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M-Theory on a Calabi-Yau four-fold

Becker-Becker, Dasgupta-Rajesh-Sethi, many others

Consider M-theory on a Calabi-Yau four-fold with fluxes
turned on. Demanding SUSY, one of the equations of motion
(the tadpole for the three-form along R2,1) from the low-energy
effective theory is

d ∗ df = G4 ∧ ∗G4 +
∑

i

δ
(8)
M2(x − xi)

Here f is some function on the four-fold. Integrating over CY4,
we get

0 =

∫
|G4|2 + NM2

and we might conclude that M2-branes and non-zero fluxes are
forbidden in SUSY solutions.



Including higher-derivative terms

This would not be correct!

The action is known to receive certain higher-derivative
corrections, so the equation of motion before becomes

d ∗ df = G4 ∧ ∗G4 +
∑

i

δ
(8)
M2(x − xi) + `6pX8 + · · ·

where X8 is a particular eight-form built out of four curvature
tensors. Locally, X8 hardly matters, X8 ∼ 1/R8, but integrating
we have

0 =

∫
|G4|2 + NM2 −

χ(CY4)

24

Fluxes go from being forbidden to being required when
we include higher derivatives!



IIB Language

If the CY4 is elliptically fibered, we can take the fiber to
zero size and get a version of the story for IIB on the base B of
the fibration (F-theory on the four-fold),

0 =

∫
B

F3 ∧ H3 + ND3 −
χ(CY4)

24

Puzzle: Where does the χ/24 come from in the IIB
description?

IIB doesn’t receive corrections until eight-derivatives, but
integrating these over the six-dimensional B would give a
vanishing contribution in the large volume limit.

But we also have D7/O7 wrapping four-cycles of B, and
then a four-derivative correction to the brane action would do
the job.



Moral of the story

Indeed,

SD7 ⊃ T7
π2α′ 2

24

∫
D7

C4 ∧ (tr RT ∧ RT − tr RN ∧ Rn)

Moral: Understanding higher-derivative couplings to D-brane
actions is necessary to correctly judge the consistency of
vacua.



T-dualizing the known corrections

Becker-Guo-Robbins

But these tr(R2) corrections to D-brane actions are not the
only ones! There will be many others at this same derivative
order, involving background fields other than the metric. One
way to see this is from T-duality. Consistency of the known
couplings with T-duality implies couplings

δSDp ∼
(
α′
)2
∫ {

C(p−3) ∧ X4 + C(p−1)
i ∧ X i

3 + C(p+1)
ij ∧ X ij

2

}
where X4 is a four-form that contains the original tr(R2) as well
as terms ∼ ∂2B∂2B, X i

3 ∼ ∂2h∂2B is a three-form along the
brane with one normal index, and X ij

2 ∼ ∂
2h∂2h, ∂2B∂2B is a

two-form with two normal indices. Here we performed a
linearized (e.g. gµν = ηµν + hµν) analysis.



Checking results with disc amplitudes

Becker-Guo-Robbins, Garousi

These couplings too are far from being the whole story.
One path to try and determine them would be to demand
invariance under diffeomorphisms and gauge transformations
and consistency with nonlinear T-duality, but this gets messy
quickly.

Another route is to use world-sheet techniques to compute
the amplitudes for scattering of closed string fields off the
D-brane. This gives only on-shell information, and involves a
layer of processing before we can extract the desired couplings.

The two techniques work best in concert, but in the rest of
the talk today I will focus on the latter approach and techniques
that we have been developing (or rediscovering) to do the
computations.



Steps to develop

• Construct the physical state operators
• Construct the boundary state
• Show that amplitudes built from these ingredients are

independent of irrelevant choices
• Compute the amplitudes
• Compare to field theory predictions (and thus constrain the

action)



Vanishing theorems and picture changing
Frenkel-Garland-Zuckerman, Lian-Zuckerman, Berkovits-Zwiebach

To construct physical state operators, we need to compute
the semi-relative BRST cohomology, which starts with states
annihilated by the operator b0 − b̃0, and then takes the
cohomology with respect to the total left- plus right- BRST
charge. We will be interested in the degree two cohomology.

We can restrict to states that have well-defined conformal
weights, picture charges, and momentum. And it’s easy to
show that the cohomology is trivial unless the left- and right-
conformal weights are zero.

Using results from Lian and Zuckerman, in particular
pictures and for nonzero momentum we can always pick a
representative with ghost numbers (1,1) which is separately
annihilated by Q and Q̃.

Using Berkovits and Zwiebach, again at nonzero
momentum, we can show that this result holds in all pictures.



Boundary states

We will make use of the boundary state formalism. To
compute a disc amplitude with specific boundary conditions we
start on the sphere and insert a state

|B〉

which implements the boundary conditions, schematically

Ψ |B〉 = Ψ̃ |B〉

and propagate it outwards to finite radius.
We develop methods for doing computations involving the

boundary state without ever needing to write down an explicit
form for the boundary state.



Decoupling of BRST exact states
Physically, the amplitudes we construct in this way had

better be independent of certain choices we made: the gauge
choice (which BRST representative was used for each
operator) and the distribution of picture charges among the
operators.

Both these statements require the decoupling of
BRST-exact states from the amplitude which includes the
boundary state. On the sphere, the proofs are very easy, since
the BRST charges annihilate everything in sight, but for disc
amplitudes this doesn’t quite work and instead we get boundary
terms, e.g.〈

V (z1, z̄1)
{

Q + Q̃,Λ(z2, z̄2)
}〉

D2

→
∫ 2π

0
dθ
〈

V (reiθz1/z2, re−iθz̄1/z̄2)Λ(reiθ, re−iθ)|B
〉 ∣∣r=∞

r=1 .



Decoupling for generic momenta

〈
V (z1, z̄1)

{
Q + Q̃,Λ(z2, z̄2)

}〉
D2

→
∫ 2π

0
dθ
〈

V1(reiθz1/z2, re−iθz̄1/z̄2)Λ(reiθ, re−iθ)|B
〉 ∣∣r=∞

r=1 .

if V and Λ carry generic momentum, then we believe the
amplitude should be analytic in momenta. Near r =∞, the r
dependence above will be approximately

∼ r−2p1·p2+a

while near r = 1,
∼ (r − 1)−2p⊥1 ·p

⊥
1 +b

where a and b are some constants which depend on the
details. We can continue to a region where the boundary terms
vanish, and by analyticity this should hold everywhere.



Comparing with field theory
Putting all these ingredients together, we can compute the

amplitudes with confidence. Unfortunately, there is still a layer
of processing to compare with the effective action. Because the
disc amplitude calculates all field theory contributions at once:
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Figure: Dilaton two point function.



Work in progress

We are currently computing the full four-derivative action to
third order in the closed string fields and checking the
consistency of the result in various ways (comparison to field
theory, consistency with T-duality). Hopefully the result can
then be rewritten in a more globally nice way, possibly related to
twisted K-theory in the same way that the tr(R2) terms could be
written as ∫

X
CeB

√√√√ Â(TX )

Â(NX )

which can be argued from the untwisted K-theory pairing
between the D-brane and the R-R field.


