Singularity structure and massless dyons of pure $\mathcal{N}=2, d=4$ theories with A_{r} and C_{r}

Jihye Seo

Disclaimer: all figures are mouse-drawn, not to scale.

Based on works w/ Keshav Dasgupta

Introduction

Seiberg-Witten and Argyres-Douglas theories

- Seiberg-Witten curves, massless dyons (low ranks), and some aspects of singularity in moduli space were studied for
- $\operatorname{SU}(2) \mathrm{w} / \mathrm{o}$ and $\mathrm{w} /$ matter [Seiberg Witten 94]
- SU(n) [Klemm Lerche Yankielowicz Theisen 94, Argyres Faraggi 94], $\mathrm{SU}(\mathrm{n}) \mathrm{w} / \mathrm{o}$ and $\mathrm{w} /$ matter [Hanany Oz 95]
- $\mathrm{SO}(2 \mathrm{r})$ [Brandhuber-Landsteiner 95] $\mathrm{SO}(2 r+1)$ [Danielsson Sundborg 95], SO with matter [Hanany 95]
- The hyper-elliptic curve $y^{2}=f(x)$ degenerates into a cusp form

$$
y^{2}=(x-a)^{m} \times \cdots
$$

when $m \geq 3$ branch points collide on x-plane. For $\operatorname{SU}(\mathrm{n})$ SW curves, this give exotic theories, discovered and studied [Argyres Douglas 95], where we have mutually non-local massless dyons. (Under symplectic transformation, you cannot bring everything purely electronic.)

Main idea

Want to build Gaiotto's $\mathcal{N}=2$ theory (see Yuji's talk) in F theory

- $\mathcal{N}=2 S p(2 r)$ SW theories via r D3-branes
- compute massless dyon charges for pure $S U(r+1), S p(2 r)$
- study wall crossing
- provide plethora of Argyres-Douglas (AD) theories

physics	\leftrightarrow	geometry
massless d.o.f.	\leftrightarrow	singularity $\Delta_{x} f=0$
exotic theories (i. e. AD)	\leftrightarrow	$\Delta_{u} \Delta_{x} f=0$

Double discriminant captures higher singularity of hyper-elliptic curves.

Discriminant

Δ_{x} : discriminant with respect to x

$$
\begin{aligned}
& f_{n}(x)=\sum_{i=1}^{n} a_{i} x^{i}=a_{n} \prod_{i=1}^{n}\left(x-e_{i}\right) \\
& \Delta_{x}\left(f_{n}(x)\right)=a_{n}^{2 n-2} \prod_{i<j}\left(e_{i}-e_{j}\right)^{2}
\end{aligned}
$$

Order of vanishing (multiplicity of roots) $\geq 2 \leftrightarrow \Delta_{x}=0$

Recipe for locating Argyres-Douglas loci

- Start with hyper-elliptic Seiberg-Witten curve

$$
y^{2}=f(x ; u, v, \cdots)
$$

- Demanding $\Delta_{x} f=0$ and $\Delta_{u} \Delta_{x} f=0$ gives two massless BPS dyons. [Argyres Plesser Seiberg Witten '95]
- Check order of vanishing (o.o.v.) of each solution to $\Delta_{u} \Delta_{x} f=0$
- If o.o.v. ≥ 3, Argyres-Douglas loci: The hyperelliptic curve degenerates into a cusp-like singularity $y^{2}=(x-a)^{3} \times \cdots$ and two mutually non-local dyons become massless. (checked up to rank 5)

Review of monodromy of $S U(2)=S p(2)$ SW curve

 How did they get massless monopole and dyon?$$
y^{2}=\left(x^{2}-u\right)^{2}-\Lambda^{4}
$$

Start at a generic point in moduli space, then branch points on x-plane are separated. As you move around a singular locus in u-plane, a pair of branch points approach \& change with each other. Their trajectory gives vanishing cycle.

F-theoretic (quantum) 3/7 brane picture of $S p(2)$

[Sen '96] [Banks-Douglas-Seiberg '96] \& [Vafa 96]

$(0,1)$ seven-brane

- Put r D3-branes as probes to get $S p(2 r)$ gauge theory.
[Douglas Lowe Schwarz 96]

Seiberg-Witten curves for pure A_{r} and C_{r}

SW curve for pure $S U(r+1)=A_{r}$

From [Klemm Lerche Yankielowicz Theisen 94]

$$
\begin{aligned}
& y^{2}=f_{S U(r+1)} \equiv\left(x^{r+1}+u_{1} x^{r-1}+u_{2} x^{r-2}+\cdots+u_{r}\right)^{2}-\Lambda^{2 r+2} \\
&=f_{+} f_{-} \\
& f_{ \pm} \equiv x^{r+1}+u_{1} x^{r-1}+u_{2} x^{r-2}+\cdots+u_{r} \pm \Lambda^{r+1} \\
& f_{+} \equiv \prod_{i=0}^{r}\left(x-P_{i}\right) \quad f_{-} \equiv \prod_{i=0}^{r}\left(x-N_{i}\right)
\end{aligned}
$$

Note that $f_{ \pm}$do not share roots $\left(f_{+}-f_{-}=2 \Lambda^{r+1} \neq 0\right)$.
On the x-plane, only P_{i} 's (or N_{i} 's) can collide among themselves.
\rightarrow Discriminant factorizes $\Delta_{x} f_{S U(r+1)}=\#\left(\Delta_{x} f_{+}\right)\left(\Delta_{x} f_{-}\right)$

Seiberg-Witten curves for pure A_{r} and C_{r}

SW curve for pure $S p(2 r)=C_{r}$

By taking no-flavor limit of [Argyres Shapere 95], obtain

$$
\begin{aligned}
y^{2}=f_{S p(2 r)} & \equiv\left(\prod_{a=1}^{r}\left(x-\phi_{a}^{2}\right)\right)\left(x \prod_{a=1}^{r}\left(x-\phi_{a}^{2}\right)+\Lambda^{2 r+2}\right) \\
& =f_{C} f_{Q} \\
f_{C} & \equiv \prod_{a=1}^{r}\left(x-\phi_{a}^{2}\right)=\prod_{i=1}^{r}\left(x-C_{i}\right) \\
& =x^{r}+u_{1} x^{r-1}+u_{2} x^{r-2}+\cdots+u_{r} \\
f_{Q} & \equiv f_{C} x+\Lambda^{2 r+2}=\prod_{i=0}^{r}\left(x-Q_{i}\right)
\end{aligned}
$$

Similarly as in $\operatorname{SU}(r+1)$ curve, $\Delta_{x} f_{S p(2 r)}=\#\left(\Delta_{x} f_{C}\right)\left(\Delta_{x} f_{Q}\right)$

Identify massless dyons of A_{r} and C_{r} curves at $\Delta_{x} f=0$

Vanishing cycles of SW curve for pure $S U(r+1)$

SU(3) [Klemm Lerche Yankielowicz Theisen 94]

Identify massless dyons of A_{r} and C_{r} curves at $\Delta_{x} f=0$

For $S U(r+1)$, in a region of moduli space given by

$$
\begin{gathered}
u_{1}=\cdots=u_{r-2}=0 \\
u_{r} / \Lambda^{r+1} \in \mathbb{I},
\end{gathered}
$$

monodromy satisfies

$$
\begin{gathered}
\nu_{i}^{P} \cap \nu_{i+1}^{P}=\nu_{i}^{N} \cap \nu_{i+1}^{N}=1 \\
\nu_{i}^{P} \cap \nu_{i}^{N}=-2 \\
\nu_{i}^{P} \cap \nu_{i+1}^{N}=2
\end{gathered}
$$

all other intersection numbers vanish.

Identify massless dyons of A_{r} and C_{r} curves at $\Delta_{x} f=0$

Identify massless dyons of A_{r} and C_{r} curves at $\Delta_{x} f=0$

$S p(2 r)$ monodromy

In a moduli region by $u_{2}=\cdots=u_{r-1}=0$ and $u_{r}=$ const: choose small enough u_{r} to keep $\nu_{Q} \cap \nu_{C}=0$ (checked up to rank 5).

Identify massless dyons of A_{r} and C_{r} curves at $\Delta_{x} f=0$

With the same choice of symplectic basis as $S U(r+1)$ before, the vanishing cycles are written as

$$
\begin{array}{rlrl}
\nu_{0}^{Q} & =\beta_{1} \\
\nu_{r}^{Q} & =-\beta_{r}-\sum_{i=1}^{r} \alpha_{i}-\alpha_{r} & \nu_{i}^{Q} & =\beta_{i+1}-\beta_{i}-\alpha_{i} \\
\nu_{i}^{C} & =\beta_{i+1}-\beta_{i}+\alpha_{i+1} \\
\nu_{r}^{C} & =\beta_{1}-\beta_{r}-\sum_{i=2}^{r} \alpha_{i} & i & =1, \cdots, r-1
\end{array}
$$

whose non-vanishing intersection numbers come from only

$$
\nu_{i}^{Q} \cap \nu_{i+1}^{Q}=1, \quad \nu_{r}^{Q} \cap \nu_{0}^{Q}=\nu_{i}^{C} \cap \nu_{i+1}^{C}=-1
$$

The spectra change as we move in moduli space. (C_{2} example)

Example: Singularity structure of $\mathrm{Sp}(4)=C_{2}$

Example:
$S p(4)=C_{2}$

$\Delta_{x} f=0$ at Σ which intersect at $\Delta_{u} \Delta_{x} f=0$

Singularity structure and massless dyons of pure $\mathcal{N}=2, d=4$ theories with $S U(r+1)$ and $S p(2 r)$

Two cycles ν_{0}^{Q} and ν_{2}^{Q} vanish at two different moduli loci u_{0}^{Q} and u_{2}^{Q} respectively.

As we vary in a moduli space (where u_{0}^{Q} and u_{2}^{Q} intersect tangentially), we hit a locus where they vanish simultaneously. The curve degenerates into $y^{2} \sim(x-a)^{3} \times \cdots$. (Argyres-Douglas)
The red curve on the right does not give a well defined cycle.

Example: Singularity structure of $\mathrm{Sp}(4)=\mathrm{C}_{2}$

Now u_{0}^{Q} and $u_{2^{\prime}}^{Q}$ are separated, but u_{0}^{Q} runs toward another singularity locus u_{2}^{C}.
$\left(\nu_{2^{\prime}}^{Q}=\nu_{0}^{Q}+\nu_{2}^{Q}\right.$; Not related by symplectic transformation $)$

This time, singularity loci u_{0}^{Q} and u_{2}^{C} intersect (node-like crossing). Vanishing cycles ν_{0}^{Q} and ν_{2}^{C} seem mutually non-local, but the curve looks like $y^{2}=(x-a)^{2}(x-b)^{2} \times \cdots$ and it is not Argyres-Douglas form. (\therefore generalized AD)

Now u_{0}^{Q} and u_{2}^{C} are separated, but the vanishing cycles did not change, unlike $(b \rightarrow c)$

Massless dyons coexist at a codim- $2_{\mathbb{C}}$ loci $\left\{\Delta_{x} f=\Delta_{u} \Delta_{x} f=0\right\}$ [Argyres Plesser Seiberg Witten '95], where the curve looks like either of following two:

- $y^{2}=(x-a)^{3} \times \cdots$
- curve has cusp-like singularity (Argyres-Douglas)
- $\Delta_{x} f=0$ locus also intersects at $\Delta_{u} \Delta_{x} f=0$ (o.o.v ≥ 3) with cusp-like singularity (tangential intersection)
- two massless dyons are mutually non-local.
- $y^{2}=(x-a)^{2}(x-b)^{2} \times \cdots$
- curve has node-like singularity
- $\Delta_{x} f=0$ locus also intersects at $\Delta_{u} \Delta_{x} f=0$ (o.o.v ≤ 2) with node-like singularity
- two massless dyons are mutually local, with some exception (generalized AD: non-Argyres-Douglas \& non-local loci) occurring at $S U(5 \uparrow), S p(4 \uparrow)$

Generalized Argyres-Douglas loci

curve degen.n	$y^{2}=(x-a)^{3} \times \cdots$	$y^{2}=(x-a)^{2}(x-b)^{2} \cdots$	
o.o.v of $\Delta_{u} \Delta_{x}$	3	2	
shape of curve	cusp	node	
shape of $\Delta_{x}=0$	cusp	node	
intersection	mutually non local	local	non-local
name	Argyres-Douglas	ML	gen AD

- generalized Argyres-Douglas: non-Argyres-Douglas \& non-local loci (\exists conformal limit?)

Conclusion

- Discriminant $\Delta_{x} f=0$ of the SW curve $y^{2}=f$: identified all $2 r+1$ and $2(r+1)$ massless dyons for $S p(2 r)$ and $S U(r+1)$
- At double discriminant $\Delta_{u} \Delta_{x} f=0$: massless dyons coexist. If order of vanishing ≥ 3, then Argyres-Douglas. (checked up to rank 5)

Questions still remain...

- Behaviour in the Argyres-Douglas neighborhood?
- Rank r curve classification as rank 2 of [Argyres Crescimanno Shapere Wittig '05][Argyres Wittig '05]
- Global behaviour in moduli space: wall crossing [ShapereVafa99, GaiottoMooreNeitzke09]

