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What are {2-backgrounds?

Formally they define a refinement of the N=2 topological
string or SYM partition function:

log Z(a,e1,62) = ¥ (€1 + €)' (e162)/ T FE(a)
i,j=0
Limits:
1.) For ¢, = —ey = ig, it becomes the usual genus exp.

log Z(a, igs, —igs) = 2929 2FO9)(



Here g, the string coupling, a denoted (vector) moduli.

2.) ¢ =0, e =h#0, "Genus zero with insertions”, is
called Nekrasov-Shatashvili limit and a simple quantum
Integrable system appears.

3.) The Alday, Gaiotto and Tachikawa conjecture

identifies p
€1 = gs\/g €2 = \/%7

where the Liouville parameters are ¢ = 1 4+ 6Q? and

Q=p2+p87"




Interpretion of (€1, ¢€):

1.) Localization param. in Nekrasovs instanton calc: M;
moduli space of instanton (F'; = 0) in SU(N) bundle

over S* = R*N oo, with k = 81\}7# fR4FA/\F4 c N
Gauge group and spacetime symmetries act on M,

SU(N) x T(SO(4)) : My — M;,

here T(SO(4)) =U (1), x U(1)_ is parametrized by

(€1, €2) via
€L+ — 9 €1 T €9




Z(a’7617€27 Zq / V® )

can be calculated by equwarlant localization in terms of
partions Y;, i =1,..., N. E.g. SU(2) with massive m;
flavors in the fundamental

Z(a,mye,q) =y AR (g m e) f121 (—a,mye)
Y1,Yo

)\ = q = e*™w is the UV coupling for the conformal
cases (Ny = 2N) and the mass scale for the
non-conformal cases (N; < 2N). S = C"/ is the flavor



space.

Note that in the Nekrasov partition function
(€1,€3) — (—€1, —€2) is not a symmetry, i.e. F(27) £ ()
for i odd.

However a choice of embedding the U(1), in the
R-symmetry group changes the identification of the
flavor masses

mj, = my, + p(er + €2)

For p = 1 the symmetry Is restored
. This also the physical mass definition of AGT.



Refined M2 brane BPS states

M-theory compactification on

St x (CY3 — fold) x (Taub — Nut,)
U(1); x U(1), action on TNy (e.g. R* = C?)
(21, 22) — (€121, €229).

Supersymmetry requires €, = —ey unless one has an
U(1)pr-symmetry acting on the CY3-fold — BPS
counting only sensible on non-compact CY.



BPS states have

e Charge 8 € Hy(M,7Z),

e Spin in SO(4)=SU(2),.xSU(2)_,
o Mass:fﬁw, or fPBQ on the mirror

e Multiplicity of charge and spin reps. nijj_ c 4.

The latter is counted by BPS index (¢4 := e™%):

Z(a,€) = Try(— 1)2(m++m—)qim+q%m_e_“'5
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where m. denotes the highest spin j: in a given spin
multiplet.

Using a Schwinger loop calculation
this can be expressed as

TLB e—ka-ﬁ

50 J+
B 2km 4 J+sJ—
log(Z) = Z H Z 1t 4k sinh(%) Sinh(%)

B,k=1,j+=0 = m4=—74

This expansion in manifestly symmetric under
(€1,€2) — (—€1, —€3). To make contact with the gauge
theory the physical mass has to be used



Behaviour at the conifold points:

Schwinger loop result with a single light hypermultiplet
with mass ap = [3Q — 0 for CY 3-fold (resp.

ap = fsl M),

*ds exp(—sap)

_ | 0
Fls, A ap) = /0 s 4dsin(se;/2) sin(sey/2) Olap
1 | R
= | . | 245)\ “|log(ap)

| A
oa0™ t1aa0® 57607 a2
+ contributions to 2(g +n) — 2 > 2.

1 ., 7 7 2A_2]1
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The leading behaviour F(™9) = QQJ(\g(f,,;g))_z - O(a}), i.e.

D
the absence of subleading poles is the called gap of F("9)

at ap — 0. It will be crucial to solve the models.

12
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The generalized holomorphic anomaly equation
B-model definition of the F9(a) = F(*9)(q)

FI9( / <3ﬁ35 5k> [dm A dim]

The contraction of the coodinates m;., m;. with the genus
g worldsheet correlator of 5% = fz G b, B = fzg G I
with gives a real 6g — 6 form on the compactified moduI|

space M, of the g Riemann surface %,,.

An infinitessimal anholomorphic perturbation



S(ti, ) = S(t;) + [, O, with

O = {Gy,[G{. 0"} dzdz .

correspond to an insertions of exact forms. The
deformation receives contributions form the boundaries.
This leads to the Holomorphic Anomaly Equation

1

. 1_. J

o = LoD 4 D P, o
h=0
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Defining for g > 1

39g—3

Fm9)(t) = /M <c9“ 1] 5 5k> [dm A dm)]

and for g =0
FOH0) = (60/(0)6(1)9(00)0")

where the field operator O should come from integrating
a 2-form field over the Riemann surface O = fzg P2,

and ¢®) emerges as usual from the descend equation
from @9, If the latter has no contact term with the

15
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fields in the chiral ring on gets

1_.
@F(”’g) _ §Cgk (DjDkF(n’g_l)+Z/DjF(m’h)DkF(n_m’g_h)) 7

m,h

where the prime denotes omission of (m, h) = (0,0) and
(m, h) = (n,g) in the sum. The first term on the right
hand side is set to zero if g = 0. This is supplemented by
the anomaly for g =1

_ 1 .
1 k X -

A ditfferent generalized holomorphic equation was
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proposed In . It breaks the
(€1,€2) = (—€1, —€2) symmetry and leads for Ny =1 to
the Nekrasov partition function with the non-physical
masses, which has no obvious modular properties.

The F™9(g) amplitudes fullfill an

n—1
_ |
O-Fm0) — ek Z DjF(m’O)DkF<”_m’O>

m=1

anomaly equation that was observed for counting higher
rank sheafs on surfaces.



Direct integration of the holomorphic anomaly equations

The direct integration formalism described below applies
to theories defined by a Riemann surface C,-y and a
meromorphic differential A

o N = 2 gauge theories: C, Seiberg-Witten curve. A\
Seiberg-Witten differential.

e Matrix models: C, Spectral curve. A defines filling
factions.

e Non-compact CY3fold: C,: H(xy)=0 where uv +

18
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H(z,y) = 0 is the mirror manifold. \ = %

The goal is to derive Z entirely from the curve. For
simplicity we will assume g = 1. Then we can bring all C
into Weierstrassform

y* =4z’ — go(u)z — g3(u)

The classical geometry WS g = 0 sector is determined by
the J-function which has simple pole at the discriminant



B0 g
Ei(7) = Bo(r)?  ga(u)® — 27g5(u)?

J(7)

where F4(7) and FEg(7) are the Eisenstein series of
weight 4 and 6, respectively, and the holomorphic period

(0a/0u) = [,dx/y is given by

da _ \/gz<u>E6<T>
du 93(U) E4(7') .

20



This determines the prepotential

Co 82FO

T —
metric on moduli space via
G s = 20,0;Re(ad,F")

and the three point function

21 Oa?’

47

—T9.

Co

B O3 Y 2mwidT

Caaa — —

da? co da
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The n+ g =1 sector

F1.9 has no holomorphic anomaly and is determined by
the boundary conditions he Schwinger-loop calculation
yields F10) = Llog(ap) and regularity at other
singularity dlctates

1

F(1,0) _ ﬂlog(A)f(Q)

FO:1) is obtained by integrating the ¢ = 1 hol. anomaly
and obeying the conifold behaviour F(*V) = —L1og(ay)



yielding

1
FOU = —log(Gual AJS)

so that one gets in the holomorphic limit

1 da 1
1 (071) — _ -
TlliréOF 2log (du) 1210g(A) .

The n+ g > 1 sector The covariant derivative in the 7
variable is proportional to the so called Mass derivative
1 . A k

—.DT — DT — ar

271 ATy
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The propagator S, which can be used to solve the

holomorphic anomaly e.q., is proportional to the almost
holomorphic form

. - 3
EQ(T,T) :EQ(T) —_— .
TTT9
The Mass derivatives closes on the ring of almost
modular forms whose only non-holomorphic generator is

the propagator, so that

3_ 3i O
or 20T OF,




25
This allows to write the holomorphic anomaly as

O F(m:9) o2 F(n,g—1) 1O F(m:h) 9 F(nm,gh))

24 ~ — |
0Es CO( da? — da da

Because of the closing of the deriviative on the
generators the r.h.s. will always be a polynomial in the
generators. It Is convenient to write the equation in

terms of u, m, introduce

g3(w) Es(1) Ey(T)
g2(u)  Ee(r)

<

X =



to obtain a general
39+2n—3
k, (1,
ng) — Z X pk g ),

2(g+n)—

where p,in’g)(u) are finite polynomials in derivatives of
g2(u) and gs(u).

(Rigid) Special Geometry implies generally that the
covariant derivatives closes on the propagtor

Diskl _ _Cz_nmskmsln + qukl

This makes the formulism applicable to Cy~; and in part
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to CY3-folds

Fixing of the holomorphic ambiguity: At generic zero uy
of the descriminant, a single period

ap ~ U — Uy

vanishes, i.e. the holomorphic ambiguity can at worse

have a pole of order 2(g +n) — 2 at uy and we can
parameterize It

(n.g)  _ 1
Fhol.amb. o A(u)2(9+”)—2 p(u) ) (1)

with p(u) a holomorphic function of u. Demanding

27



holomophicity and regularity in the limit © — oo, implies
that p(u) is in fact a polynomial in u of degree
(2(g+n) —2)da — 1. le. the (2(9g+n) —2)da
coefficients inp(u) are exactly fixed by the boundary
conditions, (2(g +n) — 2) via the gap condition at each
of the da zeros.
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Applications: Topological Strings on non-compact
CY3-folds

Example: O(—3) — P?

3 d
H(wyiz)=a+1—z—+y=0  A=log(y)—.
Y
G 0
enus - - 1 1
T 323(1 4+ 272)
n—+g=1:

1 o1 1
POl = _2 log(2'A
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1 A
F(l’o) — —lOg(;) .

n—+g=>2 .
(02 _ 100X° — 90X22% + 30X 2* + 3(92 — 1)2°
4320262
1) _ 10X? + 55(108z — 1)2* + 2(1 — 54z2)2*
144024 A2
P20 _ 10X + (12962 + 11)2°
1152022A2

Using the mirror maps at the singular points one can
make predictions of refined BPS and refined orbifold BPS
Invarianst.



E.g. for large radius one gets the results from the refined
topological vertex casted In
I'(3) modular forms to all order in the modulus.

Other non-compact toric CY3-fold (O(—K) — FF,, have
been checked in [?].

Applications: N=2 Gauge theories

It 1s sensible to start with the conformal cases and obtain
the asymptotic free cases in limits of gauge coupling and

masses (e.g. for SU(2) Ny = 4 consider
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SU(2) N=4 with adjoint hypermultiplet

3
1
y2 — H(Qj — 62'(7'@'7«)”& — Zei(nr)ﬁzz),

ei(Tir), © = 1,2,3, are the halfperiods

e —e1 = 05(1i,), es—er=0y(Tir), ex—e3=04(1ir) .

e1 + eo + e3 = 0 with

m = 2\@77”&(62 —e1), q(Q) =  pA
3



one gets

1 1
y' = (T —u — 3—2m2)(a: — Uuq — 3—2q2m2) .

Genus zero Eliminating J(q) in favor of 7,

I(7ir) = 27(1 — q)%q?(m? 4 8u)?2(m*q(1 + q) + 64u? + 8m?(u + 2qu))?
one gets Nekrasovs partition function F %% (a, m, Q)
in\ = Q = e*™"ir after shifting the masses. In this case
the theory is truely conformal and the 7;, parameter is
identitified with Nekrasovs 7,,.

4mr(1 —¢®> + q*) +8m2(2 — g — ¢* + 2¢3)u + 64(1 — q + ¢*)u?)3
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In the massless [imit

F(l,O)(a) — ilog(a) + 0(Q),

FOY) =0+ 0(Q) .
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n+g>1

2,0) __ Ly
FEY = 24 - 32a?’
Py _ B

6 - 32a2’
%2 = o,

FOn) = is a simple consequence of the holomorphic
anomaly equation and the fact that F(®Y has no
a-dependence.

(2)
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1 13
(3,0 2 B
= 213324 < 2t 5 4) ’ (3)

1 29
2.1) 2
F2Y = SVRVRY (5E2+€E4>,
1 1
(21 P24 1R
- 2103g4 ( 2 5 4)

Note that £y ~ X powers grow only with g +n — 1 In
the massless cases. The ambiguity is determined using
the mass deformations to achieve generic singularities. In

36



the massive case there are higher powers in E5 up to
3g + 2n — 3, which reproduce in the double scaling pure
SU(2) SYM.

SU(2) N=2 with four fundamental hypers

Both conformal theories can be geometrically engineered
from the Enriques CY-3-fold, whose fibre over P!, has
the lattice

[ =Taerb(2) @ Ey(-2)

The N=4 gauge bosons come from the I'""}(2) lattice
while the N; = 4 gauge bosons come form I't:t. There

37



are two reductions the geometrical reduction in the VM
of the first are large radius Kahler parameters, while in
the second the volume of the Enriques collapses the VM
have to be describes by the mirror geometry.

The massless curves in both case the torus in the base,
but in the N=4 the good parameter is Q = e*>™7ir, while
. . _ 05

__€e3—/€1 __ 72

one has to use the mirror coordanite ¢(Q) = 2= = o

In the Ny =4 case.
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The mass defomed curve is

with m; = m;y/e1 — es. l.e. the IF coupling 7;,. is not
identified with the UV coupling. The modular properties
however are w.r.t. to the IR coupling.



and
1
F(O’l) — —5 log
g+n>1
2.0) Loy
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Conclusions :

e [ he generalized holomorphic anomaly equations and the
gap conditions determine the partition function of the
physical systems, which allow for the (€1, €5) refinement:

— Non-compact CY3-folds

— N=2 gauge theories

— Matrix models with [3-ensemble measures, if the
potential is polynomial

as a global almost holomorphic modular expression over
the moduli space.
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