Singularity structure and massless dyons of pure $\mathcal{N} = 2, d = 4$ theories with A_r and C_r

Jihye Seo

Disclaimer: all figures are mouse-drawn, not to scale.

Based on works w/ Keshav Dasgupta

Introduction		
00000		

Seiberg-Witten and Argyres-Douglas theories

- Seiberg-Witten curves, massless dyons (low ranks), and some aspects of singularity in moduli space were studied for
 - SU(2) w/o and w/ matter [Seiberg Witten 94]
 - SU(n) [Klemm Lerche Yankielowicz Theisen 94, Argyres Faraggi 94], SU(n) w/o and w/ matter [Hanany Oz 95]
 - ► SO(2r) [Brandhuber-Landsteiner 95] SO(2r+1) [Danielsson Sundborg 95], SO with matter [Hanany 95]
- \blacktriangleright The hyper-elliptic curve $y^2=f(x)$ degenerates into a cusp form

$$y^2 = (x-a)^m \times \cdots$$

when $m \ge 3$ branch points collide on x-plane. For SU(n) SW curves, this give exotic theories, discovered and studied [Argyres Douglas 95], where we have *mutually non-local* massless dyons. (Under symplectic transformation, you cannot bring everything purely electronic.)

Jihye Seo

McGill University

Introduction ○●○○○○		
Introduction		

Main idea

Want to build Gaiotto's $\mathcal{N}=2$ theory (see Yuji's talk) in F theory

- $\mathcal{N} = 2 \ Sp(2r)$ SW theories via r D3-branes
- \blacktriangleright compute massless dyon charges for pure SU(r+1), Sp(2r)
- study wall crossing
- provide plethora of Argyres-Douglas (AD) theories

physics	\leftrightarrow	geometry
massless d.o.f.	\leftrightarrow	singularity $\Delta_x f = 0$
exotic theories (i. e. AD)	\leftrightarrow	$\Delta_u \Delta_x f = 0$

Double discriminant captures higher singularity of hyper-elliptic curves.

Jihye Seo

McGill University

Introduction		
00000		

Discriminant

 $\Delta_{\boldsymbol{x}}$: discriminant with respect to \boldsymbol{x}

$$f_n(x) = \sum_{i=1}^n a_i x^i = a_n \prod_{i=1}^n (x - e_i)$$
$$\Delta_x (f_n(x)) = a_n^{2n-2} \prod_{i < j} (e_i - e_j)^2$$

Order of vanishing (multiplicity of roots) $\geq 2 \leftrightarrow \Delta_x = 0$

McGill University

Jihye Seo

 Introduction
 A_r, C_r curves
 $\Delta_u \Delta_x f$ Conclusion

 000 • 00
 0000000
 0000000
 0

 Math review: discriminants Δ_x, Δ_u and singularity of curves
 0
 0

Recipe for locating Argyres-Douglas loci

- Start with hyper-elliptic Seiberg-Witten curve $y^2 = f(x; u, v, \cdots)$
- ▶ Demanding $\Delta_x f = 0$ and $\Delta_u \Delta_x f = 0$ gives two massless BPS dyons. [Argyres Plesser Seiberg Witten '95]
- Check order of vanishing (o.o.v.) of each solution to $\Delta_u \Delta_x f = 0$
- ▶ If o.o.v. \geq 3, Argyres-Douglas loci: The hyperelliptic curve degenerates into a cusp-like singularity $y^2 = (x a)^3 \times \cdots$ and two mutually non-local dyons become massless. (checked up to rank 5)

Start at a generic point in moduli space, then branch points on x-plane are separated. As you move around a singular locus in u-plane, a pair of branch points approach & change with each other. Their trajectory gives vanishing cycle.

Jihye Seo

 Introduction
 A_r, C_r curves
 $\Delta_u \Delta_x f$ Conclusion

 00000
 000000
 0000000
 0

 $A_v = C_v$ original SW/ surve and massless meanpale/doop. E theory nicture of D3/07
 000000
 0

F-theoretic (quantum) 3/7 brane picture of Sp(2)[Sen '96] [Banks-Douglas-Seiberg '96] & [Vafa 96]

Jihve Seo

McGill University

A_r, C_r curves	
00 0000	

SW curve for pure $SU(r+1) = A_r$

From [Klemm Lerche Yankielowicz Theisen 94]

$$y^{2} = f_{SU(r+1)} \equiv (x^{r+1} + u_{1}x^{r-1} + u_{2}x^{r-2} + \dots + u_{r})^{2} - \Lambda^{2r+2}$$

= $f_{+}f_{-}$

 $f_{\pm} \equiv x^{r+1} + u_1 x^{r-1} + u_2 x^{r-2} + \dots + u_r \pm \Lambda^{r+1}$

$$f_{+} \equiv \prod_{i=0}^{r} (x - P_{i}) \qquad f_{-} \equiv \prod_{i=0}^{r} (x - N_{i})$$

Note that f_{\pm} do not share roots $(f_{+} - f_{-} = 2\Lambda^{r+1} \neq 0)$. On the x-plane, only P_i 's (or N_i 's) can collide among themselves. \rightarrow Discriminant factorizes $\Delta_x f_{SU(r+1)} = \# (\Delta_x f_{+}) (\Delta_x f_{-})$

3 / 23

 Introduction
 A_r, C_r curves
 $\Delta_u \Delta_x f$ Conclusion

 000000
 0000000
 00000000
 0

 Seiberz-Witten curves for pure A_r and C_r 0
 0

SW curve for pure $Sp(2r) = C_r$

By taking no-flavor limit of [Argyres Shapere 95], obtain

$$y^{2} = f_{Sp(2r)} \equiv \left(\prod_{a=1}^{r} \left(x - \phi_{a}^{2}\right)\right) \left(x \prod_{a=1}^{r} \left(x - \phi_{a}^{2}\right) + \Lambda^{2r+2}\right)$$
$$= f_{C} f_{Q}$$

$$f_C \equiv \prod_{a=1}^r (x - \phi_a^2) = \prod_{i=1}^r (x - C_i)$$

= $x^r + u_1 x^{r-1} + u_2 x^{r-2} + \dots + u_r$
$$f_Q \equiv f_C x + \Lambda^{2r+2} = \prod_{i=0}^r (x - Q_i)$$

Similarly as in SU(r+1) curve, $\Delta_x f_{Sp(2r)} = \# (\Delta_x f_C) (\Delta_x f_Q)$

Jihye Seo

McGill University

A_r, C_r curves	
000000	

Vanishing cycles of SW curve for pure SU(r+1)

SU(3) [Klemm Lerche Yankielowicz Theisen 94]

Jihye Seo

McGill University

A_r, C_r curves	
0000000	

For SU(r+1), in a region of moduli space given by

$$u_1 = \dots = u_{r-2} = 0$$
$$u_r / \Lambda^{r+1} \in \mathbb{I},$$

monodromy satisfies

$$\begin{split} \nu^P_i \cap \nu^P_{i+1} &= \nu^N_i \cap \nu^N_{i+1} = 1 \\ \nu^P_i \cap \nu^N_i &= -2 \\ \nu^P_i \cap \nu^N_{i+1} &= 2 \end{split}$$

all other intersection numbers vanish.

McGill University

A_r, C_r curves	
000000	

Jihye Seo

McGill University

A_r , C_r curves	
0000000	

Sp(2r) monodromy

In a moduli region by $u_2 = \cdots = u_{r-1} = 0$ and $u_r = \text{const: choose}$ small enough u_r to keep $\nu_Q \cap \nu_C = 0$ (checked up to rank 5).

Jihye Seo

McGill University

A_r, C_r curves	
000000	

With the same choice of symplectic basis as SU(r+1) before, the vanishing cycles are written as

 $\nu_0^Q = \beta_1$ $\nu_r^Q = -\beta_r - \sum_{i=1}^r \alpha_i - \alpha_r$ $\nu_i^Q = \beta_{i+1} - \beta_i - \alpha_i$ $\nu_i^C = \beta_{i+1} - \beta_i + \alpha_{i+1}$ $\nu_r^C = \beta_1 - \beta_r - \sum_{i=2}^r \alpha_i$ $i = 1, \cdots, r-1$

whose non-vanishing intersection numbers come from only

$$\nu^Q_i\cap\nu^Q_{i+1}=1,\qquad \nu^Q_r\cap\nu^Q_0=\nu^C_i\cap\nu^C_{i+1}=-1$$

The spectra change as we move in moduli space. (C_2 example)

 A_r, C_r curv

 $\Delta_u \Delta_x f$

Example: Singularity structure of $Sp(4)=C_2$

 $\Delta_x f = 0$ at Σ which intersect at $\Delta_u \Delta_x f = 0$

Jihye Seo

McGill University

		$\Delta_u \Delta_x f$	
		0000000	
Example: Singularity structure of S	$p(4) = C_2$		

Two cycles ν_0^Q and ν_2^Q vanish at two different moduli loci u_0^Q and u_2^Q respectively.

Jihye Sec

McGill University

As we vary in a moduli space (where u_0^Q and u_2^Q intersect tangentially), we hit a locus where they vanish simultaneously. The curve degenerates into $y^2 \sim (x-a)^3 \times \cdots$. (Argyres-Douglas) The red curve on the right does not give a well defined cycle.

		$\Delta_u \Delta_x f$	
		0000000	

Now u_0^Q and $u_{2'}^Q$ are separated, but u_0^Q runs toward another singularity locus u_2^C . ($\nu_{2'}^Q = \nu_0^Q + \nu_2^Q$; Not related by symplectic transformation)

Jihye Seo

McGill University

This time, singularity loci u_0^Q and u_2^C intersect (node-like crossing). Vanishing cycles ν_0^Q and ν_2^C seem mutually non-local, but the curve looks like $y^2 = (x - a)^2 (x - b)^2 \times \cdots$ and it is not Argyres-Douglas form. (\therefore generalized AD)

		$\Delta_u \Delta_x f$	
		00000000	

Now u_0^Q and u_2^C are separated, but the vanishing cycles did not change, unlike (b \rightarrow c)

Jihye Seo

McGill University

	$\Delta_u \Delta_x f$	
	00000000	

Massless dyons coexist at a codim- $2_{\mathbb{C}}$ loci $\{\Delta_x f = \Delta_u \Delta_x f = 0\}$ [Argyres Plesser Seiberg Witten '95], where the curve looks like either of following two:

$$\blacktriangleright y^2 = (x-a)^3 \times \cdots$$

- curve has cusp-like singularity (Argyres-Douglas)
- ► $\Delta_x f = 0$ locus also intersects at $\Delta_u \Delta_x f = 0$ (o.o.v ≥ 3) with cusp-like singularity (tangential intersection)
- two massless dyons are mutually non-local.

$$\blacktriangleright y^2 = (x-a)^2 (x-b)^2 \times \cdots$$

- curve has node-like singularity
- ► $\Delta_x f = 0$ locus also intersects at $\Delta_u \Delta_x f = 0$ (o.o.v ≤ 2) with node-like singularity
- ► two massless dyons are mutually local, with some exception (generalized AD: non-Argyres-Douglas & non-local loci) occurring at SU(5 ↑), Sp(4 ↑)

	$\Delta_u \Delta_x f$	
	0000000	
$\Delta_u \Delta_x f$ captures higher singularity		

Generalized Argyres-Douglas loci

curve degen.n	$y^2 = (x-a)^3 \times \cdots$	$y^2 = (x - $	$a)^2(x-b)^2\cdots$
o.o.v of $\Delta_u\Delta_x$	3	2	
shape of curve	cusp	node	
shape of $\Delta_x = 0$	cusp	node	
intersection	mutually non local	local	non-local
name	Argyres-Douglas	ML	gen AD

generalized Argyres-Douglas: non-Argyres-Douglas & non-local loci (∃ conformal limit?)

Conclusion

- ▶ Discriminant $\Delta_x f = 0$ of the SW curve $y^2 = f$: identified all 2r + 1 and 2(r + 1) massless dyons for Sp(2r) and SU(r + 1)
- ▶ At double discriminant $\Delta_u \Delta_x f = 0$: massless dyons coexist. If order of vanishing ≥ 3 , then Argyres-Douglas. (checked up to rank 5)

Questions still remain...

- Behaviour in the Argyres-Douglas neighborhood?
- Rank r curve classification as rank 2 of [Argyres Crescimanno Shapere Wittig '05][Argyres Wittig '05]
- ► Global behaviour in moduli space: wall crossing [ShapereVafa99, GaiottoMooreNeitzke09]