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Definition 1: Let X be a nonsingular projective Calabi-Yau 3-fold over C (i.e
KX
∼= OX and π1(X ) = 0 which implies H1(OX ) = 0) with a fixed polarization

L . A holomorphic triple supported over X is given by (E1,E2, φ) consisting of
a torsion free coherent sheaf E1 and a pure sheaf with one dimensional support
E2, together with a holomorphic morphism φ : E1 → E2. A homomorphism of
triples from (É1, É2, φ́) to (E1,E2, φ) is a commutative diagram:

É1 É2

E1 E2

φ́

φ

Definition 2: A frozen-triple of class β and of fixed Hilbert polynomial P2 is a
frozen-triple (E1,E2, φ) such that the Hilbert polynomial of E2 is equal to P2

and β = ch2(E2). Having fixed r in E1
∼= O⊕r

X (−n), we denote these frozen
triples as frozen triples of type (P2, r).
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Definition 3: A highly frozen triple is a quadruple (E1,E2, φ, ψ) where

(E1,E2, φ) is a frozen triple as in Definition 2 and ψ : E1
∼=−→ OX (−n)⊕r is a

fixed choice of isomorphism (a choice of trivialization of E1). A morphism
between highly frozen triples (E ′1,E

′
2, φ
′, ψ′) and (E1,E2, φ, ψ) is a morphism

E ′2
ρ−→ E2 such that the following diagram is commutative.

OX (−n)⊕r E ′1 E ′2

OX (−n)⊕r E1 E2

φ́

id

ψ′−1

ρ
ψ−1 φ
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A frozen triple of rank 1 is given as an n-twisted Pandharipande-Thomas stable
pair

OX (−n)→ E2.

Example 1:(motivation?) From GW theory:

-

C
X

w

• •-

�

p

C
C

p

0→ OC → OC(p)→ Op → 0
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Viewed as exact sequence of sheaves of OX -modules we get:

0→ IC → [OX → i∗OC(p)]→ i∗Op → 0.

The corresponding moduli spaces of FT and HFT

1. Let M
(P2,r,n)
s,HFT (τ ′) denote moduli stack of highly frozen triples with given

data (of type) (P2, r).

2. Let M
(P2,r,n)
s,FT (τ ′) denote moduli stack of highly frozen triples with given

data (of type) (P2, r).

We prove the following theorems about the stacky structure of these moduli
stacks:
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Theorem 1: There exists a natural diagram:

M
(P2,r,n)
s,HFT (τ ′) pt = Spec(C)

M
(P2,r,n)
s,FT (τ ′) BGLr (C) =

h
Spec(C)
GLr (C)

i
g

πM
FT i

ǵ

, (1)

which is a fibered diagram in the category of stacks. In particular M
(P2,r,n)
s,HFT (τ ′)

is a GLr (C)-torsor over M
(P2,r,n)
s,FT (τ ′). It is true that locally in the flat topology

M
(P2,r,n)
s,FT (τ ′) ∼= M

(P2,r,n)
s,HFT (τ ′)×

h
Spec(C)
GLr (C)

i
. This isomorphism does not hold true

globally unless r = 1.
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Theorem 2: The moduli stacks M
(P2,r,n)
s,HFT (τ ′) and M

(P2,r,n)
s,FT (τ ′) are given as

algebraic quotient stacks. Moreover M
(P2,r,n)
s,HFT (τ ′) is a DM stack while

M
(P2,r,n)
s,HFT (τ ′) has stacky structure of an Artin stack.

?

M
GLr (C)

M
(P2,r,n)
s,FT (τ ′)

M
(P2,r,n)
s,HFT (τ ′)

πM
FT

•

•
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Definition 4: Following G. Laumon-L. Moret-Bailly and Olsson by definition a
perfect deformation-obstruction theory for an Artin stack (in our case

M
(P2,r,n)
s,FT (τ ′)) is given by a perfect 3-term complex E• of amplitude [−1, 1] and

a map in the derived category:

E• φ−→ L•
M

(P2,r,n)
s,FT

(τ ′)

such that h1(φ) and h0(φ) are isomorphisms and h−1(φ) is an
epimorphism.
Here L•

M
(P2,r,n)
s,FT

(τ ′)
is the truncated cotangent complex of the Artin moduli stack

of τ ′-stable frozen triples concentrated in degrees −1, 0 and 1 which has the
form:

L•
H

(P2,r,n)
s,FT

(τ ′)
: I/I2 → ΩA |

H
(P2,r,n)
s,FT

(τ ′)
→ glr (C)∨ ⊗O

M
(P2,r,n)
s,FT

(τ ′)
,
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By Theorem 2 M
(P2,r,n)
s,HFT (τ ′) is a DM stack.

In this situation the truncated cotangent complex takes the form:

L•
M

(P2,r,n)
s,HFT

(τ ′)
: I/I2 → ΩA |

M
(P2,r,n)
s,HFT

(τ ′)
.

Here following Behrend and Fantechi, a perfect deformation-obstruction theory
is given by a perfect 2 term complex G• and a map in the derived
category:

G• φ−→ L•
M

(P2,r,n)
s,HFT

(τ ′)
,

such that h0(φ) is an isomorphism and h−1(φ) is an epimorphism.
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Our goal is to construct a suitable complex such as G• or E• for HFT or FT.
We obtain these complexes by deforming universal objects over M

(P2,r,n)
s,HFT (τ ′)

and M
(P2,r,n)
s,FT (τ ′).

Let I• : O⊕r

X×M
(P2,r,n)
s,HFT

(τ ′)
(−n)→ F denote the universal highly frozen triple. By

deforming this complex we obtain a complex whose cohomologies over each
point I • : O⊕r

X (−n)→ F in the moduli stack give:

1. Deformations (Given by): Hom(I •,F )

2. Obstructions (Given by): Ext1(I •,F )

3. Higher obstructions (Given by): Ext2(I •,F )

For FT deformations are given by: Hom(I •,F )/glr (C). This comes from

Theorem 2 which states that M
(P2,r,n)
s,HFT (τ ′) is a GLr (C)-torsor over

M
(P2,r,n)
s,FT (τ ′).
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We switch perspective and think of frozen and highly frozen triples as objects
in derived category. By deforming the universal objects (in derived category)

over M
(P2,r,n)
s,FT (τ ′) or M

(P2,r,n)
s,HFT (τ ′) we obtain a complex whose cohomologies

over a point in each moduli stack are given by 4 terms:

1. Ext0(I •, I •)0.

2. Ext1(I •, I •)0.

3. Ext2(I •, I •)0

4. Ext3(I •, I •)0

We can show that in our setup Ext1(I •, I •)0
∼= Hom(I •,F )/ glr (C). Hence we

can not use objects in derived category for HFT but we can use them for FT.
We describe our strategy as follows:
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M
G lr (C)

M
(P2,r,n)
s,FT (τ ′)

M
(P2,r,n)
s,HFT (τ ′)

G lr (C)

•

•
U
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Locally over U we construct a suitable truncated deformation-obstruction
theory by pulling back E• via πM

FT : M
(P2,r,n)
s,HFT (τ ′)→M

(P2,r,n)
s,FT (τ ′) and the local

truncation of (πM
FT )∗E•.

Theorem 3: Consider the 4-term deformation obstruction theory E•∨ of
perfect amplitude [−2, 1] over M

(P2,r,n)
s,FT (τ ′).

1. Locally in the étale topology over H
(P2,r,n)
s,HFT (τ ′) there exists a perfect

two-term deformation obstruction theory of perfect amplitude [−1, 0] which is
obtained from the suitable local truncation of the pullback (πM

FT)∗E•∨.
2. This local theory defines a globally well-behaved virtual fundamental class
over M

(P2,r,n)
s,HFT (τ ′).

Artan Sheshmani Higher rank stable pairs and virtual localization



Definitions
The corresponding moduli spaces

Deformation-obstruction theory for HFT and FT
Virtual localization

M
G lr (C)

MP,s
FT

MP,s
HFT

G lr (C)

•

•
U

?

	

U1

U2

[U1]vir

[U2]vir

6*
Glue!
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Virtual localization:
The torus fixed locus of the moduli stack of highly frozen triples consists of
those torus-equivariant HFT’s which are written as direct sum of PT stable
pairs, i,e:

[OX (−n)⊕r → F ]T =
rM

i=1

[OX (−n)→ Fi ]
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Virtual localization for rank=4:(i,e OX (−n)⊕4 → F )

Figure: Allowable configurations for l = 4, Cases 1 and 2
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Figure: Allowable configurations for l = 4, Cases 3 and 4
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