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What are Ω-backgrounds?

Formally they define a refinement of the N=2 topological

string or SYM partition function:

logZ(a, �1, �2) =
∞∑

i,j=0

(�1 + �2)
i(�1�2)

j−1F ( i2,j)(a)

Limits:

1.) For �1 = −�2 = igs it becomes the usual genus exp.

logZ(a, igs,−igs) =

∞∑
g=0

g2g−2
s F (0,g)(a) .
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Here gs the string coupling, a denoted (vector) moduli.

2.) �1 = 0, �2 = ℏ ∕= 0, ”Genus zero with insertions”, is

called Nekrasov-Shatashvili limit and a simple quantum

integrable system appears.

3.) The Alday, Gaiotto and Tachikawa conjecture

identifies

�1 = gs
√
� �2 =

gs√
�
,

where the Liouville parameters are c = 1 + 6Q2 and

Q = �
1
2 + �−

1
2.
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Interpretion of (�1, �2):

1.) Localization param. in Nekrasovs instanton calc: ℳ̃k

moduli space of instanton (F+
A = 0) in SU(N) bundle

over S4 = ℝ4 ∩∞, with k = − 1
8N�2

∫
ℝ4 FA ∧ F4 ∈ ℕ

Gauge group and spacetime symmetries act on ℳ̃k

SU(N)× T(SO(4)) : ℳ̃k → ℳ̃k,

here T(SO(4)) = U(1)+ × U(1)− is parametrized by

(�1, �2) via

�± =
1

2
(�1 ± �2)
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Z(a, �1, �2, q) =

∞∑
k=0

qk
∫
ℳ̃k

ev(V ⊗ S)

can be calculated by equivariant localization in terms of

partions Yi, i = 1, . . . , N . E.g. SU(2) with massive mk

flavors in the fundamental

Z(a,m, �, q) =
∑
Y1,Y2

�∣Y1∣+∣Y2∣fY1,Y2(a,m, �)fY2,Y1(−a,m, �) ,

� = q = e2�i�uv is the UV coupling for the conformal

cases (Nf = 2N) and the mass scale for the

non-conformal cases (Nf < 2N). S = ℂNf is the flavor
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space.

Note that in the Nekrasov partition function

(�1, �2)→ (−�1,−�2) is not a symmetry, i.e. F ( i2,j) ∕= 0

for i odd.

However a choice of embedding the U(1)+ in the

R-symmetry group changes the identification of the

flavor masses

m′k = mk + �(�1 + �2)

For � = 1 the symmetry is restored Göttsche, Nakajima, Yoshioka

2010. This also the physical mass definition of AGT.
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Refined M2 brane BPS states Gopakumar, Vafa, . . .

M-theory compactification on

S1 × (CY3− fold)× (Taub−Nut4)

U(1)1 × U(1)2 action on TN4 (e.g. ℝ4 = ℂ2)

(z1, z2)→ (ei�1z1, e
i�2z2).

Supersymmetry requires �1 = −�2 unless one has an

U(1)T -symmetry acting on the CY3-fold → BPS

counting only sensible on non-compact CY.
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BPS states have

∙ Charge � ∈ H2(M,ℤ),

∙ Spin in SO(4)=SU(2)+×SU(2)−,

∙ Mass=
∫
� !, or

∫
Γ3

Ω on the mirror

∙ Multiplicity of charge and spin reps. n�j+,j− ∈ ℤ.

The latter is counted by BPS index (q± := e−�±):

Z(a, �) = Trℋ(−1)2(m++m−)q
2m+
+ q

2m−
− e−a⋅�,
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where m± denotes the highest spin j3
± in a given spin

multiplet.

Using a Schwinger loop calculation Gopakumar, Hollowood,Iqbal

and Vafa 99/03 this can be expressed as

log(Z) =

∞∑
�,k=1,j±=0

∏
±

⎛⎝ j±∑
m±=−j±

q
2km±
±

⎞⎠ n�j+,j−e
−ka⋅�

4k sinh(k�12 ) sinh(k�22 )

This expansion in manifestly symmetric under

(�1, �2)→ (−�1,−�2). To make contact with the gauge

theory the physical mass has to be used Hollowood,Iqbal and

Vafa 2003, Krefl and Walcher:arXiv:1010.2635 .



11

Behaviour at the conifold points:

Schwinger loop result with a single light hypermultiplet

with mass aD =
∫
S3 Ω→ 0 for CY 3-fold (resp.

aD =
∫
S1 �),

F (s, �, aD) = −
∫ ∞

0

ds

s

exp(−saD)

4 sin(s�1/2) sin(s�2/2)
+O(a0

D)

=
[
− 1

12
+

1

24
s�−2

]
log(aD)

+
[
− 1

240
�2 +

7

1440
s− 7

5760
s2�−2

] 1

a2
D

+ contributions to 2(g + n)− 2 > 2 .
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The leading behaviour F (n,g) = N(n,g)

a
2(g+n)−2
D

+O(a0
D), i.e.

the absence of subleading poles is the called gap of F (n,g)

at aD → 0. It will be crucial to solve the models.
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The generalized holomorphic anomaly equation

B-model definition of the F g(a) = F (0,g)(a)

F g(a) =

∫
ℳg

〈
3g−3∏
k=1

�k�̄k

〉
g

⋅ [dm ∧ dm̄] ,

The contraction of the coodinates mk, m̄k with the genus

g worldsheet correlator of �k =
∫

Σg
G−�k, �̄k =

∫
Σg
Ḡ−�̄k

with gives a real 6g − 6 form on the compactified moduli

space ℳg of the g Riemann surface Σg.

An infinitessimal anholomorphic perturbation
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S(ti, t̄i) = S(ti) + t̄i
∫

Σg
Ō(2)
i , with

O(2)
{̄ = {G+

0 , [Ḡ
+
0 , Ō

(0)
{̄ ]}dzdz̄ ,

correspond to an insertions of exact forms. The

deformation receives contributions form the boundaries.

This leads to the Holomorphic Anomaly Equation

Bershadski, Cecotti, Ooguri, Vafa 93

∂̄īF
g =

1

2
C̄jk
ī

(
DjDkF

g−1 +

g−1∑
ℎ=0

DjF
ℎDkF

g−ℎ) , g > 1 .
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Defining for g ≥ 1

F (n,g)(t) =

∫
ℳg

〈
On

3g−3∏
k=1

�k�̄k

〉
g

⋅ [dm ∧ dm̄] ,

and for g = 0

F (n+1,0) = ⟨�(0)(0)�(0)(1)�(0)(∞)On⟩g=0 .

where the field operator O should come from integrating

a 2-form field over the Riemann surface O =
∫

Σg
�(2),

and �(2) emerges as usual from the descend equation

from �(0). If the latter has no contact term with the
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fields in the chiral ring on gets Minxin and AK: arXiv:1009.1126

∂̄īF
(n,g) =

1

2
C̄jk
ī

(
DjDkF

(n,g−1)+
∑
m,ℎ

′
DjF

(m,ℎ)DkF
(n−m,g−ℎ)

)
, g > 1 ,

where the prime denotes omission of (m,ℎ) = (0, 0) and

(m,ℎ) = (n, g) in the sum. The first term on the right

hand side is set to zero if g = 0. This is supplemented by

the anomaly for g = 1

∂i∂̄j̄F
1 =

1

2
CijkC

jk
j̄
− �

24
Gij̄ .

A different generalized holomorphic equation was
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proposed in Krefl and Walcher arXiv:1007.0263. It breaks the

(�1, �2)→ (−�1,−�2) symmetry and leads for Nf = 1 to

the Nekrasov partition function with the non-physical

masses, which has no obvious modular properties.

The F (n,0)(a) amplitudes fullfill an

∂̄īF
(n,0) =

1

2
C̄jk
ī

n−1∑
m=1

DjF
(m,0)DkF

(n−m,0)

anomaly equation that was observed for counting higher

rank sheafs on surfaces.
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Direct integration of the holomorphic anomaly equations

The direct integration formalism described below applies

to theories defined by a Riemann surface Cg′>0 and a

meromorphic differential �

∙ N = 2 gauge theories: Cg′ Seiberg-Witten curve. �

Seiberg-Witten differential.

∙ Matrix models: Cg′ Spectral curve. � defines filling

factions.

∙ Non-compact CY3fold: Cg′: H(x,y)=0 where uv +
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H(x, y) = 0 is the mirror manifold. � = dx
y

The goal is to derive Z entirely from the curve. For

simplicity we will assume g = 1. Then we can bring all C
into Weierstrassform

y2 = 4x3 − g2(u)x− g3(u)

The classical geometry WS g = 0 sector is determined by

the J-function which has simple pole at the discriminant
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Δ

J(�) =
E4(�)3

E4(�)3 − E6(�)2
=

g2(u)3

g2(u)3 − 27g3(u)2
.

where E4(�) and E6(�) are the Eisenstein series of

weight 4 and 6, respectively, and the holomorphic period

(∂a/∂u) =
∫
A dx/y is given by

da

du
= c1

√
g2(u)

g3(u)

E6(�)

E4(�)
.
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This determines the prepotential

� = − c0

2�i

∂2F 0

∂a2
,

metric on moduli space via

Gaā = 2∂a∂āRe(ā∂aF
0) =

4�

c0
�2 .

and the three point function

Caaa =
∂3F 0

∂a3
= −2�i

c0

d�

da
.
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The n+ g = 1 sector

F (1,0) has no holomorphic anomaly and is determined by

the boundary conditions. The Schwinger-loop calculation

yields F (1,0) = 1
24 log(aD) and regularity at other

singularity dictates

F (1,0) =
1

24
log(Δ)f(q)

F (0,1) is obtained by integrating the g = 1 hol. anomaly

and obeying the conifold behaviour F (0,1) = − 1
12 log(ad)
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yielding

F (0,1) = −1

2
log(Guū∣Δ∣

1
3) ,

so that one gets in the holomorphic limit

lim
�2→∞

F (0,1) = −1

2
log

(
da

du

)
− 1

12
log(Δ) .

The n+ g > 1 sector The covariant derivative in the �

variable is proportional to the so called Mass derivative

1

2�i
D� = D̂� = ∂̂� −

k

4��2
.
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The propagator Saa, which can be used to solve the

holomorphic anomaly e.q., is proportional to the almost

holomorphic form

Ê2(�, �̄) = E2(�)− 3

��2
.

The Mass derivatives closes on the ring of almost

modular forms whose only non-holomorphic generator is

the propagator, so that

∂

∂�̄
=

3i

2�� 2
2

∂

∂Ê2

.
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This allows to write the holomorphic anomaly as

24
∂F (n,g)

∂Ê2

= c0

(∂2F (n,g−1)

∂a2
+
∑
m,ℎ

′∂F (m,ℎ)

∂a

∂F (n−m,g−ℎ)

∂a

)
.

Because of the closing of the deriviative on the

generators the r.h.s. will always be a polynomial in the

generators. It is convenient to write the equation in

terms of u,m, introduce

X =
g3(u)

g2(u)

Ê2(�)E4(�)

E6(�)
.
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to obtain a general

F (n,g) =
1

Δ2(g+n)−2(u)

3g+2n−3∑
k=0

Xkp
(n,g)
k (u),

where p
(n,g)
k (u) are finite polynomials in derivatives of

g2(u) and g3(u).

(Rigid) Special Geometry implies generally that the

covariant derivatives closes on the propagtor

DiS
kl = −CinmSkmSln + fkli

This makes the formulism applicable to Cg′>1 and in part
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to CY3-folds Yamaguchi, Yau, Huang, Quackenbush, AK, Alim, Länge, . . ..

Fixing of the holomorphic ambiguity: At generic zero u0

of the descriminant, a single period

aD ∼ u− u0

vanishes, i.e. the holomorphic ambiguity can at worse

have a pole of order 2(g + n)− 2 at u0 and we can

parameterize it

F
(n,g)
ℎol.amb. =

1

Δ(u)2(g+n)−2
p(u) , (1)

with p(u) a holomorphic function of u. Demanding



28

holomophicity and regularity in the limit u→∞, implies

that p(u) is in fact a polynomial in u of degree

(2(g + n)− 2) dΔ − 1. I.e. the (2(g + n)− 2) dΔ

coefficients inp(u) are exactly fixed by the boundary

conditions, (2(g + n)− 2) via the gap condition at each

of the dΔ zeros.
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Applications: Topological Strings on non-compact

CY3-folds

Example: O(−3)→ ℙ2

H(x, y; z) = x+ 1− zx
3

y
+ y = 0, � = log(y)

dx

x
.

Genus 0

Czzz = −1

3

1

z3(1 + 27z)
n+ g = 1:

F (0,1) = −1

2
log(

∂T

∂z
)− 1

12
log(z7Δ),
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F (1,0) =
1

24
log(

Δ

z
) .

n+ g = 2

F (0,2) =
100X3 − 90X2z2 + 30Xz4 + 3(9z − 1)z6

4320z6Δ2

F (1,1) =
10X2 + 5S(108z − 1)z2 + 2(1− 54z)z4

1440z4Δ2

F (2,0) =
10X + (1296z + 11)z2

11520z2Δ2

Using the mirror maps at the singular points one can

make predictions of refined BPS and refined orbifold BPS

invarianst.
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E.g. for large radius one gets the results from the refined

topological vertex Iqbal, Kozcaz and Vafa: hep-th/0701165 casted in

Γ(3) modular forms to all order in the modulus.

Other non-compact toric CY3-fold (O(−K)→ Fn have

been checked in [?].

Applications: N=2 Gauge theories

It is sensible to start with the conformal cases and obtain

the asymptotic free cases in limits of gauge coupling and

masses (e.g. for SU(2) Nf = 4 consider

lim�→i∞,m4→∞ e
2�i�m4 = Λ3 etc.)
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SU(2) N=4 with adjoint hypermultiplet

y2 =

3∏
i=

(x− ei(�ir)ũ−
1

4
ei(�ir)m̃

2),

ei(�ir), i = 1, 2, 3, are the halfperiods

e2− e1 = �4
3(�ir), e3− e1 = �4

2(�ir), e2− e3 = �4
4(�ir) .

e1 + e2 + e3 = 0 with

m = 2
√

2m̃(e2 − e1), q(Q) =
e3 − e1

e2 − e1
=
�4

2

�4
3
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one gets

y2 = x(x− u− 1

32
m2)(x− uq − 1

32
q2m2) .

Genus zero Eliminating J(q) in favor of �ir

J(�ir) =
4m4(1− q2 + q4) + 8m2(2− q − q2 + 2q3)u+ 64(1− q + q2)u2)3

27(1− q)2q2(m2 + 8u)2(m4q(1 + q) + 64u2 + 8m2(u+ 2qu))2
.

one gets Nekrasovs partition function F (0,0)(a,m,Q)

in� = Q = e2��ir after shifting the masses. In this case

the theory is truely conformal and the �ir parameter is

identitified with Nekrasovs �uv.
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n+ g = 1

F (1,0) =
1

24
log

(
Δ

q4(1− q)

)
.

F (0,1) = −1

2
log

(
da

du

)
− 1

12
log

(
Δ
√

(1− q)
q

)
,

In the massless limit

F (1,0)(a) =
1

4
log(a) +O(Q), F (0,1)(a) = 0 +O(Q) .
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n+ g > 1

F (2,0) =
E2

24 ⋅ 32a2
, (2)

F (1,1) = − E2

6 ⋅ 32a2
,

F (0,2) = 0,

F (0,n) = 0 is a simple consequence of the holomorphic

anomaly equation and the fact that F (0,1) has no

a-dependence.



36

F (3,0) = − 1

21332a4

(
E2

2 +
13

5
E4

)
, (3)

F (2,1) =
1

21232a4

(
5E2

2 +
29

5
E4

)
,

F (2,1) = − 1

2103a4

(
E2

2 +
1

5
E4

)

Note that E2 ∼ X powers grow only with g + n− 1 in

the massless cases. The ambiguity is determined using

the mass deformations to achieve generic singularities. In
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the massive case there are higher powers in E2 up to

3g + 2n− 3, which reproduce in the double scaling pure

SU(2) SYM.

SU(2) N=2 with four fundamental hypers

Both conformal theories can be geometrically engineered

from the Enriques CY-3-fold, whose fibre over ℙ1, has

the lattice

Γ1 = Γ1,1
s ⊕ Γ1,1(2)⊕ E8(−2)

The N=4 gauge bosons come from the Γ1,1(2) lattice

while the Nf = 4 gauge bosons come form Γ1,1
s . There
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are two reductions the geometrical reduction in the VM

of the first are large radius Kähler parameters, while in

the second the volume of the Enriques collapses the VM

have to be describes by the mirror geometry.

The massless curves in both case the torus in the base,

but in the N=4 the good parameter is Q = e2�i�ir, while

one has to use the mirror coordanite q(Q) = e3−e1
e2−e1

=
�42
�43

in the Nf = 4 case.
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The mass defomed curve is

y2 = x(x− u)(x− qu)− x2(1− q)2
4∑

i=1

m̃2
i

+4x(1− q)q

⎛⎝2(1 + q)

4∏
i=1

m̃i − (1− q)
∑
i<j

m̃2
i m̃

2
j

⎞⎠
−16(1− q)q2

⎛⎝u 4∏
i=1

m̃i + (1− q)
∑

i<j<k

m̃2
i m̃

2
jm̃

2
k

⎞⎠ ,

with m̃i = mi

√
e1 − e2. I.e. the IF coupling �ir is not

identified with the UV coupling. The modular properties

however are w.r.t. to the IR coupling.
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g + n = 1

F (1,0) =
1

24
log(

(1− q)4

q2
Δ)

and

F (0,1) = −1

2
log(

da

du
)− 1

12
log(

1

(1− q)2q2
Δ) ,

g + n > 1

F (2,0) =
E2

24 ⋅ 32a2
, F (1,1) = − E2

6 ⋅ 32a2
, F (0,2) = 0,
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Conclusions :

∙ The generalized holomorphic anomaly equations and the

gap conditions determine the partition function of the

physical systems, which allow for the (�1, �2) refinement:

– Non-compact CY3-folds

– N=2 gauge theories

– Matrix models with �-ensemble measures, if the

potential is polynomial

as a global almost holomorphic modular expression over

the moduli space.


