Heterotic/F-theory duality and lattice polarized K3's

String-Math Conference 2011, University of Pennsylvania, Philadelphia June $8^{
m th}$, 2011

Andreas Malmendier, Colby College (joint work with David Morrison)

Heterotic/F-theory Duality

The heterotic string comactified on an (n-1)-dimensional elliptically fibered Calabi-Yau $\pi_H: \mathbf{Z} \to \mathbf{B}$ is equivalent to F-theory compactified on an n-dimensional K3-fibered Calabi-Yau $\pi_F: \mathbf{X} \to \mathbf{B}$, which is also elliptically fibered with a section.

Eight-dimensional compactifications: n = 2 and $\mathbf{B} = \mathrm{pt}$

- Heterotic CY: $\mathbf{Z} = E$ elliptic curve w/ principal G-bundle, $G = (E_8 \times E_8) \rtimes \mathbb{Z}_2$ or $\mathrm{Spin}(32)/\mathbb{Z}_2$.
- F-theoretic CY: elliptic K3-surface $\mathbf{X} \to \mathbb{CP}^1$ w/ section,

$$\boldsymbol{\bar{X}}: \ Y^2 = 4 \, X^3 - g_2 \, X - g_3 \, , \qquad g_2 \in H^0(\mathcal{O}(8)), \ g_3 \in H^0(\mathcal{O}(12)).$$

• Moduli spaces for both types are given by the Narain space

$$\mathfrak{M} = \mathrm{SO}(2,18;\mathbb{Z}) \Big\backslash \mathrm{SO}(2,18) \Big/ \Big(\mathrm{SO}(2) \times \mathrm{SO}(18) \Big) \;.$$

• Question: Can we describe duality map w/o taking limits?

F-theoretic description of type IIB string backgrounds

- Singular fiber where $\Delta = g_2^3 27 g_3^2$ vanishes.
- Kodaira's classification of singular fibers:

	$\operatorname{ord}_D(g_2)$	$\operatorname{ord}_D(g_3)$	$ord_D(\Delta)$	singularity	monodromy
$I_n, n \geq 1$	0	0	n	A_{n-1}	$ \left(\begin{array}{cc} 1 & n \\ 0 & 1 \end{array}\right) $
I_n^* , $n \geq 0$	2	3	n + 6	D_{n+4}	$\begin{pmatrix} -1 & n \\ 0 & -1 \end{pmatrix}$
111*	3	≥ 5	9	E ₇	$\left(egin{array}{cc} 0 & -1 \ 1 & 0 \end{array} ight)$
II*	≥ 4	5	10	<i>E</i> ₈	$\left(\begin{array}{cc}0&-1\\1&1\end{array}\right)$

ullet Correspondence: string perspective \leftrightarrow monodromy $+j=rac{g_2^3}{\Delta}$

Heterotic string backgrounds

- Closed string theory on T^2 has two basic moduli:
 - 1) complex structure parameter $\tau \in \mathbb{H}$,
 - 2) complexified Kähler modulus $\rho = B + i V \in \mathbb{H}$.
- **Geometric** compactifications: τ varies over base, undergoes monodromies in $\mathrm{SL}(2,\mathbb{Z})$, ρ is constant up to shifts.
- Quantum compactifications: τ and ρ vary over base, $\rho \to -1/\rho$ possible, inherently quantum.
- Moduli of heterotic string compactified on T^2 near boundary:

$$\underbrace{\left(\begin{array}{c} \mathsf{complex} \; \mathsf{str.} \\ \mathsf{param.} \end{array}\right)}_{\tau \; \cup \; \mathsf{SL}(2,\mathbb{Z})} \times \underbrace{\left(\begin{array}{c} \mathsf{K\"{a}hler} \\ \mathsf{param.} \end{array}\right)}_{\rho \; \cup \; \mathsf{SL}(2,\mathbb{Z})} \times \underbrace{\left(\begin{array}{c} \mathsf{Wilson} \; \mathsf{lines} \end{array}\right)}_{z, \dots}$$

Matching the moduli: F-theory ↔ heterotic string

Our approach: compactifications w/ very few Wilson lines

$$\mathrm{SO}(2,r;\mathbb{Z})\Big\backslash \mathrm{SO}(2,r)\Big/\Big(\mathrm{SO}(2)\times \mathrm{SO}(r)\Big)\subset \mathfrak{M}\,.$$

- r=2: No Wilson lines. $G = (E_8 \times E_8) \rtimes \mathbb{Z}_2$ or $G = \mathrm{Spin}(32)/\mathbb{Z}_2$. r=3: One Wilson line. $G = E_8 \times E_7$ or $G = \mathrm{Spin}(28) \times \mathrm{SU}(2)/\mathbb{Z}_2$.
- Use (Siegel) modular forms and Shioda-Inose correspondence to describe moduli spaces and the duality map.
- Use duality map to extend description of heterotic backgrounds to include quantum compactifications.

Weierstrass fibrations → lattice polarized K3's

$$\mathbf{\bar{X}} \to \mathbb{CP}^1: \left(\begin{array}{ccc} Y^2 &=& 4X^3 + \left(au^4 + cu^3\right)X \\ &+& \left(u^7 + bu^6 + du^5\right) \end{array} \right)$$

- c=0: No Wilson lines. Gauge group $G=(E_8\times E_8)\rtimes \mathbb{Z}_2$. sing. fibers of $\mathbf{\bar{X}}$: $2II^*\oplus 4I_1$, P=18 $\mathrm{NS}(\mathbf{X})$ = $H\oplus E_8\oplus E_8$, signature: (1,17), $T_{\mathbf{X}}$ = H^2 , signature: (2,2).

Shioda-Inose correspondence

 $\underline{\text{Def.:}}$ A K3 surface **X** admits a Shioda-Inose structure if there is an Abelian surface **A** and rational maps of degree 2 in diagram below such that $T_{\mathbf{X}} \cong T_{\mathbf{A}} =: T$.

Morrison '84: For $\rho = 19, 18, 17$, every algebraic K3 surface **X** has a Shioda-Inose structure.

Dolgashev '96: Coarse moduli spaces $\mathcal{M}+$ global Torelli maps exist for pseudo-ample N-polarized K3's/principally polarized Abelian surfaces:

$$\operatorname{per}: \mathcal{M} \stackrel{\cong}{\longrightarrow} O(\mathrm{T}) \backslash \left\{ \Omega \in \mathbb{P}^1(\mathrm{T} \otimes \mathbb{C}) \middle| (\Omega, \Omega) = 0, \ (\Omega, \bar{\Omega}) > 0 \right\}$$

Resulting picture for heterotic/F-theory duality

(based on Clingher-Doran '07, '10; A. Kumar '08; M.-Morrison '11)

c/z	F-theory moduli for $ar{\mathbf{X}} o \mathbb{CP}^1$	heterotic moduli for A			
	$T_{X} = T_{A} = H^2$				
	$NS(\mathbf{X}) = H \oplus E_8 \oplus E_8$	$\mathbf{A} = E_{ au} \times E_{ ho}$			
= 0	$egin{array}{lcl} a & \simeq & E_4(au)E_4(ho) \ b & \simeq & E_6(au)E_6(ho) \ d & \simeq & \eta^{24}(au)\eta^{24}(ho) \end{array}$	$E_{ au}: j(au) = E_4^3(au)/\eta^{24}(au) \ E_{ ho}: j(ho) = E_4^3(ho)/\eta^{24}(ho)$			
	$(au, ho)\in \Gammaackslash \mathrm{SO}(2,2)/\Big(\mathrm{SO}(2) imes\mathrm{SO}(2)\Big)=\Gammaackslash \mathbb{H}$				
	$\mathrm{T}_{\mathbf{X}}=\mathrm{T}_{\mathbf{A}}=\mathcal{H}^2\oplus\langle -2 angle$				
≠ 0	$NS(\mathbf{X}) = H \oplus E_8 \oplus E_7$	$\mathbf{A} = \operatorname{Jac} C_{\underline{\tau}}$			
	$a \simeq \psi_4(\underline{\tau}), b \simeq \psi_6(\underline{\tau}),$ $c \simeq \chi_{10}(\underline{\tau}), d \simeq \chi_{12}(\underline{\tau}).$	$[I_2:I_4:I_6:I_{10}]\in \mathbb{WP}^3_{(2,4,6,10)}$ $I_2\simeq \frac{\chi_{12}}{\chi_{10}},\ I_4\simeq \psi_4,$ $I_6\simeq \psi_6+\frac{\psi_4\chi_{12}}{\chi_{10}},\ I_{10}\simeq \chi_{12}$			
	$\underline{\tau} = \begin{pmatrix} \tau & z \\ z & \rho \end{pmatrix} \in \Gamma \backslash \mathrm{SO}(2,3) / \left(\mathrm{SO}(2) \times \mathrm{SO}(3) \right) = \mathrm{Sp}(4,\mathbb{Z}) \backslash \mathbb{H}_2$				