bundle on X.
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Anomaly Cancellation

@ Anomaly cancellation requires
NP E* =~ Kx, ChQ(E) = ChQ(TX)
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Anomaly Cancellation

@ Anomaly cancellation requires
NP E* =~ Kx, ChQ(E) = ChQ(TX)

@ We call such a bundle E omalous
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Anomaly Cancellation

@ Anomaly cancellation requires
NP E* =~ Kx, ChQ(E) = ChQ(TX)

@ We call such a bundle E omalous
@ Deformations E of TX are omalous
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Observables and Correlation Functions

@ The half-twisted model is not topological, but has a sector
in which the OPE closes [Adams-Distler-Ernebjerqg].
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Observables and Correlation Functions

@ The half-twisted model is not topological, but has a sector
in which the OPE closes [Adams-Distler-Ernebjerqg].

@ In this sector, the observables are in 1-1 correspondence
with the cohomology ring H*(X, A*E*), which we call the
polymology of (X, E).
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Observables and Correlation Functions

@ The half-twisted model is not topological, but has a sector
in which the OPE closes [Adams-Distler-Ernebjerg].

@ In this sector, the observables are in 1-1 correspondence
with the cohomology ring H*(X, A*E*), which we call the
polymology of (X, E).

@ Since APE* ~ Ky, we have H"P(X, \"PE*) ~ C, providing
a mathematical definition of classical correlation functions.
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Observables and Correlation Functions

@ The half-twisted model is not topological, but has a sector
in which the OPE closes [Adams-Distler-Ernebjerqg].

@ In this sector, the observables are in 1-1 correspondence
with the cohomology ring H*(X, A*E*), which we call the
polymology of (X, E).

@ Since APE* ~ Ky, we have H"P(X, \"PE*) ~ C, providing
a mathematical definition of classical correlation functions.

@ Quantum corrections deform the classical polymology ring.
In many situations, we know from physics that this
deformation is an associative ring, the (0,2) quantum
cohomology ring.
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Calling all Mathematicians

@ A rigorous mathematical definition of correlation functions
in the A/2 theory could produce a powerful method for
computing Yukawa couplings in heterotic string theory
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Calling all Mathematicians

@ A rigorous mathematical definition of correlation functions
in the A/2 theory could produce a powerful method for
computing Yukawa couplings in heterotic string theory

@ Alas, this is beyond today’s technology. But we can
rigorously define and easily compute correlation functions
exactly in the analogous gauged linear sigma model, when
E is a deformation of TX.
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Calling all Mathematicians

@ A rigorous mathematical definition of correlation functions
in the A/2 theory could produce a powerful method for
computing Yukawa couplings in heterotic string theory

@ Alas, this is beyond today’s technology. But we can
rigorously define and easily compute correlation functions
exactly in the analogous gauged linear sigma model, when
E is a deformation of TX.

@ In this situation, the quantum cohomology ring always
exists.
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The Gauged Linear Sigma Model
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The Gauged Linear Sigma Model

@ The (0, 2) gauged linear sigma model (GLSM) is a 2D QFT
with (0,2) SUSY. It is obtained from the (2,2) GLSM by
decomposing the (2,2) multiplets into (0,2) multiplets,
then varying the (0, 2) multiplets independently.
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The Gauged Linear Sigma Model

@ The (0, 2) gauged linear sigma model (GLSM) is a 2D QFT
with (0,2) SUSY. It is obtained from the (2,2) GLSM by
decomposing the (2,2) multiplets into (0,2) multiplets,
then varying the (0, 2) multiplets independently.

@ In a certain regime of FI parameters, the moduli space of
vacua corresponds to a toric variety X and holomorphic
vector bundle E on X.

(0, 2) Quantum Cohomology Sheldon Katz



Background Quantum Cohomology
The half-twisted model
The Gauged Linear Sigma Model and Toric Geometry

The Gauged Linear Sigma Model

@ The (0, 2) gauged linear sigma model (GLSM) is a 2D QFT
with (0,2) SUSY. It is obtained from the (2,2) GLSM by
decomposing the (2,2) multiplets into (0,2) multiplets,
then varying the (0, 2) multiplets independently.

@ In a certain regime of FI parameters, the moduli space of
vacua corresponds to a toric variety X and holomorphic
vector bundle E on X.

@ To be expeditious, | start with a smooth projective toric
variety X and a deformation E of the tangent bundle TX,
then engineer a (0,2) GLSM from that data.
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Toric Geometry: Notation

T:atorus T ~ (C*)’

N = Hom(C*, T) ~ Z' the lattice of 1-parameter subgroups
M = Hom(T,C*) ~ Z' the lattice of characters.
(,):MxN—=2Z: (mon)t) = timn

Y complete simplicial fan in Ng = N ® R.

X = Xz the associated complete toric variety, assumed
smooth.

Y (1): the set of 1-dimensional cones in X.

S = C[x, | p € £(1)] homogeneous coordinate ring
T-invariant divisor D, defined by x, = 0; x, € H°(O(D,))
W = H?(X) = €*(1) /(M @ C); divisors mod linear
equivalence
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Example: P! x P!

D;3 (—1,0) (1,0) Dy
(07 _1)
Dy
S = C[X1,X2,X3,X4], ((X1 : X3)7 (X27X4)) S P1 X P1

Dy ~ D3, Do ~ Dy, Hy = [Dy] = [Ds], Hz = [Do] = [Da4]
W = H?(X, C) = span(Hy, Hy)
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Relation to GLSM

@ There is an open set Us ¢ C*(") invariant under the
complexification Gg¢ of the gauge group G, so that
Xy = Us /Ge
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Relation to GLSM

@ There is an open set Us ¢ C*(") invariant under the
complexification Gg¢ of the gauge group G, so that
Xy = Us /Ge

@ The theory contains gauge fields for G
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Relation to GLSM

@ There is an open set Us ¢ C*(") invariant under the
complexification Gg¢ of the gauge group G, so that
Xz =Us/Gc

@ The theory contains gauge fields for G

@ Have a charged (0, 2) chiral field ¢, for each p € ¥(1)
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Relation to GLSM

@ There is an open set Us ¢ C*(") invariant under the
complexification Gg¢ of the gauge group G, so that
Xz =Us/Gc

@ The theory contains gauge fields for G

@ Have a charged (0, 2) chiral field ¢, for each p € ¥(1)

@ In the situation of a deformation of TX, also have fermi
fields A, with the same charges as those of ¢,
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Relation to GLSM

@ There is an open set Us ¢ C*(") invariant under the
complexification Gg¢ of the gauge group G, so that
Xz =Us/Gc

@ The theory contains gauge fields for G

@ Have a charged (0, 2) chiral field ¢, for each p € ¥(1)

@ In the situation of a deformation of TX, also have fermi
fields A, with the same charges as those of ¢,

@ The topological observables are generated by
W = H?(X,C)
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Example: P! x P!

D3 (-1,0) (1,0) Dy

(07 _1)

G=U(1) x U(1)

Oy Dy by Dy
Uty 1 0 1 0
Utz 0 1 0 1
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Tangent Bundle and its Deformations

In general,

0— T°X — P 0(-D,) — We0 — 0,
pEX(1)
The rightmost nontrivial map is induced by the canonical
sections x, ® [D,] of O(D, ® W).
Deformation of TX

0 — E" — EB o(-D,) — W0 — 0,
peX(1)

by deforming x, @ [D,] to sections s, € O(D, ® W) sufficiently
generic so that the kernel E* is still a vector bundle.
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Gauge Sectors

@ Fix genus 0 worldsheet ¥ = P!
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Gauge Sectors

@ Fix genus 0 worldsheet ¥ = P!

@ The theory forms sectors according to the topological type
of the gauge bundle
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Gauge Sectors

@ Fix genus 0 worldsheet ¥ = P!

@ The theory forms sectors according to the topological type
of the gauge bundle

@ For P! x P, assign chern classes (d, e) to U(1) x U(1)
gauge bundle
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Gauge Sectors

@ Fix genus 0 worldsheet ¥ = P!

@ The theory forms sectors according to the topological type
of the gauge bundle

@ For P! x P, assign chern classes (d, e) to U(1) x U(1)
gauge bundle

@ ¢, d3,Aq, A3 become global sections of Op1(d), charge
(1,0)
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Gauge Sectors

@ Fix genus 0 worldsheet ¥ = P!

@ The theory forms sectors according to the topological type
of the gauge bundle

@ For P! x P, assign chern classes (d, e) to U(1) x U(1)
gauge bundle

@ ¢, d3,Aq, A3 become global sections of Op1(d), charge
(1,0)

@ ®,, &y, Ap, Ay become global sections of Op1(e), charge
(0,1)
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Gauge Sectors

@ Fix genus 0 worldsheet ¥ = P!

@ The theory forms sectors according to the topological type
of the gauge bundle

@ For P! x P, assign chern classes (d, e) to U(1) x U(1)
gauge bundle

@ ¢, d3,Aq, A3 become global sections of Op1(d), charge
(1,0)

@ ®,, &y, Ap, Ay become global sections of Op1(e), charge
(0,1)

@ The zero modes of the &; fill out the GLSM moduli space
Xg,e) = P29 x P2e+1 exactly as in the (2, 2) situation
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Gauge Sectors

@ Fix genus 0 worldsheet ¥ = P!

@ The theory forms sectors according to the topological type
of the gauge bundle

@ For P! x P, assign chern classes (d, e) to U(1) x U(1)
gauge bundle

@ ¢, d3,Aq, A3 become global sections of Op1(d), charge
(1,0)

@ ®,, &y, Ap, Ay become global sections of Op1(e), charge
(0,1)

@ The zero modes of the &; fill out the GLSM moduli space
Xg,e) = P29 x P2e+1 exactly as in the (2, 2) situation

@ The zero modes of the V; fill out a deformation of the
tangent bundle of X )
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The General Case

@ In general, the topological types of the gauge bundle
correspond to homology classes 5 € Hx(X,Z)
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The General Case

@ In general, the topological types of the gauge bundle
correspond to homology classes 5 € Hx(X,Z)

@ Have a GLSM moduli space X3 parametrized by the zero
modes of the g
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The General Case

@ In general, the topological types of the gauge bundle
correspond to homology classes 5 € Hx(X,Z)

@ Have a GLSM moduli space X3 parametrized by the zero
modes of the g

@ Have a deformation Es of the tangent bundle of Xj.
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Classical Correlation Functions

0— E°— P 0(-D,) — W0 — 0,
peEX(1)

HO(O(~D,)) = H'(O(~D,)) = 0 gives
Y: W=H(W®O0)~H(E),
hence cup product
¢ SymfW — HX(AKE™).
Fixing a normalization [, : H'P(X,A"PE*) ~ C, for

P e Sym3™X) W, define the classical correlation function as

(P)o = /X “(P)
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Classical Correlation Functions, Continued

As we will see, the cup product can be computed explicitly by
algebraic geometry. The method builds on the earlier
computational methods of [K-Sharpe] and [Guffin-K] developed
to verify a conjecture of [Adams-Basu-Sethi], while providing
new viewpoints that elucidate more of the structure.
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Classical Correlation Functions: P! x P!

@ Put Z = ¢0(-D;) ~ O(-1,0)2 © O(0, —1)2. Then the cup
product is identified with the extension class of the
generalized Koszul complex on the s,

0> NE*"-NZ-ZoW—Sym®W® 0 — 0.
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Classical Correlation Functions: P! x P!

@ Put Z = ¢0(-D;) ~ O(-1,0)2 © O(0, —1)2. Then the cup
product is identified with the extension class of the
generalized Koszul complex on the s,

0> NE*"-NZ-ZoW—Sym®W® 0 — 0.

@ This can be broken up into short exact sequences
0 ANE* - N°Z — Sy — 0,
058 - Z W — Sym*W® 0O — 0.
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Classical Correlation Functions: P! x P!

@ Put Z = ¢0(-D;) ~ O(-1,0)2 © O(0, —1)2. Then the cup
product is identified with the extension class of the
generalized Koszul complex on the s,

0> NE*"-NZ-ZoW—Sym®W® 0 — 0.

@ This can be broken up into short exact sequences
0 ANE* - N°Z — Sy — 0,
058 - Z W — Sym*W® 0O — 0.

@ The cup product factors as Sym?W — H'(Sy) — H?(A2E¥)
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Classical Correlation Functions: P! x P!

@ Put Z = ¢0(-D;) ~ O(-1,0)2 © O(0, —1)2. Then the cup
product is identified with the extension class of the
generalized Koszul complex on the s,

0> NE*"-NZ-ZoW—Sym®W® 0 — 0.

@ This can be broken up into short exact sequences
0 ANE* - N°Z — Sy — 0,
058 - Z W — Sym*W® 0O — 0.

@ The cup product factors as Sym?W — H'(Sy) — H?(A2E¥)
@ We also see from H'(Z @ W) = 0 that Sym?W — H'(Sy) is
an isomorphism, while H'(S;) — H?(A2E*) is surjective

and has kernel generated by H'(A\2Z2).
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P! x P!, Continued

@ Z=0(-1,0)2® 0(0,—1)? gives
N2Z = O(~2,0) & O(—1, —1)* & O(0, —2)
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P! x P!, Continued

@ Z=0(-1,0)2® 0(0,—1)? gives
N2Z = O(-2,0) @ O(-1,-1)* @ 0(0, -2)

@ Only nonzero contributions H'(O(-2,0)) and
H'(0(0,—2)) to H'(A2Z) arise from the respective pairs of
divisors {Dy, D3}; {D>, D4}, which do not intersect in X.
More generally, these are the primitive collections of toric
geometry.
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P! x P!, Continued

@ Z=0(-1,0)2® 0(0,—1)? gives
N2Z = O(-2,0) @ O(-1,-1)* @ 0(0, -2)

@ Only nonzero contributions H'(O(-2,0)) and
H'(0(0,—2)) to H'(A2Z) arise from the respective pairs of
divisors {Dy, D3}; {D>, D4}, which do not intersect in X.
More generally, these are the primitive collections of toric
geometry.

@ Chasing through the diagrams gives an explicit polynomial
Q € Sym? W associated with the generator of H'(O(-2,0))
and another Q € Sym? W associated with the generator of
H'(0(0, —2)), which lie in the kernel of the cup product.
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P! x P!, Continued

Z =0(-1,0)%2 ® 0(0,—1)? gives
N2Z = O(-2,0) @ O(-1,-1)* @ 0(0, -2)
Only nonzero contributions H'(O(-2,0)) and
H'(0(0,—2)) to H'(A2Z) arise from the respective pairs of
divisors {Dy, D3}; {D>, D4}, which do not intersect in X.
More generally, these are the primitive collections of toric
geometry.
Chasing through the diagrams gives an explicit polynomial
Q € Sym? W associated with the generator of H'(O(-2,0))
and another Q € Sym? W associated with the generator of
H'(0(0, —2)), which lie in the kernel of the cup product.
In summary, we have computed the polymology of (X, E)
as

H*(A\*E*) = SymW/(Q, Q).
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Explicit Calculation

@ Since H°(O(Dy)) = H°(O(Ds)) is spanned by x4 and x3,
can write

S1 = Wy1 X1 + Wy3Xz, S3 = W31X1 + W33X3

for certain w; ¢ W.
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Explicit Calculation

@ Since H°(O(Dy)) = H°(O(Ds)) is spanned by x4 and x3,
can write

S1 = Wy1 X1 + Wy3Xz, S3 = W31X1 + W33X3

for certain w; ¢ W.
@ Putting

w. W
A— 11 13
W31 Waz

we compute Q = det(A).
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Explicit Calculation

@ Since H°(O(Dy)) = H°(O(Ds)) is spanned by x4 and x3,
can write

S1 = Wy1 X1 + Wy3Xz, S3 = W31X1 + W33X3
for certain w; ¢ W.
@ Putting
A— ( Wiy Wig >
W3y Wiz
we compute Q = det(A).
@ The computation of Qis analogous.
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Explicit Calculation

@ Since H°(O(Dy)) = H°(O(Ds)) is spanned by x4 and x3,
can write

S1 = Wy1 X1 + Wy3Xz, S3 = W31X1 + W33X3

for certain w; ¢ W.

@ Putting
A— ( Wiy Wig >
W31 Wa3
we compute Q = det(A).

@ The computation of Q is analogous.

@ Since the polymology is finite dimensional, Q, Q have no
common factors and it follows that the top part
dimSym?W/(Q, Q) of the polymology is one dimensional
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Conclusion of the Calculation

The computation of the classical correlation functions (P)q with
P < Sym? W becomes trivial: take the image of P in the quotient
Sym®W/(Q, Q) and this is the unnormalized correlation
function. Choose your favorite isomorphism of this

1 dimensional vector space with C if you want to normalize.
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Classical Polymology, General Case

@ In general, the same construction gives the classical
polymology H*(X,A*E*) as a quotient SymW/I.
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Classical Polymology, General Case

@ In general, the same construction gives the classical
polymology H*(X,A*E*) as a quotient SymW/I.

@ To each primitive collection {D;, ..., D; } which we index
by K ={iy,..., ik}, get a nonvanishing cohomology
H*=1(X,0(-_ D;)) ~ C and a generator Q of /.
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Classical Polymology, General Case

@ In general, the same construction gives the classical
polymology H*(X,A*E*) as a quotient SymW/I.

@ To each primitive collection {D;, ..., D; } which we index
by K ={iy,..., ik}, get a nonvanishing cohomology
H*=1(X,0(-_ D;)) ~ C and a generator Q of /.

@ Each Q is explicitly computable as a product of
determinants of the linear coefficients of the s, used to
define E.
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Classical Polymology, General Case

@ In general, the same construction gives the classical
polymology H*(X,A*E*) as a quotient SymW/I.

@ To each primitive collection {D;, ..., D; } which we index
by K ={iy,..., ik}, get a nonvanishing cohomology
H*=1(X,0(-_ D;)) ~ C and a generator Q of /.

@ Each Q is explicitly computable as a product of
determinants of the linear coefficients of the s, used to
define E.

@ /is simply the ideal generated by all of the Qx, so is
independent of nonlinear deformations!
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Classical Polymology, General Case

@ In general, the same construction gives the classical
polymology H*(X,A*E*) as a quotient SymW/I.

@ To each primitive collection {D;, ..., D; } which we index
by K ={iy,..., ik}, get a nonvanishing cohomology
H*=1(X,0(-_ D;)) ~ C and a generator Q of /.

@ Each Q is explicitly computable as a product of
determinants of the linear coefficients of the s, used to
define E.

@ /is simply the ideal generated by all of the Qx, so is
independent of nonlinear deformations!

@ If E = TX, then Q is just the product [D;] - - - [D;, ]
occuring in the definition of the Stanley-Reisner ideal.
Thus our computation of the polymology reduces to the
familiar toric description of H*(X), as it should.
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More Details of the Computation

@ Primitive collections are compatible with linear
equivalence: if K is a primitive collection and p € K, then if
D, ~ D, it can be shown that o’ € K. Each K can therefore
be partitioned into a set T} of linear equivalence classes.
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More Details of the Computation

@ Primitive collections are compatible with linear
equivalence: if K is a primitive collection and p € K, then if
D, ~ D, it can be shown that o’ € K. Each K can therefore
be partitioned into a set T,; of linear equivalence classes.

@ Among the sections of H°(O(D,)) are the sections
expressed as a linear combination of the x,, for D,/ in the
linear equivalence class of D,. The deformations of TX
with these terms and no others have been called linear
deformations in the physics literature. Fixing a linear
equivalence class c, the linear terms associated with the
s, for all p € ¢ form a square matrix. Let Q; be its
determinant.
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More Details of the Computation

@ Primitive collections are compatible with linear
equivalence: if K is a primitive collection and p € K, then if
D, ~ D, it can be shown that o’ € K. Each K can therefore
be partitioned into a set T,; of linear equivalence classes.

@ Among the sections of H°(O(D,)) are the sections
expressed as a linear combination of the x,, for D,/ in the
linear equivalence class of D,. The deformations of TX
with these terms and no others have been called linear
deformations in the physics literature. Fixing a linear
equivalence class c, the linear terms associated with the
s, for all p € ¢ form a square matrix. Let Q; be its
determinant.

QK:HQC

+
ceT,
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Nonclassical Correlation Functions

@ Since Xj is a toric variety and Eg is a deformation of TXj,
we only have to describe its primitive collections Kz and
the Q, in terms of the classical data.
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Nonclassical Correlation Functions

@ Since Xj is a toric variety and Eg is a deformation of TXj,
we only have to describe its primitive collections Kz and
the Q, in terms of the classical data.

@ Recall from [Morrison-Plesser] that the fan for Xj is
obtained from that of X by replacing each edge p € ¥(1)
with h%(D, - B) := h°(P!, Opi (D, - 8)) edges
P1-- -5 Pr(D,-5) Keeping the same gauge group and
charges, and charactering the fan by requiring that the
primitive collections Kj of X are in 1-1 correspondence
with the primitive collections K for X, associating to K the
collection of divisors

Ks = {pi| p €K}
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Nonclassical Correlation Functions

@ Since Xj is a toric variety and Eg is a deformation of TXj,
we only have to describe its primitive collections Kz and
the Q, in terms of the classical data.

@ Recall from [Morrison-Plesser] that the fan for Xj is
obtained from that of X by replacing each edge p € ¥(1)
with h%(D, - B) := h°(P!, Opi (D, - 8)) edges
P1-- -5 Pr(D,-5) Keeping the same gauge group and
charges, and charactering the fan by requiring that the
primitive collections Kj of X are in 1-1 correspondence
with the primitive collections K for X, associating to K the
collection of divisors

Ks = {pi| p €K}

@ The resultis Qx, = HceT; ng(Dcﬂ)_
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Correlation Functions in sector 3, naive attempt

Putting everything together, we learn that the polymology of X;
is SymW/(1s),

0(De-
lg = ( H Qg (De:5) | K a primitive collection for X)

n
ceT}
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Example: P! x P!

@ For3=(d,e), have l°(H; - B)=d+1, O(Ho-3) = e+1,
so the polynomial in sector 3 is

SymW/ (Qd+17 ée+1) .
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Example: P! x P!

@ For3=(d,e), have l°(H; - B)=d+1, O(Ho-3) = e+1,
so the polynomial in sector 3 is

SymW/ (Qd+17 ée+1) )
@ This is all that is need to compute correlation functions as

elements of the 1 dimensional vector space
Sym2d+2e+2 W/(Qd+1 , ée—H )
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A Problem

This is still not enough to compute correlation functions:
dim X3 # ¢1(X) - f + dim X in general. We need four-fermi
terms, an analogue of the virtual fundamental class of
Gromov-Witten theory.
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Four-fermi Terms and Correlation Functions

@ Put h'(s) = h'(Opi(s)). Then

h'(De-
Fs = HQC ( 5),
c

where the product is taken over all linear equivalence
classes c (i.e. without regard to any primitive collections).
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Four-fermi Terms and Correlation Functions

@ Put h'(s) = h'(Opi(s)). Then

h'(De-
Fs = HQC ( 5),
c

where the product is taken over all linear equivalence
classes c (i.e. without regard to any primitive collections).

@ We have ¢{(X) - 5+ dim(X) + deg(F3) = dim X3.
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Four-fermi Terms and Correlation Functions

@ Put h'(s) = h'(Opi(s)). Then

h'(De-
Fs = HQC ( 5),
c

where the product is taken over all linear equivalence
classes c (i.e. without regard to any primitive collections).

@ We have ¢{(X) - 5+ dim(X) + deg(F3) = dim X3.
@ If P e Sym*X with k = ¢;(X) - 8 + dim(X), then we can
define the correlation function as

(P)s = [PFg],

where the brackets denote the equivalence class of PFs in
the 1 dimensional vector space Sym®™Xs W /|;.
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Comparing sectors: P! x P!

@ We already know a ring that surjects onto the quantum
cohomology ring: SymW. We only have to identify the
operator identities that they satisfy to identify the quantum
cohomology ring
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Comparing sectors: P! x P!

@ We already know a ring that surjects onto the quantum
cohomology ring: SymW. We only have to identify the
operator identities that they satisfy to identify the quantum
cohomology ring

@ Remaining problem: correlation functions from different
sectors live in different vector spaces.
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Comparing sectors: P! x P!

@ We already know a ring that surjects onto the quantum
cohomology ring: SymW. We only have to identify the
operator identities that they satisfy to identify the quantum
cohomology ring

@ Remaining problem: correlation functions from different
sectors live in different vector spaces.

o If 3=(d,e)and 5’ = (d', €¢) with d’ > d and € > e, there
is a natural map of polymologies

~

SymW/(Qd+1, ée+1) Q ﬂe —e Sym W/(Qd’-H 7 ée’-H)

which restricts to an isomorphism £ 5 from
Sym2d+2e+2 W/(Qd—H , Qe+t ) to
SymZd’+2e’+2 W/(leH ’ Qe +1 ).
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Comparing Sectors, Concluded

The maps f3 3 are compatible and form a direct system. The
direct limit is a one-dimensional vector space V containing all
the correlation functions. In particular, correlation functions in
different sectors can be compared.
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Quantum Cohomology: P' x P!

We can now state the quantum cohomology relations for
P' x P': y
Q= a, Q= Q2.
Here, the g; are the GLSM version of the Kahler terms of the
NLSM, depending on the FI parameters.
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Verification of QC Relations for P! x P’

We have to show that for any P € Sym??+2¢+2 W we have

<QP>d+1,e = <P>d,e

But since f3 3 is multiplication by Q in this case, this amounts to
the tautology QP = Q(P).
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General Case

@ The general case is similar. We say that 5’ dominates (3 if
the fan for X3 can be obtained from the fan for Xz by
adding more edges to each linear equivalence class.
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General Case

@ The general case is similar. We say that 5’ dominates (3 if
the fan for X3 can be obtained from the fan for Xz by
adding more edges to each linear equivalence class.

@ Equivalent to h°(D, - ') > h°(D, - B) for all c.
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General Case

@ The general case is similar. We say that 5’ dominates (3 if
the fan for X3 can be obtained from the fan for Xz by
adding more edges to each linear equivalence class.

@ Equivalent to h°(D, - ') > h°(D, - B) for all c.
@ These polymologies can be identified by multiplication by

[[ofes e
Cc

leading to a direct system.
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General Case

@ The general case is similar. We say that 5’ dominates (3 if
the fan for X3 can be obtained from the fan for Xz by
adding more edges to each linear equivalence class.

@ Equivalent to h°(D, - ') > h°(D, - B) for all c.
@ These polymologies can be identified by multiplication by

H ng(Dcﬂ’)—ho(Dc-ﬁ)’
C

leading to a direct system.

@ Now quantum cohomology relations have a precise
mathematical meaning.
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Batyrev’s Relations

@ We need a notion due to Batyrev. Let v, € N be the
primitive integral generator of p € ¥(1). Let K be a
primitive collection.
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Batyrev’s Relations

@ We need a notion due to Batyrev. Let v, € N be the
primitive integral generator of p € ¥(1). Let K be a
primitive collection.

@ Consider vk = 3_ x V,- Then there is a unique cone
o € ¥ such that vk is in the relative interior of o.
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Batyrev’s Relations

@ We need a notion due to Batyrev. Let v, € N be the
primitive integral generator of p € ¥(1). Let K be a
primitive collection.

@ Consider vk = 3_ x V,- Then there is a unique cone
o € X such that vk is in the relative interior of o.

@ Batyrev shows that this gives a unique relation )" a,v, =0
with the properties a, =1ifpe K, a, < 0if p € o(1), and
a, = 0 otherwise.
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Batyrev’s Relations

We need a notion due to Batyrev. Let v, € N be the
primitive integral generator of p € ¥(1). Let K be a
primitive collection.

Consider vk = }_ cx V,- Then there is a unique cone

o € ¥ such that vk is in the relative interior of o.

Batyrev shows that this gives a unique relation )" a,v, =0
with the properties a, =1ifpe K, a, < 0if p € o(1), and
a, = 0 otherwise.

Furthermore, Batyrev shows that there is a unique

Bk € Ho(X,Z) such that D, - Bk = a, for all p € (1).
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Quantum Cohomology Relations: General Case

@ We can show that the edges of the cone o in Batyrev’s
relation respects linear equivalence in the same way that K
does. So we can partition (1) into linear equivalence
classes denoted T, . Then the quantum cohomology
relations are:
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Quantum Cohomology Relations: General Case

@ We can show that the edges of the cone o in Batyrev’s
relation respects linear equivalence in the same way that K
does. So we can partition (1) into linear equivalence
classes denoted T, . Then the quantum cohomology
relations are:

I @=a™ [T %

ceTy ceT,
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Quantum Cohomology Relations: General Case

@ We can show that the edges of the cone o in Batyrev’s
relation respects linear equivalence in the same way that K
does. So we can partition (1) into linear equivalence
classes denoted T, . Then the quantum cohomology
relations are:

I @=a™ [T %

ceTy ceT,

@ This agrees with and extends the results of [Melnikov,
McOirist].

(0, 2) Quantum Cohomology Sheldon Katz



Correlation Functions

Correlation Functions and Quantum Cohomology Quantum Cohomalogy

Quantum Cohomology Relations: General Case

@ We can show that the edges of the cone o in Batyrev’s
relation respects linear equivalence in the same way that K
does. So we can partition (1) into linear equivalence
classes denoted T, . Then the quantum cohomology
relations are:

I @=a™ [T %

ceTy ceT,

@ This agrees with and extends the results of [Melnikov,
McOirist].

@ For E = TX, this is precisely the quantum cohomology
relation proposed by Batyrev.
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Summary

@ (0,2) correlation functions for deformations of tangent
bundles of smooth toric varieties are now a mathematically
precise notion.
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Summary

@ (0,2) correlation functions for deformations of tangent
bundles of smooth toric varieties are now a mathematically
precise notion.

@ The deduced quantum cohomology relations agree with
those found by techniques in physics
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Summary

Summary

@ (0,2) correlation functions for deformations of tangent
bundles of smooth toric varieties are now a mathematically
precise notion.

@ The deduced quantum cohomology relations agree with
those found by techniques in physics

@ The results are independent of nonlinear deformations
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