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Quantum Mechanics in a Nutshell

0. A state of a physical system corresponds to a unit
vector |S> in a complex vector space.

|. (measurement free) Physical processes
are modeled by unitary transformations U
applied to the state vector: [S> ----- > U|S>
2.If|S>=ZI|I>+22|2>+...+zn|n> @

in a measurement basis {|1>,|2>,...,|n>}, then

measurement of |S> yields |i> with probability
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Hadamard Test - For Trace(U).

0>— H O— H - Measure
T frequency
of
|phi> U 0>

[
H = [ o ]/‘Sqrt(E)

|0> occurs with probability
1/2 + Re[<phi|U|phi>]/2.




A knot is an embedding of a simple closed
curve in three dimensional space.

Two knots K, L are equivalent if there is

a homeomorphism h:R3 ----> R3
so that h(K) = L.
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Are Glueballs Knotted Closed Strings?
Antti J. Niemi*

Department of Theoretical Physics, Uppsala University,
Box 803, §-75 108 Uppsala, Sweden

May 29, 2006

Abstract

Glueballs have a natural interpretation as closed strings in Yang-Mills theory.
Their stability requires that the string carries a nontrivial twist, or then it is knot-
ted. Since a twist can be either left-handed or right-handed, this implies that
the glueball spectrum must be degenerate. This degeneracy becomes consistent
with experimental observations, when we identify the 1z (1410) component of the
n(1440) pseudoscalar as a 0~ T glueball, degenerate in mass with the widely ac-
cepted 0T glueball f5(1500). In addition of qualitative similarities, we find that
these two states also share quantitative similarity in terms of equal production ra-
tios, which we view as further evidence that their structures must be very similar.
We explain how our string picture of glueballs can be obtained from Yang-Mills
theory, by employing a decomposed gauge field. We also consider various experi-
mental consequences of our proposal, including the interactions between glueballs
and quarks and the possibility to employ glueballs as probes for extra dimen-
sions: The coupling of strong interactions to higher dimensions seems to imply
that absolute color confinement becomes lost.




Universal energy spectrum of tight knots and links in physics*

Roman V. Buniy' and Thomas W. Kephart?
Department of Physics and Astronomy, Vanderbilt University, Nashuville, TN 37235, USA

We argue that a systems of tightly knotted, linked, or braided flux tubes will have a universal
mass-energy spectrum, since the length of fixed radius flux tubes depend only on the topology of
the configuration. We motivate the discussion with plasma physics examples, then concentrate on
the model of glueballs as knotted QCD flux tubes. Other applications will also be discussed.







I /(D —s 7 T
II E: — D C
I /% - Y

Figure 2 - The Reidemeister Moves.

Reidemeister Moves
reformulate knot theory in
terms of graph
combinatorics.




Bracket Polynomial Model
for the Jones Polynomial

(X)=AC)+ A7) ()

(KO) = (-A% = A7°)(K)




é ™ »
,, A& v
08 R

&
(& &=

BB
S -

The form of the
expansion is the
same as
a loop expansion
of the Potts
model,
where the loops
are
boundaries of
regions of
constant spin.




The Khovanov Complex - A Cubical Organization of
Bracket States




We will make a Hilbert space whose basis is a set of
(enhanced) states of the bracket polynomial for a
given knot diagram K.

We associate a Hilbert space
to an individual knot
diagram.




Reformulating the Bracket

Let ¢(K) = number of crossings on link K.
Form A-C(K)<K> and replace A-2 by -q

Then the skein relation for <K> will
be replaced by:

OX) = (X) =)
(O)=(g+¢ 1)




Use enhanced states by labeling each loop with
+| or -I.

+| -1

[
+
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Enhanced States
circumvent the binomial
theorem.




Enhanced States

g le= —1<—= X

¢ = +1<=1

For reasons that will soon become apparent, we
let -1 be denoted by X and +| be denoted by |I.

(The moduleV will be generated by | and X))




Enhanced State Sum Formula for the Bracket

(K) = ¢ (-1)'¥




A Quantum Statistical Model for the Bracket
Polynonmial.

Let C(K) denote a Hilbert space
with basis |s> where s runs over the
enhanced states of a knot or link diagram K.

We define a unitary transformation.
U:C(K)— C(K)
Uls) = (—=1)¢’]s)

q is chosen on the unit circle in the
complex plane.




<K> =Trace(U).

V) = 2_1s)

Lemma. The evaluation of the bracket polynomial is given by the following formula

This gives a new quantum algorithm for the
Jones polynomial (via Hadamard Test).




Khovanov Homology - Jones Polynomial as an
Euler Characteristic

Two key motivating ideas are involved in finding the Khovanov invariant. First
of all, one would like to categorify a link polynomial such as (K'). There are many
meanings to the term categorify, but here the quest is to find a way to express the link
polynomial as a graded Euler characteristic (K) = x,(H(K)) for some homology
theory associated with (K).

We will formulate Khovanov
Homology
in the context of our quantum
statistical model for the bracket
polynomial.




CATEGORIFICATION
View the next slide as a category.

The cubical shape of this category suggests
making a homology theory.




A Cubical Category Cube[2]
<AB>

o N
N

<BA>

O <AA> = <BA> + <AB>

(mod 2 boundary)







In order to make a non-trivial homology theory
we need a functor from this cubical category of states
to a module category.

Each state loop will map to a module V.

Unions of loops will map to
tenor products of this module.




The Functor from the cubical category to the module
category demands multiplication and comultiplication in
the module.

O=O—®
ObniOM®




o(s) =3 0:(s)

The boundary is a sum of partial differentials
corresponding to resmoothings on the states.
> < \ ( N Each state loop
« N is 2 module.
A collection of state
>’5< : >>-K4 loops corresponds to
a tensor product of
CHL CC% these modules.
00—




The commutation of the partial boundaries demands
a structure of Frobenius algebra for the algebra
associated to a state circle.

=
=0




It turns out that one can take the algebra

generated by | and X with
X2=0 and

AX)=X@Xand AD)=10X + X ® 1.

The chain complex is then generated by
enhanced states with loop labels | and X.




Enhanced State Sum Formula for the Bracket
(K) =" ¢ (1)
J(8) = np(s) + A(s)

i(s) = nB(s) = number of B-smoothings in the
state s.
A($) = number of +1 loops minus number of -1 loops.

(K) =) (=1)'¢’dim(C")
) 1,7
C ) = module generated by enhanced states
with i =ng and j as above.




(K) =) _(-1)'¢’dim(C*)

2,]

The Khovanov differential acts in the form
9:Cl — LI

(For j to be constant as i increases by |,

A\(s) decreases by 1.)




The differential increases the homological
grading i by | and leaves fixed the quantum grading j.

Then

Zq Z )'dim/(C¥) quC'J
X(H(C*7)) = x(C*7)

qu (C*7))







with  Uls) = (—=1)")¢?¥)|s),
O - C’Lj > C’i—l—lj
U0+ oU = 0.

This means that the unitary transformation
U acts on the homology so that

U:H(C(K)) -----> H(C(K))




Eigenspace Picture

C = @AC;\

(U |y Z)\X




SUMMARY

We have interpreted the bracket polynomial as a
quantum amplitude by making a Hilbert space C(K)
whose basis is the collection of enhanced states of the
bracket.

This space C(K) is naturally intepreted as the
chain space for the Khovanov homology
associated with the bracket polynomial.

(K) = @[Uly).

The homology and the unitary transformation U
speak to one another via the formula

U0+ oU = 0.




Questions

We have shown how Khovanov homology fits
into the context of quantum information related to

the Jones polynomial and
replaced in this context by a

how the polynomial is
unitary transformation U

on the Hilbert space of the model. This transformation U

acts on the homology, and its
decomposition of the homo
quantum amplitude corresponc

The states of the moc

eigenspaces give a natural
ogy that is related to the
ing to the Jones polynomial.

el are intensely

combinatorial, related to the
representation of the knot or link.

How can this formulation be used in
quantum information theory and in
statistical mechanics?!
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Homework Problem -- Relate With:

Fivebranes and Knots

Edward Witten

School of Natural Scicnees, Institute for Advanced Study
Einstein Drive, Prineeton, NJ 08540 USA

arnd

Department of Physics, Stanford Universify
Pualo Alte, CA 94305 USA

Abstract

We develop an approach to Khovanov homology of knots via gauge theory (previ-
ous physics-based approches mvolved other descriptions of the relevant spaces of BPS
states). The starting point 1 & system of D3-branes ending on an NS5-brane with a
nomnzero theta-angle. On the one hand, thes system can be related to a Chern-Smmons
gange theory on the boundary of the D3-brane worldvolume: on the other hand, it
can be studied by standard techmques of S-duality and T'-dushity. Combiming the two
approaches leads to & new and mamfestly mvanant deseniption of the Jones polynomaal
of knots, and 1ts generalizations, and to a mamfestly mvariant descniption of Khovanov
homology, m terms of certam elhptic partial differential equations m four and five
dimensions.




The Dichromatic Polynomial and the Potts Model

Dichromatic Polynomial

Z[G)(v, Q) = Z[G"](v, Q) + vZ[G"](v, Q)
Zle LG = QZ[G).

G G’ G”
Delete Contract
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Figure 4. Medial Graph, Checkerboard Graph and K(G)
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Partition Function
Recall that the partition function of a physical

system has the form of the sum over all states s
of the system the quantity

exp[(J/kT)E(s)]

where
] = +1 or -1 (ferromagnetic or antiferromagnetic models)
k = Boltzmann’s constant

T = Temperature
E(s) = energy of the state s




Potts Model

In the Potts model, one has a graph G
and assigns labels (spins, charges) to each
node of the graph from a label set
{1,2,...,Q}.

A state s is such a labeling.

The energy E(s) is equal to the
number of edges in the graph where the

endpoints of the edge receive the same
label.

For Q = 2, the Potts model is equivalent to the
Ising model. The Ising model was shown by Osager
to have a phase transition in the limit of square
planar lattices ( in the the 1940’s).




The partition function P (Q,T) for the
Q-state Potts model on a graph G is given by the
dichromatic polynomial

Z|Gl(v, Q)

where
1
v=el* T — 1

] = +1 or -1 (ferromagnetic or antiferromagnetic models)

k = Boltzmann’s constant

T = Temperature




1
K =J—
Let T

v=rel* —1

Ps(Q,T) = Z[G](e" — 1,Q)
Po(Q.T)=">) e"F)

For planar graphs G we have
Pe(Q,T) = QYK (G)}Q,v=e" —1)

N = number of nodes of G.




Theorem: 7G| (v, Q) = QN/Z{K(G)}

where K(G) is an alternating link associated with
the medial graph of G and

X3 =X3+Q 20D
{0} = Q>

Q_%”U — 1




To analyze Khovanov homology, we adopt a new
bracket

X1=1X]-aD(]
Ol=q+q "

When rho = |, we have the topological
bracket in Khovanov form.

When L

we have the Potts model.







[K](g,p=1) qupc” qu H(C*7))

Away from rho=1, one can ask what is
the influence of the Khovanov homology
on the coefficients in the expansion of

Kl(q,p)

and corresponding questions about the
Potts model.




Tracking Potts

1

—qp = Q_§fU

whence

¢ —/Qq+1=0.
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At criticality Potts meets Khovanov at four colors
and imaginary temperature!

BN E N
q 2
Criticality: —pg =1
1 -V@£/Q-i
q 2 |

Suppose that 0O = 1.

Then 2 = —/Q + /Q — 4.
o 4-Q = TVQVG 1.

And need Q =4 and eK =




Now consider rho = | without insisting on
criticality.

1 =—v/(¢vQ)

v —14++/1-4/Q
= —QFVQVQ 1
V= —(q — :
2
GK:1+?}:2—Q:\/Q\/Q—4.




K:

For () = 2 we have e +1.
For =3, ¢ = =1EV3i
For Q = 4 we have e®* = —1.

For Q >4, e* is real and negative.

Thus we get complex temperature values in
all cases where the coefficients of the Potts
model are given directly in terms of Euler
characteristics from Khovanov homology.




