Higher rank stable pairs and virtual localization

Artan Sheshmani

June 8, 2011

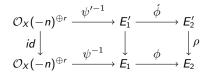
イロト イヨト イヨト イヨト

æ

Definition 1: Let X be a nonsingular projective Calabi-Yau 3-fold over \mathbb{C} (i.e $K_X \cong \mathcal{O}_X$ and $\pi_1(X) = 0$ which implies $H^1(\mathcal{O}_X) = 0$) with a fixed polarization L. A holomorphic triple supported over X is given by (E_1, E_2, ϕ) consisting of a torsion free coherent sheaf E_1 and a pure sheaf with one dimensional support E_2 , together with a holomorphic morphism $\phi : E_1 \to E_2$. A homomorphism of triples from $(\acute{E}_1, \acute{E}_2, \acute{\phi})$ to (E_1, E_2, ϕ) is a commutative diagram:

Definition 2: A frozen-triple of class β and of fixed Hilbert polynomial P_2 is a frozen-triple (E_1, E_2, ϕ) such that the Hilbert polynomial of E_2 is equal to P_2 and $\beta = ch_2(E_2)$. Having fixed r in $E_1 \cong \mathcal{O}_X^{\oplus r}(-n)$, we denote these frozen triples as frozen triples of type (P_2, r) .

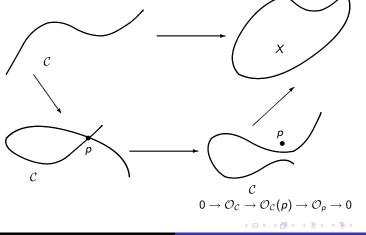
Definition 3: A highly frozen triple is a quadruple (E_1, E_2, ϕ, ψ) where (E_1, E_2, ϕ) is a frozen triple as in Definition 2 and $\psi : E_1 \xrightarrow{\cong} \mathcal{O}_X(-n)^{\oplus r}$ is a fixed choice of isomorphism (a choice of trivialization of E_1). A morphism between highly frozen triples $(E'_1, E'_2, \phi', \psi')$ and (E_1, E_2, ϕ, ψ) is a morphism $E'_2 \xrightarrow{\rho} E_2$ such that the following diagram is commutative.



A frozen triple of rank 1 is given as an *n*-twisted Pandharipande-Thomas stable pair

$$\mathcal{O}_X(-n) \to E_2.$$

Example 1:(motivation?) From GW theory:



Э

Viewed as exact sequence of sheaves of \mathcal{O}_X -modules we get:

$$0 \rightarrow \mathcal{I}_{\mathcal{C}} \rightarrow [\mathcal{O}_X \rightarrow i_*\mathcal{O}_{\mathcal{C}}(p)] \rightarrow i_*\mathcal{O}_p \rightarrow 0.$$

The corresponding moduli spaces of FT and HFT

- 1. Let $\mathfrak{M}_{s,HFT}^{(P_2,r,n)}(\tau')$ denote moduli stack of highly frozen triples with given data (of type) (P_2, r) .
- 2. Let $\mathfrak{M}_{s,FT}^{(P_2,r,n)}(\tau')$ denote moduli stack of highly frozen triples with given data (of type) (P_2, r) .

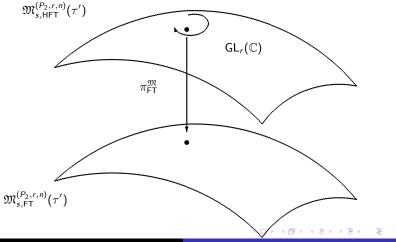
We prove the following theorems about the stacky structure of these moduli stacks:

Theorem 1: There exists a natural diagram:

which is a fibered diagram in the category of stacks. In particular $\mathfrak{M}_{s,HFT}^{(P_2,r,n)}(\tau')$ is a $GL_r(\mathbb{C})$ -torsor over $\mathfrak{M}_{s,FT}^{(P_2,r,n)}(\tau')$. It is true that locally in the flat topology $\mathfrak{M}_{s,FT}^{(P_2,r,n)}(\tau') \cong \mathfrak{M}_{s,HFT}^{(P_2,r,n)}(\tau') \times \left[\frac{\operatorname{Spec}(\mathbb{C})}{\operatorname{GL}_r(\mathbb{C})}\right]$. This isomorphism does not hold true globally unless r = 1.

소리가 소문가 소문가 소문가

Theorem 2: The moduli stacks $\mathfrak{M}_{s,HFT}^{(P_2,r,n)}(\tau')$ and $\mathfrak{M}_{s,FT}^{(P_2,r,n)}(\tau')$ are given as algebraic quotient stacks. Moreover $\mathfrak{M}_{s,HFT}^{(P_2,r,n)}(\tau')$ is a DM stack while $\mathfrak{M}_{s,HFT}^{(P_2,r,n)}(\tau')$ has stacky structure of an Artin stack.



Definition 4: Following G. Laumon-L. Moret-Bailly and Olsson by definition a perfect deformation-obstruction theory for an Artin stack (in our case $\mathfrak{M}_{s,\mathsf{FT}}^{(P_2,r,n)}(\tau')$) is given by a perfect 3-term complex \mathbb{E}^{\bullet} of amplitude [-1,1] and a map in the derived category:

$$\mathbb{E}^{\bullet} \xrightarrow{\phi} \mathbb{L}^{\bullet}_{\mathfrak{M}^{(P_2, r, n)}_{s, \mathsf{FT}}(\tau')}$$

such that $h^1(\phi)$ and $h^0(\phi)$ are isomorphisms and $h^{-1}(\phi)$ is an epimorphism.

Here $\mathbb{L}^{\bullet}_{\mathfrak{M}^{(P_2,r,n)}_{s,\mathrm{FT}}(\tau')}$ is the truncated cotangent complex of the Artin moduli stack of τ' -stable frozen triples concentrated in degrees -1, 0 and 1 which has the form:

$$\mathbb{L}^{\bullet_{(P_{2},r,n)}}_{\mathfrak{H}_{\mathfrak{s},\mathsf{FT}}^{\bullet}(\tau')}:\mathcal{I}/\mathcal{I}^{2}\to\Omega_{\mathfrak{A}}\mid_{\mathfrak{H}_{\mathfrak{s},\mathsf{FT}}^{(P_{2},r,n)}(\tau')}\to\mathfrak{gl}_{r}(\mathbb{C})^{\vee}\otimes\mathcal{O}_{\mathfrak{M}_{\mathfrak{s},\mathsf{FT}}^{(P_{2},r,n)}(\tau')},$$

By Theorem 2 $\mathfrak{M}^{(P_2,r,n)}_{s,\mathsf{HFT}}(au')$ is a DM stack.

In this situation the truncated cotangent complex takes the form:

$$\mathbb{L}^{\bullet}_{\mathfrak{M}^{(P_{2},r,n)}_{s,\mathsf{HFT}}(\tau')}:\mathcal{I}/\mathcal{I}^{2}\to\Omega_{\mathfrak{A}}\mid_{\mathfrak{M}^{(P_{2},r,n)}_{s,\mathsf{HFT}}(\tau')}.$$

Here following Behrend and Fantechi, a perfect deformation-obstruction theory is given by a perfect 2 term complex \mathbb{G}^{\bullet} and a map in the derived category:

$$\mathbb{G}^{\bullet} \xrightarrow{\phi} \mathbb{L}^{\bullet}_{\mathfrak{M}^{(P_2,r,n)}_{s,\mathsf{HFT}}(\tau')},$$

such that $h^0(\phi)$ is an isomorphism and $h^{-1}(\phi)$ is an epimorphism.

・ロン ・回 と ・ ヨ と ・ ヨ と

Our goal is to construct a suitable complex such as \mathbb{G}^{\bullet} or \mathbb{E}^{\bullet} for HFT or FT. We obtain these complexes by deforming universal objects over $\mathfrak{M}_{s,\text{HFT}}^{(P_2,r,n)}(\tau')$ and $\mathfrak{M}_{s,\text{FT}}^{(P_2,r,n)}(\tau')$. Let $\mathbb{I}^{\bullet}: \mathcal{O}_{X\times\mathfrak{M}_{s,\text{HFT}}^{\oplus r}}(-n) \to \mathbb{F}$ denote the universal highly frozen triple. By deforming this complex we obtain a complex whose cohomologies over each point $I^{\bullet}: \mathcal{O}_{X}^{\oplus r}(-n) \to F$ in the moduli stack give:

- 1. Deformations (Given by): $Hom(I^{\bullet}, F)$
- 2. Obstructions (Given by): $Ext^1(I^{\bullet}, F)$
- 3. Higher obstructions (Given by): $Ext^2(I^{\bullet}, F)$

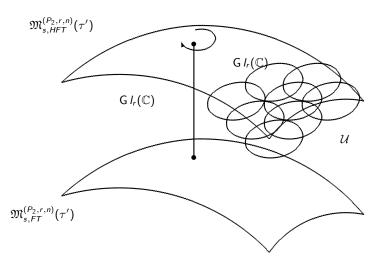
For FT deformations are given by: $\operatorname{Hom}(I^{\bullet}, F)/\mathfrak{gl}_{r}(\mathbb{C})$. This comes from Theorem 2 which states that $\mathfrak{M}_{s,\operatorname{HFT}}^{(P_{2},r,n)}(\tau')$ is a $\operatorname{GL}_{r}(\mathbb{C})$ -torsor over $\mathfrak{M}_{s,\operatorname{FT}}^{(P_{2},r,n)}(\tau')$.

ヘロン 人間 とくほど くほとう

We switch perspective and think of frozen and highly frozen triples as objects in derived category. By deforming the universal objects (in derived category) over $\mathfrak{M}^{(P_2,r,n)}_{s,\mathsf{FT}}(\tau')$ or $\mathfrak{M}^{(P_2,r,n)}_{s,\mathsf{HT}}(\tau')$ we obtain a complex whose cohomologies over a point in each moduli stack are given by 4 terms:

- 1. $Ext^{0}(I^{\bullet}, I^{\bullet})_{0}$.
- 2. $Ext^{1}(I^{\bullet}, I^{\bullet})_{0}$.
- 3. $Ext^{2}(I^{\bullet}, I^{\bullet})_{0}$
- 4. $Ext^{3}(I^{\bullet}, I^{\bullet})_{0}$

We can show that in our setup $\operatorname{Ext}^1(I^{\bullet}, I^{\bullet})_0 \cong \operatorname{Hom}(I^{\bullet}, F)/\operatorname{gl}_r(\mathbb{C})$. Hence we can not use objects in derived category for HFT but we can use them for FT. We describe our strategy as follows:

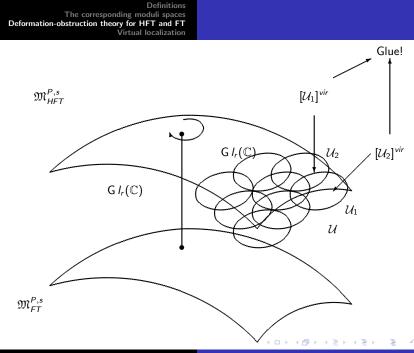


Locally over \mathcal{U} we construct a suitable truncated deformation-obstruction theory by pulling back \mathbb{E}^{\bullet} via $\pi_{FT}^{\mathfrak{M}}: \mathfrak{M}_{\mathfrak{s}, \mathsf{HFT}}^{(P_2, r, n)}(\tau') \to \mathfrak{M}_{\mathfrak{s}, \mathsf{FT}}^{(P_2, r, n)}(\tau')$ and the local truncation of $(\pi_{FT}^{\mathfrak{M}})^* \mathbb{E}^{\bullet}$.

Theorem 3: Consider the 4-term deformation obstruction theory $\mathbb{E}^{\bullet \vee}$ of perfect amplitude [-2, 1] over $\mathfrak{M}_{s, \mathsf{FT}}^{(P_2, r, n)}(\tau')$.

1. Locally in the étale topology over $\mathfrak{H}_{s \text{ HET}}^{(P_2,r,n)}(\tau')$ there exists a perfect two-term deformation obstruction theory of perfect amplitude [-1,0] which is obtained from the suitable local truncation of the pullback $(\pi_{\text{FT}}^{\mathfrak{M}})^* \mathbb{E}^{\bullet \vee}$. 2. This local theory defines a globally well-behaved virtual fundamental class over $\mathfrak{M}_{c}^{(P_2,r,n)}(\tau')$.

イロト イポト イラト イラト 一日



Virtual localization:

The torus fixed locus of the moduli stack of highly frozen triples consists of those torus-equivariant HFT's which are written as direct sum of PT stable pairs, i,e:

$$[\mathcal{O}_X(-n)^{\oplus r} \to F]^{\mathsf{T}} = \bigoplus_{i=1}^r [\mathcal{O}_X(-n) \to F_i]$$

Virtual localization for rank=4:(i,e $\mathcal{O}_X(-n)^{\oplus 4} \to F$)

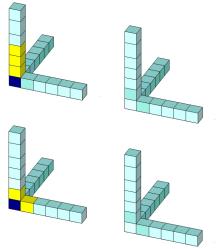


Figure: Allowable configurations for l = 4, Cases 1 and 2

イロン イヨン イヨン イヨン

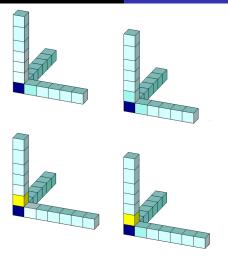


Figure: Allowable configurations for I = 4, Cases 3 and 4

・ロト ・回ト ・ヨト ・ヨト