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String and math have had a very close interaction over the past

thirty years. It has been extremely fruitful and produced many

beautiful results.

For example, mathematical research on Calabi-Yaus over the past

two decades have been strongly motivated by string, and in

particular, mirror symmetry.
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Mirror symmetry started from the simple observation by Dixon,

and Lerche-Vafa-Warner, around 1989, of a possible geometric

realization of flipping the sign of a representation of the

super-conformal algebra. Geometrically, it implied that Calabi-Yaus

should come in pairs with the pair of Hodge numbers, h1,1 and

h2,1, exchanged.

Shortly following the observation, Greene-Plesser gave an explicit

construction of the mirror of the Fermat quintic using the orbifold

construction. Furthermore, Candelas-de la Ossa-Green-Parkes

found as a consequence of mirror symmetry a most surprising

formula for counting rational curves on a general quintic.
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The identification of the topological A and B model by Witten

further inspired much rigorous mathematical work to justify various

definitions and relations, such as the Gromov-Witten invariants,

multiple cover formula, and other related topics. More works by

Witten, Kontsevich and many others led to independent proofs by

Givental and Lian-Liu-Yau of the Candelas et al. formula for the

genus zero Gromov-Witten invariants in the mid-1990s.

The string prediction of the genus one Gromov-Witten invariants

of Bershadsky-Cecotti-Ogurri-Vafa (BCOV) for the quintic was

only proved by Zinger and Jun Li about five years ago.
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Though we now know much about mirror symmetry, many

important questions remain and progress continues to be made.

The higher genus g ≥ 2 case is still mathematically not

well-understood. In the celebrated work of BCOV (1993), a

holomorphic anomaly equation for higher genus partition functions,

Fg , was written down.

Yamaguchi and I in 2004 were able to show that Fg for g ≥ 2 are

polynomials of just five generators: (V1,V2,V3,W1,Y1). With the

generators assigned the degree, (1, 2, 3, 1, 1) respectively, then Fg

is a quasi-homogeneous polynomial of degree (3g − 3) .

Huang-Klemm-Quackenbush were able to use this result to

compute the partition function on the mirror quintic up to genus

g = 51.
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As noted by BCOV, the higher genus B-model partition can come

from the quantization of Kodaira-Spencer gauge theory. Recently,

Costello and my student Si Li have made significant progress.

They gave a prescription for quantizing the Kodaira-Spencer

theory and have successfully carried it out in the elliptic curve case.
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Much of the work on mirror symmetry have been based on toric

geometry. To go beyond toric cases, one need to study period

integrals and the differential equations which govern them under

complex structure deformation. In this regards, Bong Lian, my

student Ruifang Song, and I have very recently been able to

describe explicitly a Picard-Fuchs type differential system for

Calabi-Yau complete intersections in a Fano variety or a

homogenous space.

From the geometric perspective, Strominger-Yau-Zaslow gave a

T-duality explanation of mirror symmetry. This viewpoint has been

clarified in much detail in the works of Gross-Siebert.
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As we can see from the influence of mirror symmetry, string has

had a strong affect on the development of mathematics.

In today’s talk, I would like to tell you about a more recent

developing area of string math collaboration. This is the study of

non-Kähler manifolds with trivial canonical bundle. They are

sometimes called non-Kähler Calabi-Yaus. For string theory, they

play an important role as they appear in supersymmetric flux

compactifications. But let me begin by describing to you why

mathematicians were interested in them prior to string theory.

7



Non-Kähler Calabi-Yau

A large class of compact non-Kähler Calabi-Yau threefolds were

already known in the mid-1980s by a construction of Clemens and

Friedman. Their construction starts from a smooth Kähler

Calabi-Yau threefold, Y .

Suppose Y contains a collection of mutually disjoint rational

curves. These are curves that are isomorphic to CP1 and have

normal bundles O(−1)⊕O(−1). Following Clemens, we can

contract these rational curves and obtain a singular Calabi-Yau

threefold X0 with ordinary double-point singularities. Friedman

then gave a condition to deform X0 into a smooth complex

manifold Xt . What I have described is just the compact version of

the local conifold transition which physicists are familiar with.
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Y ��� X0 ��� Xt

Xt ’s canonical bundle is also trivial. So it is a Calabi-Yau, but in

general it is non-Kähler. To see this, we can certainly contract

enough rational curves so that H2(Y ) is killed and b2 = 0. In this

case, after smoothing, we end up with a complex non-Kähler

complex manifold which is diffeomorphic to a k-connected sum of

S3 × S3, with k ≥ 2.
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In 1987, Reid put forth an interesting proposal (called Reid’s

fantasy). He wanted to make sense of the vast collection of diverse

Calabi-Yau threefolds. He speculated that all (Kähler) Calabi-Yau

threefolds, that can be deformed to Moishezon manifolds, fit into a

single universal moduli space in which families of smooth

Calabi-Yaus of different homotopy types are connected to one

another by the Clemens-Friedman conifold transitions that I just

described.

Now if we want to test this proposal, understanding non-Kähler

Calabi-Yau manifolds becomes essential. For example, a question

one can ask is what geometrical structures exist on these

non-Kähler Calabi-Yau manifolds. If the metric is no longer Kähler,

does it have some other property?
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Balanced Metrics

A good geometric structure to consider is the one studied by

Michelsohn in 1982. Recall that a hermitian metric, ω , is Kähler if

dω = 0 (Kahler) .

For threefolds, Michelsohn analyzed the weaker balanced condition,

d(ω ∧ ω) = 2ω ∧ dω = 0 (balanced) .

Clearly, a Kähler metric is always balanced but a balanced metric

may not be Kähler.

The balanced condition has also good mathematical properties. It

is preserved under proper holomorphic submersions and also under

birational transformations (Alessandrini-Bassanelli).
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There are also simple non-Kähler compact balanced manifolds. For

examples:

• Calabi showed that a complex tori bundle over a Riemann

surface can not be Kähler, but it does have a balanced metric

(Gray).

• The natural metric on a compact six-dimensional twistor

spaces is balanced. As Hitchin showed, only those associated

with S4 and CP2 are Kähler. One can get a non-Kähler

Calabi-Yau by taking branched covers of twistor spaces.

Sometimes if the four-manifold is an orbifold, the singularities

on the twistor space may be resolved to also give a

non-Káhler Calabi-Yau.

• Moishezon spaces.

How about the non-Kähler Calabi-Yaus from conifold transitions?
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With Jixiang Fu and Jun Li (2008), we rigorously proved:

Theorem (Fu-Li-Yau)

Let Y be a smooth Kähler Calabi-Yau threefold and let Y → X0

be a contraction of mutually disjoint rational curves. Suppose X0

can be smoothed to a family of smooth complex manifolds Xt .

Then for sufficiently small t, Xt admit smooth balanced metrics.

Our construction provides balanced metrics on a large class of

threefolds. In particular,

Corollary

There exists a balanced metric on #k(S3 × S3) for any k ≥ 2.
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Knowing that a balanced metric is present is useful. But to really

understand Reid’s proposal for Calabi-Yau moduli space, it is

important to define some canonical balanced metric which would

satisfy an additional condition, like the Ricci-flatness condition for

the Kähler Calabi-Yau case.

We would like to have a natural condition, and here string theory

gives some suggestions. As Calabi-Yaus have played an important

role in strings, one may ask what would be the natural setting to

study compact conifold transitions and non-Kähler Calabi-Yau in

physics.
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Physicists have been interested in non-Kähler manifolds for more

than a decade now in the context of compactifications with fluxes

and model building. In this scenario, if one desire compact spaces

without singularities from branes, then one should consider working

in heterotic string.

For heterotic string, the conditions for preserving N = 1

supersymmetry with H-fluxes was written down by Strominger in

1986. Strominger’s system of equations specifies the geometry of a

complex threefold X (with a holomorphic three-form Ω) and in

addition a holomorphic vector bundle E over X .
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Strominger’s System

The hermitian metric ω of the manifold X and the metric h of the

bundle E satisfy the system of differential equations:

(1) d(� Ω �ω ω ∧ ω) = 0

(2) F 2,0
h = F 0,2

h = 0 , Fh ∧ ω2 = 0

(3) i∂∂ ω = α�

4

�
tr
�
Rω ∧ Rω

�
− tr

�
Fh ∧ Fh

��

Notice that the first equation is equivalent to the existence of a

(conformally) balanced metric. The second is the

Hermitian-Yang-Mills equations which is equivalent to E being a

stable bundle. The third equation is the anomaly equation.
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When E is the tangent bundle TX and X is Kähler, the system is

solved with h = ω , the Kähler Calabi-Yau metric.

Using a perturbation method, Jun Li and I have constructed

smooth solutions on a class of Kähler Calabi-Yau manifolds with

irreducible solutions for vector bundles with gauge group SU (4)

and SU (5). Andreas and Garcia-Fernandez have generalized our

construction on Kähler Calabi-Yau manifolds for any stable bundle

E that satisfies c2(X ) = c2(E ).

In recent years, my collaborators and I and other groups have also

constructed solutions of the Strominger system on non-Kähler

Calabi-Yaus.
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As clear in heterotic string, understanding stable bundles on

Calabi-Yau threefolds is important.

Donagi, Pantev, Bouchard and others have done nice work

constructing stable bundles on Kähler Calabi-Yaus to obtain

realistic heterotic models of nature.

Andreas and Curio have done analysis on the Chern classes of

stable bundles on Calabi-Yau threefolds, verifying in a number of

cases a proposal of Douglas-Reinbacher-Yau.
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But returning to conifold transitions on compact Calabi-Yaus, I

have proposed using Strominger’s system to study Reid’s proposal.

Certainly the first condition that there is a balanced metric is not

an issue. As I mentioned, Fu-Li-Yau have shown the existence of a

balanced metric under conifold transitions. However, the heterotic

string in the second condition adds a stable gauge bundle into the

picture. So one needs to know about the stability of holomorphic

bundle through a global conifold transition.
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My student Ming-Tao Chuan in his recent PhD thesis examined

how to carry a stable vector bundle through a conifold transition,

from a Kähler to a non-Kähler Calabi-Yau. He makes one

assumption that the initial stable holomorphic bundle is trivial in a

neighborhood of the contracting rational curves. In this case, he

proved that the resulting holomorphic bundle on the non-Kähler

Calabi-Yau also has a hermitian Yang-Mills metric, and hence is

stable.
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So it is clear that two of the three conditions of Strominger’s

system - existence of a balanced metric and a hermitian-Yang-Mills

metric on the bundle, can be satisfied. The last condition - the

anomaly equation - which couples the two metric is perhaps the

most demanding.

Jixiang Fu and I analyzed carefully the anomaly equation when the

manifold is a T 2 bundle over a K3 surface. In this case, the

anomaly equation reduces down to a Monge-Ampère type equation

on K3:

�(eu − α�

2
fe−u) + 4α� det ui j

det gi j
+ µ = 0,

where f and µ are functions on K3 satisfying f ≥ 0 and
�
K3

µ = 0.

It would be interesting to show that the anomaly equation can be

satisfied throughout the non-Kähler Calabi-Yau moduli space.
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Symplectic Conifold Transitions: Smith-Thomas-Yau

So far, I have talked about conifold transitions between

Calabi-Yau’s that although can be non-Kähler, they nevertheless

maintain a complex structure. The contraction of a rational curve,

CP1 (and the inverse operation of resolution) is naturally a

complex operation. The smoothing of a conifold singularity by S3

on the other hand is naturally symplectic. Friedman’s condition is

needed to ensure that a smoothed out Calabi-Yau contains a global

complex structure.
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But instead of preserving the complex structure, we can preserve

the symplectic structure throughout the conifold transition. This

would be the symplectic mirror of the Clemens-Friedman’s conifold

transition. In this case, we would collapse disjoint Lagrangian

three-spheres, and then replace them by symplectic two-spheres.

Such a symplectic transition was proposed in a work of Ivan Smith,

Richard Thomas and myself in 2002.

Locally, of course, there is a natural symplectic form in resolving

the singularity by a two-sphere. But there may be obstructions to

patching the local symplectic form to get a global one.

Smith-Thomas-Yau wrote down the condition (analogous to

Friedman’s complex condition) that ensures a global symplectic

structure. This symplectic structure however may not be

compatible with the complex structure.

23



So in general, the symplectic conifold transitions result in

non-Kähler manifolds, but they all have c1 = 0 and so they are

called symplectic Calabi-Yaus. In fact, Smith, Thomas, and I used

conifold transitions to construct many real six-dimensional

non-Kähler symplectic Calabi-Yaus.

In the symplectic conifold transition, if we can collapse all disjoint

three-spheres, then such a process should result in a manifold

diffeomorphic to a connected sums of CP3. This mirrors the

complex case, which after collapsing all disjoint rational curves,

gives a connected sums of S3 × S3.

More recently, Fine-Panov have also constructed interesting

simply-connected symplectic Calabi-Yaus with Betti number

b3 = 0, which means that they can not be Kähler.
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As I mentioned, a balanced structure can always be found in a

complex conifold transition. So similarly, we can ask if there is any

geometric structure present before and after a symplectic conifold

transition? Here we would be looking for a condition on the

globally (3, 0)-form which in the general non-Kähler case is no

longer d-closed.
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Again, we can turn to string theory for a suggestion. Is there a

mirror dual of a complex balanced manifold in string that is

symplectic and generally non-Kähler?

Such a symplectic mirror will not be found in heterotic string. All

supersymmetric solutions satisfy the Strominger system in heterotic

string. So the mirror dual of a complex balanced manifold with

bundle should be another complex balanced manifold with bundle.

It turns out the answer can be found in type II string theories. As I

will describe shortly, the equations for non-Kähler Calabi-Yau in

type II string also give new insights into the natural cohomologies

on non-Kähler manifolds.
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Type II Strings: Non-Kähler Calabi-Yau Mirrors

In type II string theory, supersymmetric compactifications

preserving a SU(3) structure have been studied by many people in

the last ten years. Since we are interested in non-Kähler

geometries of compact manifolds, any supersymmetric solution will

have orientifold sources. The type of sources help determine the

type of non-Kähler manifolds. I will describe the supersymmetric

equations written in a form very similar to that in

Grana-Minasian-Petrini-Tomasiello (2005) and Tomasiello (2007).

My description below is from joint work with Li-Sheng Tseng.
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Complex Balanced Geometry in Type IIB

The supersymmetric equations that involve complex balanced

threefolds is found in type IIB theory in the presence of orientifold

5-branes (and possibly also D5-branes). These branes are wrapped

over holomorphic curves. In this case, the conditions on the

hermitian (1, 1)-form ω and (3, 0)-form Ω can be written as

dΩ = 0 (complex integrability)

d(ω ∧ ω) = 0 (balanced)

2i ∂∂(ef ω) = ρB (source)

where ρB is the sum of Poincaré dual currents of the holomorphic

curves that the five-brane sources wrap around, and f is a

distribution that satisfies

i Ω ∧ Ω = 8 e−f ω3/3! .
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The balanced and source equations are interesting in that they

look somewhat similar to the Maxwell equations. If one notes that

∗ω = ω2/2 (where the ∗ is with respect to the compatible

hermitian metric), then the equations can be expressed up to a

conformal factor as

d(ω2/2) = 0

2i ∂∂ ∗ (ω2/2) = ρB

Now this is somewhat expected as the five-brane sources are

associated with a three-form field strength F3 which is hidden in

the source equation. These two equations however do tell us

something more.

29



Recall the Maxwell case. The equations in four-dimensions are

d F2 = 0 ,

d ∗ F2 = ρe ,

where ρe is the Poincaré dual current of some electric charge

configuration.

Now, if we consider the deformation F2 → F2 + δF2 with the

source fixed, that is δρe = 0 , this leads to

d(δF2) = d ∗ (δF2) = 0 ,

which is the harmonic condition for a degree two form in de Rham

cohomology. So clearly, the de Rham cohomology is naturally

associated with Maxwell’s equations.
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For type IIB complex balanced equations, we can also deform

ω2 → ω2 + δω2. Now if we impose that the source currents and

the conformal factor remains fixed, then we have the conditions

d(δω2) = ∂∂ ∗ (δω2) = 0 ,

which turn out to be the harmonic condition for a (2,2)-element of

the Bott-Chern cohomology:

Hp,q
BC =

ker d ∩ Ap,q

im ∂∂ ∩ Ap,q
.

This cohomology was introduced by Bott-Chern and Aeppli in the

mid-1960s.

The string equations thus points to the Bott-Chern cohomology as

the natural one to use for studying complex balanced manifolds.

Note when the manifold is Kähler, the ∂∂-lemma holds and the

Bott-Chern and Dolbeault cohomology are in fact isomorphic.
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Symplectic Mirror Dual Equations in Type IIA

The mirror dual to the complex balanced manifold is found in type

IIA string. Roughly, the type IIA equations can be obtained from

the IIB equations, by first replacing ω2/2 with (Re e i ω) and then

exchanging e i ω with Ω.

d(ω2/2) = 0 ⇔ d(Re e i ω) = 0 ←→ d Re Ω = 0

Thus, d ReΩ = 0 is the condition that is suggested by string for

symplectic conifold transition.

This condition is part of the type IIA supersymmetric conditions in

the presence of orientifold (and D-) six-branes wrapping special

Lagrangian submanifolds:
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The type IIA equations that are mirrored to the IIB complex

balanced system are

dω = 0 , (symplectic)

d Re Ω = 0 , (almost complex)

∂+∂− ∗ (e−f ReΩ) = ρA , (source)

where ρA is the Poincaré dual of the wrapped special Lagrangian

submanifolds. ∂+ and ∂− are linear symplectic operators that can

be thought of as the symplectic analogues of the Dolbeault

operators, ∂ and ∂. Tseng and I introduced them recently, so let

me describe them a little bit more.
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(∂+, ∂−) appear from a symplectic decomposition of the exterior

derivative

d = ∂+ + ω ∧ ∂− .

∂+ raises the degree of a differential form by one, and ∂− lowers

the degree by one. They are defined with the property

∂± : Pk → Pk±1 ,

where Pk is the space of primitive k-form. (A primitive form is one

that vanishes after being contracted with ω−1.) And like their

complex counterparts,

(∂+)
2 = (∂−)

2 = 0 ,

and effectively, they also anticommute with each other.
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With the linear symplectic operators, (∂+, ∂−), we can write down

an interesting elliptic complex.

Proposition (Tseng-Yau)

On a symplectic manifold of dimension d = 2n, the following

differential complex is elliptic.

0
∂+ �� P0

∂+ �� P1
∂+ �� . . .

∂+ �� Pn−1
∂+ �� Pn

∂+∂−

��
0 P0

∂−�� P1
∂−�� . . .

∂−�� Pn−1
∂−�� Pn∂−��

Associated with this elliptic complex are four different

finite-dimensional cohomologies which gives new symplectic

invariants for non-Kähler manifolds.
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Symplectic cohomologies (Tseng-Yau):

Symplectic (X , ω) Complex (X , J)

PHs
∂±

=
ker ∂± ∩ Ps

im ∂± ∩ Ps

ker ∂ ∩ Ap,q

im ∂ ∩ Ap,q
(Dolbeault)

PHs
∂+∂−

=
ker ∂+∂− ∩ Ps

(im ∂++ im ∂−) ∩ Ps

ker ∂∂ ∩ Ap,q

(im ∂ + im ∂) ∩ Ap,q
(Aeppli)

PHs
∂++∂−

=
ker d ∩ Ps

im ∂+∂− ∩ Ps

ker d ∩ Ap,q

im ∂∂ ∩ Ap,q
(Bott-Chern, Aeppli)

The middle-degree cohomology

PHn
∂++∂−=

ker d ∩ Pn

im ∂+∂− ∩ Pn

turns out to appear in type IIA string.
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For consider the deformation: Ω −→ ReΩ+ δReΩ with δρA = 0

and conformal factor remaining invariant. Then the δReΩ satisfy

d(δReΩ) = 0 , ∂+∂− ∗ (δReΩ) = 0 ,

which is the harmonic condition of the primitive PHn
∂++∂−

cohomology.

In fact, a subspace of the linearized deformation of the type IIA

symplectic system can be parametrized by the cohomology

δΩ ∈ PH3

∂++∂− ∩ A2,1 .
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Non-Kähler geometry on six-dimensional manifolds will have a lot

activities in the near future. These geometries can have relations

with four- and three-dimensional manifolds. One can construct

non-Kähler six-manifolds by the twistor construction. The twistor

space of an anti-self dual four-manifolds has a complex structure,

and the twistor space of a hyperbolic four-manifold has a

symplectic structure. The S3 bundle over a hyperbolic

three-manifold is also complex. (Fine-Panov have given examples

of the hyperbolic constructions.) There should also be interesting

dualities relating complex and symplectic structures on non-Kähler

six-manifolds.

The major guiding influence will be string theory.
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