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ABSTRACT

g-Hit polynomials have only real roots

Li-Ping Mo

James Haglund, Professor of Mathematics

We prove that Garsia and Remmel’s ¢-hit polynomials for Ferrers boards have
only real roots for fixed ¢ > 0. This generalizes previous results by Haglund, Wagner
and Ono {3] and Savage and Visontal [1]. We also extend the main recursion in [1]
to hit polynomials for certain classes of Ferrers boards, which include the multiset

Eulerian polynomials.
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Chapter 1

Introduction

A board is any subset of the n-by-n array, {(¢,7)}i<j<n; here we use the "matrix
coordinates”, so (7, 7) is on the 7th row from top and the jth column from the left. A
placement C of k (non-attacking) rooks on a board B is a subset of B with cardinality
k such that no two cells in C' share a row or a column, and we denote the set of all
such placements by Py(B). The kth rook number of B, ri(B), is the cardinality of
P,(B), or in other words, the number of ways of placing & non-attacking rooks on B.
Let P, be the set of all n! placements of n rooks on the entire n-by-n array. For
any placement C' € B, we set hg{C) = #B M C = number of rooks in C' that are on
B. The hit polynomial HZ(z) is the generating function of the statistic hp on P,:

HE(z)= )z, (1.1)

Cepr,
The coefficient of z* in HP{z) is called the kth hit number of B, and it is the number
of ways of placing n rooks on the n-by-n array such that there are exactly k rooks on

B.




Figure 1.1: Ferrers board corresponding to (0, 1, 1, 2, 3).

There is a basic relation between rook numbers and hit polynomials {see for ex-

ample [4], Section 2):

Theorem 1.1. For any board B,

HE(z) =Y re(B)(n~k)l(z — 1), (1.2)

A Ferrers board is a board B such that any cell above or to the right of a cell in B is
also in B. Any Ferrers board is uniquely determined by its weakly increasing sequence
of column lengths {c1, ...,c,). See Figure 1.1 for the Ferrers board corresponding to
the sequence (0,1, 1,2, 3). For a Ferrers board, there is a direct relation between its

sequence of column lengths and its rook numbers.

Theorem 1.2. Given Ferrers board B with column lengths ¢y < ... < ¢, we have

T T

re(B)a(@ — 1)z —ntk+1)=[[@+e—i+1) (1.3)
k=D i=1

A combinatorial proof of this theorem can be found in Sec. 2.4 of [5]. The idea of
the proof is to consider the board B, which is the Ferrers board with column lengths
(e1 4+ @, ..., ¢ + z). Both sides of the equation count ra(B).

2



Because {1, z,z(x — 1), ...,z(z — 1)...(z —n+1)} form a basis for the vector space

of polynomials of degree at most n, it follows from (1.3} that two Ferrers boards with
column lengths (cy,...,¢,) and (d,...,c,) have identical rook numbers {and hence
identical hit polynomials because of {1.2), for any n large enough such that both hit
polynomials can be defined) iff the two multisets {¢;—i+1}i=1, n and {—i+1}ia  n
are the same. For example, the two boards (0, 1, 1, 2, 3) and (0, 0, 1., 2, 4) have
identical rook and hit polynomials since they both give the multiset {0?, (—1)*}. We
say such two Ferrers boards are Ferrers equivalent. (See also [B], Sec. 2.4). For two
boards in general, we say they are equivalent if they have the same hit polynomial.
For example, permuting the rows {or columns) of a board results in an equivalent
board.

In their paper [2], Garsia and Remmel developed g-analogs of the rook numbers
and hit polynomials for Ferrers boards. These reduce to the usual rook numbers and
hit polynomials when g is set to 1. The g-rook numbers are defined as ri(B,q) =

ST ¢ where inv(C) is the number of cells on B that do not hold a rook, is
CEP(B)
not directly above a rook in ', and is not to the right of a rook in C. {See Figure 1.2)

They were then able to prove a g-version of Theorem 1.2 for their g-rook numbers:

Theorem 1.3. Given Ferrers board B with column lengths ¢ < ... < ¢,, we have for

xr €N,

T

S onB,g)llr -1z —n+k+1]=[[lete—i+1] (1.4)
k=0 =1

where [a] denotes 1+ g+ ... +¢°*.

This is Equation 1.3 in [2], and the proof uses the same technique as the proof of




i

Figure 1.2: Computation of invg(C). From each rock (represented by the plus sign),
we cross off all cells above it and all cells to the right of it. There are two cells of B

remaining, so invg(C) = 2.

Theorem 1.2. The two sides of the equation now count r,,(B, q).

The following version of g-hit polynomial appears in [2]:
Qp(z,q) = _ rak(B, Q)2 [k}I(1 — 2¢* ). (1 — 2¢), (1.5)
k=0
for any Ferrers board B. As in [4], we will reverse the order of coefficients of Qp(x, g)

as a polynomial in 2 and define

kL

H,,J.?(.’.C, Q) = ZTR:(Bu Q)[n - k][(CE - qn~k+1)m($ o qﬂ) = :CnQB(w_l:g): (16)

k=0

as in [4]. Note that {1.6) reduces to (1.2} when ¢ = 1.

Corollary 1.4. The g-rook numbers ri,(B,q) and the q-hit polynomial H,{B,q) of a
Ferrers board B are uniquely determined by the column lengths ¢1,...,c, of B. Conse-

quently, equivalent Ferrers boards have identical g-rook numbers and g-hit polynomial.

Proof. See Section 1 in [2] for ri(B, ). The H,(B,¢) part then follows from (1.6).



In the same paper {21, Garsia and Remmel derived the following identity for the

g-hit polynomials:

k . QB(er')
g;ax kte]. b+ —n+1]= ESToR gy (1.7)

There are combinatorial interpretations of Hg(x, ¢), for example via the £ statistic
in [4]. This statistic will be defined in Chapter 4.

The first main result of this paper, whose proof will be given in Chapter 3, is

Theorem 1.5. Let B be o Ferrers board in the n-by-n array, and let ¢ > 0. Then

Qr(z,q) and Hp(x,q) have only real roots.

The ¢ = 1 case states that the ordinary hit polynomials Hg(z,1) have only real
roots for any Ferrers board B; this was known (see [3], Theorem 1).

The hit polynomials have a natural interpretation in terms of permutations. We
identify S, with P, by sending the permutation ¢ = g103...0, € S, to the place-
ment C{o) = {(1,01),(2,02),...,(n,0.)}. Then we can also talk about hp(c) =
he(C{a)) = #{i|(i,0;) € B}. We then have H?(z) = ZS zMs(7) In particular,

ox=tor
when the board B is the upper triangular board with column lengths (0,1,..,n — 1),
we get hg(o) = exc(o) := #{i & [1,n]{o; > i}, the ercedance statistic.

The Eulerian polynomials En(z) are defined as

En(z) =) %), (1.8)

_ o ESy
where if 0 = gy...0,, des(o) == #{i € [I,n — 1]jo; > 0ir1}. There is a well-known
bijection ¢ : S, — S, that takes des to exc; see for example 5], Sec 1.3. Given

g = 0109...0, C S,, we mark any element that is larger than all elements to its left.
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We insert left parentheses before these elements, and right parentheses as appropriate,
and then view it as a new permutation o’ € S, in cycle notation. We set ¢(c) = (o/)71.
For example, if 0 = 41352 € S5, then ¢’ = (413)(52), and so ¢(o) = (431)(52) =
45132. One property of ¢ is that for any 7 such that o; > 0y..q, we have ¢{0); = o3

where j := 0;.1. In particular we have des(a) = exc(é(o)), so

By(z) =Y = (1.9)

C"ESn

is also the generating function for exc. Hence Eulerian polynomials are a special case

of hit polynomials:
Theorem 1.6. Let B be the upper triangular board. Then E,(z) = HP(z).

Proposition 1.7. For any Ferrers board B contained in the upper triangular board,

we have

HE(z) = ) g, (1.10)

FESn
where desg(c) := #{i € [1,n — 1]{(iy1,5:) € B}.
There are many generalizations of the Eulerian polynomials. For any v > 1, we
define the r-Fulerian polynomials EL(z) = 3 a%) where des (o) == #{1 €
0ESH
[1,n — 1ljoy = o4y -+ 7} We also define the multiset Eulerian polynomial Ep{z) =
S z%s() for any multiset M = {1, ..., k% }. Here Sy is the set of multiset per-

oeSu

mutations, i.e. distinct ways of writing a; 1’s, ..., and ay &'s in a row.
¥ ? ?

Definition 1.8. For Zle by = E’;:l a; = m, let Bu(b1,a1; by, a0;...; bk, a) be the
board shown in Figure 1.3. When we want to focus on the board itself without
mentioning n, we also write the above as B(—, a1; by, ag; ...; be—1, @g-1; b, —)-

6
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Figure 1.3: The board B, (b1, a1; b, a2} ...; bi, ap).

Remark 1.9. Any Ferrers board can be expressed as B,(b1,04;...; by, az) for some
k and some by, ..., by > 1 and aq,...,a,—1 > 1, and we will assume this to be the
case whenever we write “for any board B = B, {b1,a1;...; bk, ag).” When a board is

expressed this way, it contains {n,n) iff a; = 0.

By Proposition 1.7, the r-Eulerian polynomial is the hit polynomial for the board

B{r,1;1,1;...1,1;1,r). (See Figure 1.4}

Definition 1.10. Suppose M = {19, .., k*} and n = #M = a; + ... +a,. We define

B(M) = Bn(ﬂh, ay; Qg, Ga; .. ak:aa’k)-

Proposition 1.11. Ep(z) = - Ha " (x).

PRINTE
Proof. Given ¢ = 01...0, € Sy, for each @ € [1,n], there is a unique j = j{#) € [1, k]
such that 0; € a1+ ...+ a;_1+ 1,01+ ... +a;]. Set ®(o) = 7(1)5(2)...j(n) € Su. The

7




Figure 1.4: Board associated with the r-Eulerian polynomials.

map P is ail...ap! to one, and despn (o) = des(P(o)). We sum over all o € 5, to

obtain Hf(M)(x) = o1l By (). 0

In Savage and Visontai’s paper [1], they defined the s-Eulerian polynomials B (z)
for any sequence of positive integers s = (&), &3, ...). Let Jy(s) = [0, §;—1]x...x[0, §,—
1], and for any element (eq,...,en) € Jn(s) (such an element is called an s-inversion
sequence), its ascent statistic is defined as asc(es, ..., e,) = {i € [0,n — 1]|E < %ﬁ}
In particular, J,(1,...,n) can be identified with S, in such a way that asc corresponds
to des; namely, for o = o1...0, € S,, we associate with it (e1,...,en) € Ju(l,..., 1)
where e; = #{j < 4 such that o; > o;}. The s-Eulerian polynomials are defined
as B (z) = Z( )m‘”“(e), and they include the usual Eulerian polynomials as the

ec.Jy (s

s = (1,...,n) case. Savage and Visontai showed that many Eulerian-like polynomials

are special cases of the s-Eulerian polynomial.

Definition 1.12. We set Erﬁfz (z) = 30 %) and let EY be the row vector
ecJn{s)

En=1%

ES) (@), ES)(2)..., BEL _(@)].



Theorem 1.13 (Lemma 2.1 in [1)). E&{(z) = B (z)A(z), where A = A(x) is the
Sp_1-by-8, matriz whose tth column starts with [Q?%:i”—*ﬂ copies of x from the top,

and all 1’s below them.

Definition 1.14. A (1, xz)-Ferrers matriz of shape B is a matrix whose entries are
z and 1, and the x’s in which form the Ferrers board B in the top right corner. We

also write (e, b)-Ferrers matrix, where the expressions ¢ and b take the place of 1 and

x respectively.

It is clear that the transition matrices A{z) in Theorem 1.13 are all (1, z)-Ferrers

matrices.

Theorem 1.15. Let Ay, As, ..., be 1-by-mq,mq-by-ma, ..., (1,z)-Ferrers matrices.
Then the sum of entries in the row vector A1As... A, is a polynomial with only real

roots.

We will give a brief proof of Theorem 1.15 in Chapter 2 using results from [1]
and [6]. In particular, when the fransition matrices A;, Az, ... have shapes as in
Theorem 1.13, we obtain that the s-Eulerian polynemials have only real roots. This
is [1], Theorem 1.1.

The following two definitions are hit polynomial versions of Definition 1.12. In
particular, Definition 1.17 reduces to the s = (1,2, 3, ...} case of Definition 1.12 when

B is the upper triagular board. (See Remark 1.18)

Definition 1.16. For any Ferrers board B in the n x n array, let

Hl@)= > ") (1.11)
cepy,
(im)eC
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If ¢, is the length of the longest column of B, we define

Hf(:c) = [HTECHH(:E), ...,Hin(w),Hﬁl(m), L HE (2)]. (1.12)

T, Cn

Definition 1.17. For any Ferrers board B in the n x n array, let

B (z)y= )" 2 (1.13)
CePl,
(m7)EC

and let AZ(z) = (AP (x),.., HE (2)].

Remark 1.18. The ¢ map before Theorem 1.6 satisfies the following:
e If i follows n in @, then ¢(o); = n.
s If o, =i, then ¢(o), = i.

In view of Proposition 1.7, when B is contained in the triangular board, we have

.
Hfz(ﬂi) = > gdesBl?)  fori=1,..,n—1

cESn
i follows n in o

HE, () = 3 atess(® (1.14)

fedatm

T =TT

HE\(z) = Y wieenl®) fori=1,..,n.
oESy
\ Tn =6

We will illustrate this interpretation with some examples in Chapter 6.

We will adopt the following shorthand throughout the paper:

Definition 1.19. For any Ferrers board B = B,(by, a3; b2, ag; ...; b, i), we set s; =
a1+ ...+a; and t; = by + ... -+ b; for i € [0, k]. In particular sp =1ty = 0, sz = £, = n.
The board we obtain from B by removing its last row and last column will be denoted
By.

10



Figure 1.5: The (n — 1)-by-n {1, z)-Ferrers matrices A and A in Theorems 1.20 and
1.21, respectively. The shapes of the Ferrers boards in A and A are flipped versions

of each other.

The following two theorems mirror Theorem 1.13, and will be proved in Chapters 4

and 5 using a Ferrers equivalence argument.

Theorem 1.20. Suppose B = By(b1,a1;b2,02;...;bk,ar) is a Ferrers board with

bk,ak > 1. .le either
by >tands; 1 <t;—ap+1<s foralliel[lk—1];

or
by = land 8 1 <ti—ap.,—ax+1<s foralliec[lk—1],

then HZ (z) = H2 (2)A, where A is the (n — 1)-by-n (1,z)-Ferrers matriz of shape
1 o1

B{—,b1;a1,bo;..;ap—2,bp_1; 051, —).

Theorem 1.21. Let B be the Ferrers board By,(bi,a1;...;bk,ax). Suppose either
br,or > 1, or both by = 1 and ax > 1. Suppose further that t;y < s, +ap—1<4;
for alli € [1,k —1]. Then HE = H* A, where A is the (n — 1)-by-n (1, z)-Ferrers
matriz with shape B{—, ar_1;05-1, 0k-2} .-} b2, @13 b1, —).

11




There are versions of Theorems 1.20 and 1.21 for ¢-hit polynomials, and we will
state and prove them in Chapters 4 and 5.
Recall that a Ferrers board B contained in the upper triangular board can be

associated with the Dyck path forming its boundary (See Figure 1.6).

Proposifion 1.22. If B 15 contained in the upper triangular board, and when viewed
as a Dyck path, By has weakly decreasing peaks, and the heights of the valleys of By
(in order: vi,...,v) satisfy v; < vy +1 for all i < ¢, we can apply Theorem 1.20 {and
its g-version Theorem 4.2) recursively and write H2(z) as a product of (1,z)-Ferrers

matrices.

Proposition 1.23. If B is contained in the upper triangular board, and when viewed
as a Dyck path, B has weakly increasing valleys, and tﬁe heights of the peaks of B (in
order: pi,...,py) satisfy p; = py — 1 for all i < ¥, we can apply Theorem 1.21 (and
its q-version Theorem 5.2) recursively and write FI2(x) as a product of (1,2)-Ferrers

matrices.

Boards that satisfy both Dyck path criterions in Propositions 1.22 and 1.23 in-
clude B{r,1;1,1;...;1,7), the boards associated with the r-Eulerian polynomials, and
Blay,a1; a2, aa; ...; @, ag) when a1 > ... > ag, associated with the multiset Eulerian

polynomials.

12
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Figure 1.6;: The board B and its associated Dyck path.
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Chapter 2

Properties of interlacing

polynomials

We will use material from Fisk’s book [6] on interlacing polynomial. First we start

with some notation:

Definition 2.1 ([6], Equation 1.1.1}. For polynomials f(z), g(x) with only real roots,

let a1 < ... < a, be the roots of f, and &; < ... < b, be the roots of g. We write

g f im=n and o < Say < <. <a, <b,

g<f im=n+1l andb <o <b <. <ay < bygr.
We always list multiple roots that many times. Whenever we write g < for g< f, we
are assuming f and g have only real roots. The two relations < and < are interlacing

relations.

The following proposition from [6] gives us a way to locate the roots of a linear

combination of two interlacing polynomials, and wiil form the core of the proof of

14



Theorem 1.5:

Proposition 2.2 ([6], Corollary 1.30}. Suppose F' < G, both F' and G are monic,

and o, 3, a + I are non-zero. Let H = aF + BG. Then

H > Fif 8 and o+ B have the same sign;

H <« Fif § and o+ 5 have opposite signs;

H <« G if @ and a + 3 have the same sign; and

H>» G if a and o+ 8 have opposite signs.
Remark 2.3. Since muitiplyiﬁg a polynomial by a constant does not alter its roots,
the condition that both I and G are monic can be relaxed to that they have the same

leading coefficient

A stronger form of interlacing can be defined for row vectors of polynomials.
Definition 2.4 (Compare [6] Def. 3.3). A row vector of polynomials in R[z] with
positive coefficients, v(z) = [fi(z), ..., fm(x)], is saided to be mutually interlacing

if each f; has only real roots (ordered 0 > @1 > aye...), and the roots of all m

polynomials are ordered as follows:

02 am1 2. 2011 2 Oma 2.0 2 002 2 Qmg 2 .00 2 Q13 2 ..

Proposition 2.5. If A is an m-by-n (1, z)-Ferrers matriz and v is o mutually inter-
lacing row vector of length m, then w{x) = v{z)A(x) is also o mutually interlacing

row vector. In other words, (1, z)-Ferrers matrices preserve mutual interlacing.

Proof. See {1], Section 2. This is also a special case of [6], Proposition 3.72. i

15




Proposition 2.6 ([6], Lemma 3.5). Let v(z) = [f1(z), ..., fm{z)}] be & mutually inter-
lacing row vector. Then f1(x) + ... + fu{x) has only real roots. In fact, the same can
be said for any nonnegative linear combination of fi, ..., and fn, t.e. mfi(e) + ...+

Tmfm(Z) for any r; > 0.

Proof of Theorem 1.15. The first term A, is a 1-by-my (1, z)-Ferrers matrix, which
is a mutually interlacing row vector. Since Ay, As, ... are (1, z)-Ferrers matrices, by
Proposition 2.5 A;A4,... A, is a mutually interlacing row vecter. By Proposition 2.6,

the sum of the entries in 4;4,...4,, is a polynomial with only real roots.

16



Chapter 3

Proof of Theorem 1.5

We will start with one of the recursions for Qg(z, q) in [2] that tells us how to add a

column to B.

Proposition 3.1 (Lemma 2.7 in [2]). Let B = (¢, ...,cn) be the Ferrers board with

column lengths 0 < ¢; <

<¢,<n-1,and let B' = (e1,...,cn—1). Then

Qs(z,q) - ( 2" Qp (z, ) )
=g" g , 3.1
(1-2).{1—zg¢") (1 —a)..(1—2zq 1) (3.1)
where § = &, is the q-derivative operator:
dF(z) = M (3.2)

qr — %
The g-derivative is linear and satisfies d2" = [njz"?, where [n] = 1 + g+ ..¢" *.

It also has a product rule:
Proposition 3.2, For u = u(z),v = v{x), we have d{uv) = viu + u(gz)dv.

Notation. In this chapter, we will often omit the ¢ argument from polynomials.
We will sometimes omit z as well. Hence Qp = Qp(z) = Qgp(z, q).

17




Suppose ¢ > 1. Let B and B’ be as in Lemma 3.1. Set Pg/{z,q) =z " Qg (2, q)

and P =z "Qp. We can then rewrite (3.1) as

PB . PBr
(1—@mﬂ—$¢)_5Ql—ﬂuﬂmmwlﬂ‘ (3:3)
We can compute directly that
s = )= I (3.4)
1 -a)(l-zgt)/  (I—a).(l—zg) '
Using Proposition 3.2 with v = mi——_—mn—_l), v — Pp, we get
PBI _ (1 - .{.E)(SPBf + [n]PBf
5&1—@mu—zwdﬂ*(zw@muz¢)' (3:5)
Hence
Pp = [n]Pg — (x — 1)§ Ppr. (3.6)

Lemma 3.3. Let B = (cy, ...,¢) with ¢, <n—1, and let B’ = (¢y, ..., cney). Suppose
Pgi(gz) < Pgi(x). Then Pp(gz) < Pp(z). Equivalently, suppose Qp{qr) € Qp(x);

then Qplgr) < Qp(z).

Proof. Let m = deg(Pg/). It m = 0, then Pg = [n]Pp; neither Pg or P has any
root and the Lemma holds. Hence we may assume m > (.

Suppose the roots of Py are rpy, < 71 < ... < 1y, Then Ppgz) < Pgp(x)
implies

T T
T € 2 << <
q q

Sinceg>1,m < T—ql implies r; < 0. Since

x(q — V)6 Py = Pp/(qz) — Pp(z), (3.7)

18



we apply Proposition 2.2 with G = Py, F = fﬁ—(—qﬂ,ﬁ = —1,a = ¢™ and obtain

f
qm

26 Py <& Pp and 28 Py < Pp(gx). {See also [6], Theorem 8.8}
Suppose the roots of dPg: are 8,1 < ... < 8;. Then the roots of Py, Pp/{xq),
and & P (all negative) are ordered weakly from smallest to largest as follows.
Tm Tmn—1 T2 1

Tm,*‘é—,Sm,hTm,h 7"':527T27E781:T17_

In particular, we see that (x — 1)6Pp < Ppr.

Let az™ be the leading term of Pg:. Then a[m]z™ is the leading term of {(z—1)0 Pp-.

We apply Proposition 2.2 to (3.6) with F' = (WI%PB',G = Pg,a = —ml], 7 = [n]
and obtain Py < Py and (z — 1)8 P < Pp. (Here m < n because m = deg(Pp) <
deg{@Qp) <n—1.) Let t,, < .. <t be the roots of Pg. These roots fit into the

picture as follows:

Tm . Ten—1 Ta 1
tm,Tm,—q—',Smml,imm_{,T'mwl, q 1"'1827t2ur2:E5313t11T1:ﬁ*ﬁ

Ty

We see ting < Ty =

£ < <0 for i = 1,...,m — 1. This implies #i1 < an <
t; < 0, and hence Pg(gz) < Pg(z). This proof is inspired by Chapter 8 of [6], where

the set of polynomials f satisfving f(z) < f(gz) and the g-derivative are studied. O

Proposition 3.4. Fiz ¢ > 1. For any Ferrers board B, we have Qp{gz) € Qp{x).

Both Qp(z,q) and Hg{z,q) have only real roots.

Proof. The proof is by induction. If the board is empty in an n-by-n array, then Qg
is a constant times z™, and the assertions are true. Given a Ferrers board B in n-by-n
array, we suppose that for all boards B’ in an array smaller than n-by-n, and for all

19




boards B’ in the n-by-n array with less cells than B, we have Qp/{qr) < Qp/(z).
Let B = (c,.,6n). I, <m— i, let B = (e1,...,60—1). By Lemma 3.3 and the
induction hypothesis, we obtain Qp(gz) < Qp(z). If ¢ = n, set B' = (0,¢1,..., Cp1 )
Since (Jp = %Q g (we can get this from Lemmas 2.1 and 2.3 in [2]), the induction
hypothesis implies Qgp{qr) < Qp(z).

We have proved Qg{gz) < @g(z), and in particular Qp(z) has only real roots.
Since Hp(z) = 2"@p(z7?), the nonzero roots of Hp and Qp are inverses of each

other. Hence Hg also has only real roots. O

Now suppose 0 < ¢ < 1. We start with {(3.3), but this time we apply Proposition 3.2

Wlth U = PBJ,’U = WJW We get

Py = ni{Pg/{qz) — (g"x — 1)6 Pp.. (3.8)
Lemma 3.5. If Pg/(qz) > Pg(z). Then Pg{qz) » Pg(x)

Proof. Let m = deg(Pg). As in the ¢ > 1 case, we may assume m > 0. Suppose the

roots of Pgr are 7y, < 7ot < oo < 712 Then Pgi{qz) 3» Pg(z) implies

I T
T, <<= <.

q q
Since g < 1, % < r; implies r; < 0. We apply Proposition 2.2 to (3.7) with F =
P, G = 5%,(,?—@, o = —1,8 = ¢ and obtain 26 Py < Pp: and x6Pp < Pg/(qz).

Let 81 < ... < 8 be the roots of §Pg.. Then the roots of Pps, Pp{qx), and

(1 — zg™)é Pg (all negative) are as follows, from smallest to largest:

T, T2 ™1
— P m, Sm—1, .82, —, 72,81, —,T1
g q q
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In particular (¢"z — 1)6 Py < Pr(gz). If P has leading term az™, then Pp/(gx)

has leading term ag™z™ and (¢"z — 1)6 P has leading term ag™m|z™. Therefore

"?:n]n (q"x — 1)6 Pp have the same leading coefficient. We apply Proposi-

Pg:(gz) and

tion 2.2 to (3.8) with G = Pgi(gz), F = T (q"z — 1)0Pp/, = [n], o = —[m]g" ™™ =

[l
fn —m] — [n] and obtain P > (¢"z — 1)0Pp and Pg > Pp(qz). Let t; < ... < ¢

T

be the roots of k. We then have

T'm ] L]
tma ?>Tm1 Sm—latm—la veey 525t27 EaT% Sl?t1? E:Tl

In particular £;4 <

n;d <rp <t;fori=1,..,m—1. Hence t;4; < % < t; and so

Pg(gz) > Pglx). [

The rest of the argument is identical to the ¢ > 1 case, except that < is replaced

with 3. We get

Proposition 3.6, Fiz 0 < ¢ < 1. For any Ferrers boord B, we have QJp(qz) >

Qp(z). Both Qp and Hp have only real roots.

Combine Propositions 3.4 and 3.6 and we have proved Theorem 1.5. As stated in
the introduction, the ¢ = 1 case was known; we can also obtain the ¢ = 1 case from
the g > 1 case using that limits of real-rooted polynomials have only real roots (6],
Lemma 1.40).

When B is the upper triangular board {0,1,...,n — 1), we have Qp(z,q) =
Yopes, xi@Hlgmaita) - the MacMahon-Carlitz g-Eulerian polynomials. To obtain
this, we can combine Equations 1.2, 1.9, 1.10, and 1.12 from [2]. [t was shown in

[1], Theorem 5.4 that the g-Eulerian polynomials have only real roots for g > 0.
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Chapter 4

Proof of Theorem 1.20

In Dworkin’s paper [4], they found an explicit statistic {g defined on P, and showed

that HZ(z,q) = CZP 2h3@gts(©) which is a refinement of (1.1). Here B is any
€l '

skyline board B, which is obtained from a Ferrers board via a permutation on the

columns. Given a placement C' € F,, we compute E5(C) as {ollows. We say a cell is

canceled if either there is a rook on it, or it is to the right of a rook. Put a circle on

any uncanceled square on B below a rook {on B); on any uncanceled square on B

above arook off B; and on any uncanceled square off B below a rook off B.. We define

£g(0) to be the number of circles we get this way. See Figure 4.1 for an example.

Definition 4.1. Let HZ (z,q) = > z"#@g%(®) We define HZ(z,¢) the same

way we defined HZ(z) in Definition 1.16.
We will prove the following g-version of Theorem 1.20 in this chapter:

Theorem 4.2. Let B be as in Theorem 1.20, and let s;, t; and By be as in Defini-
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Figure 4.1: Computation of £g. Here £g(o) = 6.
tion 1.19. Then
T x
H(z,q) = Hfiz(? DA()D, (4.1)

where A(%) is the (n — 1)-by-n (1,2)-Ferrers matriz of shape
B(mJ bl; aq, bg', 2, b3; ey A1, —),

and D is the diagonal matriz with ¢%-1, .., "t g0t g sl

1

g itsitn | grtetsatnoll | gmtertsigtn | g—teitsertn=l gdoyn the diagonal.
Let .IQ = [Sk_l -+ 1,?1], and let .[1, = [Si,jl -+ 1,8;.;] fori e [1,}11 — 1]

Definition 4.3. For i € [1,k — 1], let
B; = By _1{b1,01;...;bi—1, 053y biya; — 1 biva, ity oo b1, Gen; be — 1, a)

be the board we obtain by removing the jth row and the nth column from B for any
j € I;. Let B! be the board obtained by removing the leftmost cell from each of the
bottommost n — 1 — t; rows of the board By. See Figure 4.2 for the board B* when
by >1land s;_ | <t;—ap+1<s,.
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n-1-t '
bt
Ak
 bez
a1

Figure 4.2: The board B* in the b, > 1 case. The condition s; 3 <t —ap +1 < s
is necessary for this to be an accurate depiction of B, namely the gray column lands
between the two horizontal segments of lengths b; and b;,;. To obtain B* from B,
we permute the columns of B* so the gray column becomes the last column, and the

ordering of all other columns are unchanged.
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Lemma 4.4. If B satisfies the conditions in Theorem 1.20, then B; and B' are

Ferrers equivalent fori=1,..,k—1.

Proof. We will combine equal column lengths and write, for example, (3%} for five
consecutive columns of length 3.

The column lengths of B; are {¢1,..., 1) =
(Obl 59 ,Sga, ceey S?fl_l, (Si — 1)bi+1, (Si—f-l - 1)bi+2, ciey (Sk__g — 1)bk71, (Skwl —_ l)bkwl).

Suppose by, > 1 and ;-1 < t; —ai + 1 < s;. From Figure 4.2, the column lengths
of Bt are (¢}, ...,c,,_y) 1=

n—-1/ 7

b b3 by bip1 bige be1 bp—2
(0%, g2 b 8%t —ap + 1,8, Sty ey S gy Spq

Comparing the two sequences, we see that
g-l+1l=¢—-1+1 for I € [1,%]

(1.2)
g—l+1l=¢,—({+1+1 forleft;+1,n-2]

Finally,
Cn_l—(ﬂ—l)ﬂ—lz—ﬂfkﬁttﬁﬂk"kl*(t1+1)+1:Ctz+1—(t1’+1)+1

Hence the multisets {c; — i+ 1 3=y -1 and {¢} — i+ 1}im1 n-1 are the same, and so
B; and B* are Ferrers equivalent,

On the other hand, suppose by = 1 and s,y < #; —ap_1 -+ ar+1 < 8;. The column

lengths of B* are now
- by b b1 —1
(0%, 8% 8% sh ti—ap —ak+ 1St s s, )

171 3814100 Sk

One can check similarly that this gives the same multiset as the one for Bt
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Leti € [0,k— 1] and 7 € I;. Let B, ; be the subset of P, of those placements that
have a rook at {j,n). There is a bijection between C' € P, ; and C' € P,  simply via

removing the jth row and the nth column from C.

Lemma 4.5. With § € I; and C,C as above, we have

h(C) = hp,(C) fori=0

| (4.3)
he(C) = hg(C)+1 forie [,k —1]
_ and
¢p(C) = ¢y (C) + 5 — 1 — hg,(C) fori =0

(4.4)

p(C)=¢p(C) —t;+j—1+n—1—hg(C) foric[l,k—1]

In other words,
HE . (z,q) = ¢~ 1H?,(Z,q) for j € I,

i 1\ G (45)

HE (w,q) = wq ¥ 02 (2.9) forjeLie 1k~ 1)

Proof. The first part is clear, since hg{C) = hp,(C) + 1 if (j,n) is on B, otherwise
hg(C) = hg,(C).

Now we look at §&. We assume ¢ € [1, k — 1] for now. Define the regions I, 11, III,
IV as in Figure 4.3. We also define I’ as the rectangular region that is above the jth
row and to the left of IL

The contribution to £z(C) outside the jth row and the nth column is exactly
g, (C'}. Furthermore, the nth column contributes nothing to £ 5(C), since all cells on

that column get canceled when we compute £g. Hence £5(C) = €5,(C) + number

of circles on the jth row.
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I -1

IV

I

ti

Figure 4.3: Regions I, I, III and IV. The vertical line that seperates I from II, and
ITI from IV, contains the vertical segment of the boundary of B inside the jth row.

Regions I and III lie outside the board B.
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By defintion of £, the number of circles on the jth row = #I + #II 4 #I1I, here
we abbreviate the number of rooks of € in I as #I, and so on. But since each row
and column has exactly one rook, we have #I1 = j — 1 — #I'=j — 1 — ({; — #IV) =

#IV —t; + j — 1. Hence

the number of circles on jth row = #]+#INI+#IV -4+ 71 (46)
=n—1-hg(C)—t;+7—L |
Hence £5(C) = &g, (C) —t;+j — 1+n—1— hp,(C).
Now suppose instead 7 = 0. The regions 11 and 111 disappear. Now the number

of circles on the jth row = #1 = j — 1 — kg, (C). Hence gB(C') =ég,(C)+5—1—

hg(C). m

For i € [1,k — 1], let B* be the skyline board obtained from By by removing the
bottommost 7 — 1 —¢; cells from the rightmost (i.e. (n— 1)th) column. Since B* and
B¢ differ by a column permutation (See description under Figure 4.2), B;, B* and B*
are all equivalent boards. By Corollary 1.4, we have HZ (z,q) = HZ' ,(z,q).

Hence (4.5) can be rewritten as

HP(x,q) =@ Hy (2,q) forj € I
(4.7)
H,Ej(fﬂ, q) = xq—ti+j—1+n—1H£i1(:;2, q) fOI' _j‘ c I“?, = [1, k‘ - 1]

We still need to express HZ'

n—1

(z,q) in terms of Hfﬁl,l(a:, g). To combine the by > 1
and by = 1 cases, let ¢ = ¢,..1 (B} = the length of the longest column of By. In other

words, c = sp_1 if by > 1, and ¢ = s3_5 if b = 1.
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Lemma 4.6. Fori € [1,k — 1), we have HZ (z, q)

e—{n—1-t;)

= Z H ~11($ O+ Y H 2k, q) + % > Hffl,z(%q)
l=ctl =1 {=c~(n~1=t;}+1

Proof. Since we get B* by removing the cells {{I,n — 1) }icjc—(n—1-t:)+1,¢ from By, we

have for any C € P, such that (I,n - 1) € C,

th(C) Zhgi(c)+l ifﬂE[C“(nuluii)Jrl,C]
{4.8)
hp,(C) = hg(C) otherwise.

Also, €, (C) = £gi(C) for all C. This implies

T (2.9) %Hfﬁlll(m, q) forlefc—(n—1~1t;)+1,c
n—1, T,q) =

Hfﬂljl(m,q) foriec+1l,n—1orle([l,e—(n—1-1)
(4.9)

The lemma then follows from HZ' (z,q) = 3 HE . O

It follows from (4.7) and Lemma 4.6 that

4
n—1

Hey(z) = ¢ [1 Z;:L HBDM( )+ E Hﬁu(%)} for j € Ly
n—1 e—(n—1—%;}

R DR N IR SR N B (R T)

I=c i1 o

+ > H’r?fl,l(g)} forjel,ie|lk—1]

L i=e—{(n—1~t;)+1 ¢

This describes a recurrence relation between HZ(z, q) and Hfﬂl(g, g), which can
be written in the form of a matrix. Referring back to the definition of these row vec-
tors (Definition 1.16), we see that HP(z, q) = HD (& {5, A(%)D, where the diagonal
matrix D collects the powers ¢! and ¢~ %"l It can then be checked that the
matrices A(%) and D are as stated in Theorem 4.2,
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AN A

Figure 4.4: Left: the Dyck path By and its last peak p. Right: the set of all last

peaks as we progressively truncate By.

A subboard of B is the first m rows and m columns of B, considered as a board
in the m-by-m array, for some m < n. To apply Theorem 4.2 recursively to a board
B, we need all the subboards of B to satisfy the conditions in Theorem 1.20 if the
subboard were to replace B.

Suppose B is contained in the upper triangular board. Note that the last peak of
By as a Dyck path is at height a; — 1 if b, > 1, and height g1 +ax — 1if by = 1.
The inequalities ¢; — s5,_; >.a; — 1 and #; — s; < a — 1 mean that each peak (of By)
is at least as high as the last peak, and each valley is at most as high as the last
peak, respectively. When we look at a subboard B’ of B, we truncate the Dyck path,
and the corresponding last peak of (B')p moves to the left as we progressively look
at smaller subboards. See Figure 4.4 for all the last peaks we get this way, marked
as red dots. The Dyck path criterion in Proposition 1.22 is the same as saying that
every peak of By is at least as high as any red dot to the right of it, and every valley
of By is at most as high as any red dot to the right of it. In this case we can express

HZ{z,q) as a matrix product by applying Theorem 4.2 recursively.
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Chapter 5

Proof of Theorem 1.21

We define a flipped version of Dworkin’s & statistic, denoted 5 , for any board B that
can be obtained from a Ferrers board via a permutation on the rows (a row-skyline
board). See Figure 5.1 for the computation of &; it is simply Figure 4.1 flipped across
the anti-diagonal. Since the transpose of a Ferrers board is equivalent to the board

itself, we have HE(z,q) = S zhe(0)gfs() 1
CePp

Definition 5.1. Let I;T,fz-(m, g) = 5. as () 2@ We define HB(x, q) similar to
CEP,
{i,;n)eC

how we defined AP (z) in Definition 1.17.

Theorem 5.2. Let B be the Ferrers board By (by, 015 ..., by, ax), and let s;,t;, and B

be as in Definition 1.19. Suppose either bg,a; > 1, or both by = 1 and a, > 1.

In this chapter, we will take this as the definition of H?{x, ¢). This is different from the definition
of HE{z g} in Chapter 4 for skyline boards, but the two definitions coincide when B is a Ferrers

board.

31




Figure 5.1: The computation of £.

Suppose further that t;.1 < s; 1+ ax— 1<t foralli € |1,k —1]. Then
H7(x,q) = H? AD, (5.1)
where A is the (n — 1)-by-n (¢, xq~")-Ferrers matriz with shape
B(—, 0% 1;bk 1,08 2; -+ b2, 223 b1, ),
and D is the n-by-n diagonal matric with

b S tp—1F1—8k_1, tp_1—Sk-2 tp—s+l—ag_z, . b 1
(q ?"'7q 7q 7"'5q ?"‘5q "“)q )

down the diagonal.

Let B’ is B with the jth column and nth row removed. For C' € P,, (n,7) € C,
let C' be C'U B’ considered as a placement in F,_;. Since a; > 1, the board B does
not reach the nth row. Hence hg(C) = hg/(C’). When we compute £5(C), the entire
gth column is canceled, and on the nth row there is a circle in every cell to the left

of (n,7), and no circle to the right of (n,j). Hence £5(C) = £p(C") + j — 1, which
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implies

ﬁ%(%@): Z mha(c)qéy(C)
CePR,
(nd)eC

— gt S e @ e (5.2)

C'eFna
= ¢ HY (z,9)
Suppose j € I;, where I, = [t;_; + 1,%;] for i = 1,...,k. The board B is Ferrers

equivalent to the board
B =B, (b,a1;.. 5 b1, 0080 tap —tio1 — 1L, 11t — 8o —ap + 1,

63 bir1, it -y Bmt, a—13 b — 1, a5 — 2);
see Figure 5.2, (In the by = 1, a5 > 1 case, B* ends in ...; by_1, a1 + a; — 2 instead.)
If by, ap > 1, then By = By 1(by,a15 ... b —_1, ap — 1). It by =1 and ag > 1, then
By = Buoa(b1,01; .. bg_2, 0x—0; bp—1, 051 + ax — 1). In both cases, The board B* is

equivalent to B” = BoU {(n—1,s;-1 +ax), ..., (n — 1,7 — 1)} through a permutation

on the rows.

Lemma 5.3. Let C € Py, (n—1,1) € C. Then ifl > s;_1 + ag, then

hBﬂ(C) = hBo(C) +1

(5.3)
Epr(C) = Ep (C) + 1 = a — 55
On the other hand if I < s;_1 + ag, then
hpn(C) = hpg, (C)
(5.4)

€60(C) = €po(C) + 1 — ar — i1,
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n-1 n-1

bs E_ | b IL I
b1 L A %_ o
a | _
” I - (bﬁ 1l
| .
> =
-1 ak.gl

Figure 5.2: The equivalent Ferrers boards B’ and B*. If we divide B’ (shown on the
left) into three regions as shown, where region II is within a single column, we can
obtain the other board by moving these three pieces around: namely region I does
not move at all, region III moves one step down and one step to the right, and region
11 becomes a row of the same length and is placed between the two. The resulting
board B* (shown on the right) is a Ferrers board iff the length of region 11 lies weakly
between the length of the top row of region IIT and the length of the bottom row of
region I. This condition simplifies to #_; < 8,1 +a, — 1 < ¢;,. To obtain B” from
B*, move region II all the way down to the {n — 1)th row, and shift region III up one

step. Regions I and 111 combined in this way is the board Dy.
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atSi-1 N-ak-5i1 at+Sia-1 n-ax-Si1

Figure 5.3: Comparison of £g+ and & By-

Proof. See Figure 5.3. The plus sign is the rook at (n —1,{). If { > 5,1 + a) (shown
on the left), the circles in dotted red at (n—1,1),..., (n—1, ag +s;_1 — 1) contribute to
€5,(C) but not €5 (C). If § < 8;_1+ay (shown on the right), the circles in dotted blue

at (1 —1, a5+ Sp1), ., (n—1,ax +5;_1 — 1) contribute to £5«(C) but not £5,(C). Ll

This implies

n—1 3i—1+ae—1
B l—ap—5;— rrBo T~y —8i— rrBo
Hp g o= pg W75t E , H2 | gt § , H7 . (5.5)
l=s;_1+ag i=1

Combining (5.2}, (5.5), and the fact that B’ and B” have the same ¢-hit polyno-

mials, we get for any ¢ € [1, k] and j € I,

ng(w, q) = mqj—uk—ml[ﬁfgmil SIS ﬁfo ]

—Lsi_1tag

(5.6)

+ qj_l_’_n—ak—s{——l[ﬁ'RBE],Sifl-}-&k—l + + Hfgl,l]'
This agrees with the description of the matrices A and D in Theorem 5.2.
Suppose B is contained in the upper triangular board. The requirement that

ti1 < 8i_1tap—1 <t fori € [1, k— 1] mean that every peak of B is at least as high
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AN

Figure 5.4: The board B as a Dyck path. We place a red dot one step down (and to
the left) from all last peaks we get by truncating B progressively.

as ax — 1, and every valley of B is at most as high as a; — 1. To apply Theorem 1.21
recursively, every peak of B needs to be as least as high as any red dot to the right
of it (See Figure 5.4), and every valley of B needs to be as most as high as any red

dot to the right of it. This implies Proposition 1.23.
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Chapter 6

Special Cases

We look at some implications of Theorems 1.20, 1.21, and Propositions 1.22, 1.23.

When B = By,(2,2;...;2,2), we have

1:8:89323\

11 2 =z
1 = =z 1l 2z z z
Hi(m)=(1 1) 11 2 2 - w o (81)
1 =z =z 1 11 z =z
1111

\111xm

Through Proposition 1.11, this product is equivalent to the matrix product asso-
ciated with the s-inversion sequence s = (1,1,3,2,5,3,...), appearing in Section 3.8
of [1|. The partial products, which are row vectors, have two interpretations. By
Theorem 1.20 and Propositon 1.22, they are [Hy, ,, ¢, HE 50, HE 1, ..., Hgﬂ,%_ﬂ. By

Theorem 1.21 and Proposition 1.23, the partial products are also
(g g Hppop1o - Hip | = 25 HEY BEM B BN, EY EM, (6.2)

where M = {12,...,k*} and EM = 3o gdesto)
TESN
o ends with ¢
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Analogous results hold for any multiset M = {1%,..,k%} with a; > ... > ag,
although H and H give different matrix products in general. Since permuting the
multiplicities (a;) gives equivalent Ferrers boards, there are matrix product expres-
sions for all multiset Eulerian polynomials.

When B = B,(2,1;1,1; ...;1,1;1, 2), we have

Hf(@Z(Hﬁn_l HE, HE, .. Hﬁfn_z)

1 1 z =
11 g (6.3)
= ( 11 ) 11 z =
1 1 =
111 =z
where HZ, = 3> %2 for j ¢ [1,n—1} and HE, = 3 z%={); and
aE8n gES
7 follows n =M
~ B _ - -
H,(z)=\ A5, AP, .. B
l 2 =z =«
1l =z x (6.4)
= ( 11 ) 1 1 z =
1 1 1
1 1 11

where ff,fj = ¥ z%() for § € [1,n]. Analogous results hold for all » > 1.
oESn
Tn=]
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