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ABSTRACT

PLANAR OPEN BOOKS AND SYMPLECTIC FILLINGS

Stephan Schonenberger

John B. Etnyre, Advisor

A construction is given that shows an interesting family of Stein fillable contact
3-manifolds are supported by planar open books. Knowing that a Stein fillable con-
tact 3-manifold is supported by a planar open book might enable one to determine
the diffeomorphism types of fillings. We demonstrate this technique by showing

that the small Seifert fibred space M(—3; —2, —2, —2) has a unique Stein filling.
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Chapter 1

Introduction

The correspondence between contact structures and open books, developed by
Giroux in 2000, created a new burst of work in contact topology. Recently, Ab-
bas et. al. [1] proved the Weinstein conjecture for contact 3-manifolds that are
supported by planar open books, i.e. open books whose page is a punctured 2-
sphere. That this does not solve the Weinstein conjecture in generality was shown
by Etnyre [8] who provided the first obstructions for fillable (and hence tight) con-
tact structures to be supported by planar open books. He did so by showing that
such fillings can be compactified to a blow up of a ruled symplectic manifold, which
proves that, among other things, the intersection form of a filling must have by = 0.
Etnyre’s proof uses a result by Eliashberg [6], a construction to cap off the boundary
of an open book by 2-handles in a symplectic way, thus giving rise to a symplectic

cobordism of the 3-manifold to a surface bundle over the circle. Such surface bun-



dles can then be capped off to yield a closed symplectic manifold. This work first
constructs planar open books for a family of Stein fillable contact manifolds, among
them Lens spaces and small Seifert fibred spaces with ¢y < —3.

The problem to determine the diffeomorphism types of fillings for a contact 3-
manifolds is interesting and intriguing. It was first shown by Eliashberg [4] that
any Stein filling of the tight contact 3-sphere is diffeomorphic to the 4-ball. McDuff
[24] showed that for contact structures on Lens spaces L(p, 1) that are quotients
of a cyclic action on (the unique) tight contact structure on S® there is a unique
(up to blow up) diffeomorphism type of fillings if p # 4 and there are two in
case p = 4. Her argument showed that such fillings can be compactified to a ruled
symplectic manifold and identified the complement of a filling to be a neighborhood
of a symplectic sphere with self intersection p > 0. Such configurations of symplectic
spheres are unique up to isotopy and this proves her result about the filling itself.
Recently, Hind [17] has shown that these fillings are unique up to Stein homotopy.
This result was proved for L(2,1) three years earlier [16] using similar techniques.

Lisca [22] generalized McDuff’s result, using a similar line of argument, to con-
tact structures on all Lens spaces that arise as quotients of the tight contact struc-
tures on S3. To do this, Lisca used a glueing result by McCarthy and Wolfson to
construct compactifications of symplectic fillings. Also Ohta and Ono [29] study
diffeomorphism types of fillings for contact structures from Milnor fibers in a sim-

ilar way. Most of the examples above used a compactification to a ruled surface.



Using ad-hoc methods to embedd Stein fillings of 7% into homotopy K3 surfaces,
Stipsicz showed that a Stein filling of the 3-torus 7° with the contact structure
¢ = ker(cos(2mz)dx + sin(27z)dy) is homeomorphic to T? x D?.

We use McDuff’s strategy for solving this problem, but use Etnyre’s construc-
tion to provide compactifications to a ruled surface. Doing this carefully allows to
determine the complement of a filling and classify fillings up to diffeomorphism.
This possibly allows to provide a diffeomorphism classification of fillings for tight
contact 3-manifolds supported by planar open books. We illustrate this technique

in case of the small Seifert fibred space M(—3; -2, -2, —2).



Chapter 2

Background

In this chapter we describe some background results about contact and symplectic

topology that are needed throughout this thesis.

2.1 Contact structures and open books

For a good introduction to open books and contact structures, the reader is advised
to [7, 30]. To learn how to see open books from a Kirby diagram see [11]. We assume
the reader is familiar with Kirby Calculus, see [15, 30]. Unless stated otherwise,
suppose that 3-manifolds compact and oriented and that contact structures are
positive. We orient symplectic manifolds using the symplectic structure, i.e. such

that w A w > 0.



2.1.1 Contact manifolds and their fillings

If (X,w) is a symplectic 4-manifold and v is a Liouville vector field defined in
a neighborhood of X, then v defines a contact form a = i,w|sx on dX. In case
Y = 0X is connected and v points out of (into) X along 0.X, we call (X, w) a convex
(concave) filling of the contact manifold (Y = 0X, & = ker(a)). Assume we have a
convex filling (X, w) for a contact manifold (Y, £) and there is furthermore an almost
complex structure J on X and a strictly plurisubharmonic function ¢ : X — R such
that w = —dJ*dp and Y is a regular level set of o, then we call X a Stein filling.
We refer to [6] for the current state of art for different notions of fillability and their

relations among eachother.

Ezample 2.1.1. Consider the 3-sphere S® C C2 In polar coordinates (ry, 6,7, 65)
the standard symplectic structure on C? is given by w = ridri Adf;, +rodrs Adfs. The
vector field v = £(r{9,, + r30,,) is easily verified to be a Liouville vector field, i.e.
that L,w = w, and is certainly defined in a neighborhood of S = {r?+r2 = 1}. The
contact form o = i,w|gs = 2(ridf; + r3df.) gives rise to the standard tight contact
structure on S%. Notice that the function ¢ : C* — R given by ¢(ry,01,79,05) =
r? + r2 is a strictly plurisubharmonic function for the standard complex structure
on C% and S? is a regular level set. Thus the 4-ball D* = {r? +r2 <1} C C?is

indeed a Stein filling.

Suppose (X,w) is a symplectic manifold with boundary 0X = (-Y;) UY; for

two 3-manifolds Y; and Y,. Moreover assume there exists a Liouville vector field v



defined in a neighborhood of dX pointing into X along Y; and pointing out of X

along Ys. Then (X,w) is called a symplectic cobordism from (Y1,&;) to (Ya, &).

Example 2.1.2. Given a contact manifold (Y, & = ker(a)) one can construct a sym-
plectic manifold (R xY,w = d(ta)), where t denotes the R-coordinate. Then v = t0,
is a Liouville vector field for w. For two positive functions f;, fo : ¥ — R with
0 < fi1 < fa, we find a symplectic cobordism (X,w) = {(t,p) e RxY : fi(p) <

t < fa(p)} from (Y, fia) to (Y, faa).

Self-cobordisms as in Example 2.1.2 are important to establish certain properties
for the contact form of a given contact manifold (Y, &). This allows for symplectic

cobordisms to be glued together.

2.1.2 Open books

Before turning to a discussion of open books, we recall some facts about diffeomor-
phisms of surfaces. For a compact orientable surface I’ with boundary we define the
mapping class group M(F') of F' as the group of orientation preserving diffeomor-
phisms of F' fixing the boundary pointwise, up to isotopies of such diffeomorphisms.
We will generally not make a distinction between a diffeomorphism and its class
in the mapping class group. If I/ C F is a subsurface, then there is a natural
inclusion M (F') C M(F) by extending diffeomorphisms of I’ by the identity to F.

Furthermore recall that

Theorem 2.1.3 (Dehn [2], Lickorish [21]). The mapping class group is generated
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Figure 2.1: Positive Dehn twist about ¢

by Dehn twists.

For a simple closed curve ¢ C F, identify a neighborhood of ¢ with S* x [0, 1] with
c=S'x % Then a positive Dehn twist about ¢ is given by t.(0,t) = (0 + 2nt,t),
shown in Figure 2.1. Tts inverse, a negative Dehn twist, will be denoted by ¢!

Notice that a Dehn twist only depends on the orientation of F', but not on the

orientation of c.

Definition 2.1.4. An open book (B, ) for a 3-manifold Y is a given by an oriented
link B C Y together with a fibration 7 : Y\ B — S of its complement with fiber
7 1(0) = int(Fy) the interior of a compact surface Fy C M with oriented boundary

0Fy = L. We call Fy a page of the open book and B the binding.

Notice that around each component of B one finds a neighborhood N = S! x D?
with cylindrical coordinates (7,1, z), such that Fy NN = {9 = @}. Furthermore any
vector field v transverse to the pages and meridional in a neighborhood of B gives
rise to a return map ¢, : Fy — Fy where Fj is a page of the open book. ¢, is called

the monodromy of the open book.



Definition 2.1.5. An abstract open book (F,¢) for a 3-manifold Y is given by a
diffeomorphism ¢ : F' — F', called the monodromy of a compact oriented surface F

with ¢|nbhd(6F) = Id. Then

Y = F % [0,1]/gmo~en Y | || S'x D],
0F|

where 1) is minus the identity identifying the torus boundaries, when equipped with
the induced product structures. Notice that v in the definition above is unique up to
isotopy. Again, we call a surface F' x {p} a page of the open book, for p € [0,1]/ ~,

and OF the binding.

Two abstract open books (F7, ¢1) and (Fy, ¢2) are called equivalent if there is
a diffeomorphism f : F} — F5 such that f o ¢; = ¢9 o f. The following Lemma,

collects basic facts about (abstract) open books, c.f. [7, Lemma 2.4].

Lemma 2.1.6. (a) An open book (B, ) gives rise to an abstract open book (F, ¢).

(b) An abstract open book (F,¢) determinesY and an open book up to diffeomor-

phism.

(¢) Equivalent open books give diffeomorphic manifolds.

It is important to keep the following sublety in mind: while open books are given
up to isotopy, abstract open books are determined up to diffeomorphism. This will
become important, since we will have the case where the same abstract open book
is compatible with contactomorphic contact structures, but these contact structures

are not isotopic.



H* H-

Figure 2.2: Positive and negative Hopf links.
Example 2.1.7. Consider S* C C2. Define D = {(ry,01,72,0,) € S* : 1 = 0},
H* = {(r1,01,72,05) € S* : riry = 0} and similarly H~ = {(ry,01,72,05) € S® :
riry = 0}. Notice that D is an unknot, and H* is called the positive, respectively

negative Hopf link, with orientations shown in Figure 2.2. There are fibrations

7T0:SS\D—>S1 : (11, 01,79,09) — 04
7T+:SS\H+—>51 : (11, 01,79,09) — 01 + 05
m_:SP\NH™ — S' : (ry,00,79,05) — 0, — 0.
All of these fibrations give rise to an open book of S* with page a disk in the case
of my and an annulus in the case of 7. The monodromy of 7 is the identity. The

monodromy of the open book (H*,7.) is a positive Dehn twist ¢. about the core

curve ¢ of the annulus, respectively a negative Dehn twist about this core.

2.1.3 Open books supporting contact structures

Definition 2.1.8. A contact structure £ on Y is called compatible with an open
book (F, ¢) if da gives a volume form on the pages F' and a|sr > 0. Vice versa, we

9



say an open book decomposition of Y supports &.

Example 2.1.9. Consider S? C C? as in Example 2.1.7 with the standard tight
contact structure ¢ as in Example 2.1.1. Then one can show that my and 7, are

compatible with &, while 7_ is not.

Already Thurston and Winkelnkemper [31] showed that an open book decom-
position of an orientable 3-manifold gives rise to a compatible contact structure.
Torisu [32] & Giroux [13] observed that this contact structure is unique up to iso-

topy. Giroux also proved the converse, which makes this relationship most useful.

Theorem 2.1.10. Fvery open book decomposition of a 3-manifold supports a con-

tact structure, unique up to isotopy. Any contact structure is supported by an open

book.

Stein fillable contact 3-manifolds are characterized by the monodromy of a sup-

porting open book. Namely:

Theorem 2.1.11. A contact structure is Stein fillable if and only if there is a
compatible open book whose monodromy can be expressed as a product of positive

Dehn twists.

Refining results by Weinstein [33] and Eliashberg [5] about symplectic cobor-

disms, one obtains the following results; see [9, 10].

Theorem 2.1.12. Suppose (Y,€) is a contact manifold compatible with an open
book (B, m) with page F'. Assume the surface F is obtained from F' by attaching

10



a 1-handle at points p, ¢ € OF'. Then there exists a symplectic cobordism (X,w)

which is diffeomorphic to'Y x [0, 1] with a 4-dimensional 1-handle attached to'Y x 1

atp, q.

Recall that a 1-dimensional submanifold in (Y, &) that is tangent to £ is called
Legendrian. Given a simple closed curve in a page of an open book decomposition
of Y supporting &, we can employ the Legendrian realization principle [19, Theorem
3.7], to isotope this curve to be Legendrian, given that it is homologically nontrivial
in F'\ OF. Notice that a knot contained in a page obtains a framing from a vector

field tangent to the page and transverse to the knot. This framing is called the page

framing, p(c).

Theorem 2.1.13. Suppose (Y, &) is a contact manifold compatible with an open book
(B, ) with page F' and monodromy ¢. Set ¢/ = ¢ ot., where ¢ is a homologically
nontrivial curve in F'\ OF and t. denotes a positive Dehn twist along c. Denote
by (Y’ &) the contact manifold supported by the open book (F,¢'). Then there is a
symplectic cobordism (X,w), from (Y, &) to (Y', &), diffeomorphic to'Y x [0, 1] with

a 4-dimensional 2-handle attached to ¢ with framing p(c) — 1.

Given a contact 3-manifold (Y, ) compatible with an open book decomposition
(F, ¢), consider the open book (F’, ¢') obtained from (F, ¢) as follows. First attach-
ing a 1-handle as in Theorem 2.1.12 yields F’. Second, choose a curve ¢ contained in
a page that runs over this 1-handle once and set ¢’ = ¢ ot.. According to Theorem
2.1.13, performing this positive Dehn twist along ¢ can be achieved by attaching a

11



2-handle. Denote the contact 3-manifold obtained from (F”,¢’) by (Y’,£’). Since
the curve chosen to attach the 2-handle runs over the 1-handle once, this handle
pair is canceling, and so Y is diffeomorphic to Y’. Furthermore, by a theorem of
Giroux [13], the contact structures € and £ are isotopic. We say (F”, ¢') is obtained

from (F, ¢) by stabilization.

Example 2.1.14. We can visualize the open books from Example 2.1.7 in an abstract
way. The first one, 7, is obtained as follows. We find an open book on R? with
cylindrical coordinates (7,9, z) where the z-axis is the binding and the pages are
given by v = const. Adding a point at infinity, one obtains the open book my on
S3. To obtain a 4-dimensional picture of 7, we stabilize the open book 7y once.
To do this, think of the 4-ball as the product of a 2-dimensional 0-handle and a
2-disk, and of a 4-dimensional 1-handle as the product of a 2-dimensional 1-handle
and a 2—disk. Thus by attaching a 1-handle to a 0-handle we see a disks worth
of annuli. Second, pick one of these annuli and attach a 2-handle to its core, with
framing (—1) with respect to the page. Eventually we can exhibit a 4-dimensional
manifold whose boundary carries an open book, namely S? with its open book from

the positive Hopf link, this is shown in Figure 2.3.

2.1.4 Stabilizing Legendrian knots via open books

We will also make use of a relation between the stabilization of open books and sta-

bilization of Legendrian knots contained in a page, see [7]. For a Legendrian knot

12



Figure 2.3: A 4-dimensional and an abstract picture of the open book (H™, 7).
(In the abstract picture, the monodromy is a positive Dehn twist about the core of

the annulus.)

A

negative stabilization positive stabilization

Figure 2.4: Positive and negative stabilization of a Legendrian knot in the front

projection.

in (R3, &, = ker(dz — ydz)) one can define stabilization, using front projections, by
adding zig-zag’s. There are two versions, both decreasing the Thurston-Bennequin
number by one, but positive (negative) stabilization increases (decreases) the rota-
tion number by one, see Figure 2.4. Given a Legendrian knot on a page of an open
book, we can stabilize it by first stabilizing the open book and then Legendrian

realizing a curve running over the 1-handle once, see Figure 2.5.

13



A

=~

+1

negative stabilization positive stabilization

Figure2.5: Positive and negative stabilization of a Legendrian knot contained in a

page of an open book.

2.1.5 E-handles and capping off symplectic fillings

The last paragraph in this section is devoted to explain the attachment of Eliashberg-
handles (which we will call E-handles for short). Notice that, topologically, 0-
surgery along the binding of an open book decomposition of a 3-manifold yields
a surface bundle over the circle. Eliashberg [6] showed that this can be done in
a symplectic way. Eventually one can cap off this surface bundle to show that
any (weakly) fillable contact 3-manifold embedds into a closed symplectic manifold.
Although the importance of this result cannot be overemphasized, for the purpose
of this thesis we content ourselves to recall the construction of these handles.

Pick a constant k£ > 0 and consider a function g : [0, 1] — R that is

e smooth on [0, 1),

hd g|[0,%] = k:

14



e g(t) =+/1—1t?for t near 1, and
e g'(t) <Oon (31).

In the standard symplectic R* = C? with polar coordinates (11, 0y, 72, 05) define the
domain

P/:{TISQ(TZ) g€ [0} CcP={rn<k;r, <1}

contained in the polydisk P. Indeed one can think of P’ as of the polydisk P with

corners rounded. Denote by A’ the part of the boundary of P’ given by
, 1
Al=qri=g9(r) : rp € [5,1] .
Notice that A" is C*°-tangent to P near its boundary. The primitive

A= (T%d@l + ngeg)

N | —

of the standard symplectic form on R* restricts to A’ as a contact form

2 2
ANa = 2 (9 (2) 4o, +d¢92) .
2 T

2
2

Set G = S? x D? with its standard symplectic structure wy = o1 + 0o, where
the total area of o; on S? is 27 and the total area of o, on D? is k%*m. Split S?
into the northern and southern hemispheres of equal area, denoted by S3 and S2

respectively. There exists a symplectomorphism
®:P— S, xD*CQG.

Let H = cl(G'\ ®(P’)) and A = ®(A’). So H is a 2-handle with attaching region
A. Notice that cl(0H \ A) is fibred by symplectic disks.

15



Theorem 2.1.15 (Eliashberg, [6]). Suppose (Y,&) is a contact manifold and w a
closed 2-form on'Y with w|e > 0. Furthermore assume we are given an open book
decomposition of Y compatible with & with with binding B. Let Y' be obtained from
Y wia 0-surgery along B with respect to the page framing and the corresponding
cobordism X with 0X = (=Y )UY’. Then X admits a symplectic form € such that

Qly = w and Q is positive on fibers of the fibration Y’ — S*.

Although the actual attaching of an E-handle requires one to deform the sym-
plectic structure in a collar of the attaching region, the following corollary is implied

from the construction above.

Corollary 2.1.16. If (H, A) is an E-handle attached to Y as in the situation of
Theorem 2.1.15, then the cocore of H has a neighborhood symplectomorphic to D? x

D? with its standard symplectic structure.

Thus the upper boundary of the cobordism in Theorem 2.1.15 is a symplectic
fibration. By this, we mean a 3-manifold Y that fibers over the circle and is equipped
with a closed 2-form w that is positive on each fiber. The line field | = ker(w) is
transverse to the fibers. An orientation on Y and the fibers orients [, which thus
can be generated by a vector field v. Picking one fiber F', the return map of this
vector field is called the holonomy of the fibration.

In the same work, Eliashberg shows that such symplectic fibrations as obtained
in Theorem 2.1.15 can be symplectically capped off. We will need the following
lemma, [8].

16



Lemma 2.1.17. Suppose the holonomy of a symplectic fibration (Y,w) with fiber
F is Hamiltonian. Then there is a symplectic form Q on X = F x D? such that

0X =Y and Qpx = w.

2.2 Holomorphic curves and ruled symplectic 4-

manifolds

In this section we recollect results on holomorphic curves and ruled symplectic
manifolds, with a special emphasis on S? x S?. A self-contained reference on this
material is given in [20, 25]. For a detailed account on holomorphic curves, the

reader is pointed to [26].

2.2.1 Holomorphic curves in symplectic manifolds

An almost complex structure J on X is an automorphism J : TX — TX of the
tangent bundle with J?> = —Id. We say J tamed by a symplectic form w on X if
w(v, Jv) > 0 for all v € TX, and compatible if furthermore w(Jvy, Jvy) = w(vy, v2)
for all vy, vy in TX. We write J (X, w) for the set of all compatible almost complex
structures. Recall that this is a nonempty and contractible set. Notice that an
almost complex structure on X gives rise to a first Chern class ¢; € H*(X) which
only depends on the symplectic structure, since all compatible almost complex

structures are homotopic.
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Definition 2.2.1. Given a Riemann surface (X, j), a holomorphic curve in X is a

map u : (X,j) — X satisfying the (non-linear, elliptic) Cauchy-Riemann equation
1 .
E(duoj—JOdU):O.

The image of u is called an unparametrized curve. If ¥ happens to be a sphere, a

holomorphic curve is often refered to as rational.

We will assume that holomorphic curves are simple, i.e. the map u does not
factor as u’ o p for some branched cover p of Riemann surfaces.

A symplectic submanifold ¥ C (X,w) is a surface X where the symplectic form
w restricts to a symplectic form on . Notice that, due to the nature of the space
of almost complex structures compatible with w, given a symplectic submanifold
we can always find an almost complex structure that makes it a holomorphic curve;
see e.g. [27, Proposition 1.2.2].

Local properties of holomorphic curves translate from the complex point of view,
i.e. the case where J is integrable. Two of them should be emphasized here. First,

holomorphic curves intersect positively:

Theorem 2.2.2 (positivity of intersections). Suppose X and ¥’ are holomorphic
curves in (X,w,J). If they do not share a component, then [X] - [¥X'] > 0, with

equality if and only if they are disjoint.

Second the adjunction formula which, in particular, gives a homological criterion
for curves to be embedded. We state it here only for rational curves.

18



Theorem 2.2.3 (adjunction formula). Suppose ¥ is a rational curve in (X,w,J).
Then

(er(X), [2]) <2+ 5],

with equality if and only if ¥ is embedded.

Turning to a global point of view, we describe some of the properties of the space
of holomorphic curves in a given homology class. This space is, as the solution space
of an elliptic system, finite dimensional, at least when J is generic. If this space
is nonempty then it is either compact, or can be compactified by so called cusp-
curves, via Gromov compactness theorem. We will need the following 4-dimensional

version, proved by Hofer, Lizan and Sikorav, [18].

Theorem 2.2.4. Suppose ¥, is a holomorphic curve in (X,w) and (c1(X), [X,]) >
0, then the space of unparametrized holomorphic curves near ¥, is a manifold of

dimension 2({(c1(X), [Xy]) — 1+ g). for every J € J.

2.2.2 Ruled symplectic manifolds

A symplectic manifold (X,w) is called minimal if it does not contain an embedded
symplectic sphere X of square —1. Such a sphere is called ezceptional. It was shown
by McDuff that such a sphere has a neighborhood N, whose boundary (ON,,w)
can be identified with the boundary (D*(e + €),wy) of the ball of radius €+ ¢ in C?
where 7é? = w(X) and € > 0 is sufficiently small. Hence such a curve can be blown
down by taking out N, and replacing it with D*(e + €). Notice that the resulting
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manifold is independent of € (but the symplectic structure does depend on €). The

reverse process is called a blow up.

Theorem 2.2.5 (McDuff, [24]). Every symplectic 4-manifold (X,w) covers a mini-
mal symplectic manifold (X', w'") which is obtained from X by blowing down a finite
collection of disjoint exceptional spheres. Furthermore, given this finite collection,

the symplectic form " on X' is unique up to isotopy.

This also holds in a relative version, for (X, C), where C' is a symplectically
embedded compact 2-manifold. Such a pair is called minimal, if X \ C' is minimal.

Then,

Theorem 2.2.6 (McDuff, [24]). Every symplectic pair (X,C,w) covers a mini-
mal symplectic pair (X', C,w') which is obtained from X by blowing down a finite
collection of disjoint exceptional spheres in X \ C. Furthermore, given this finite

collection, the symplectic form w' on X' is unique up to isotopy (rel C').

A symplectic manifold (X, w) is called ruled if it is the total space of a fibration
whose fibers are 2-spheres on which the symplectic form does not vanish. In case
the base of this fibration is a 2-sphere, the manifold is called rational. Topologically

there are only two such manifolds: S2 x S? and S?%S? ~ CP*#CP".

Theorem 2.2.7 (McDuff, [24]). Let (X, C,w) be a minimal symplectic pair where C
is a symplectic sphere with self-intersection [L]? = p > 0. Then (X, w) is symplecto-
morphic either to CP? with its usual Kdhler form or to a symplectic S*>-bundle over
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a compact surface B. Furthermore this symplectomorphism may be chosen so that
it takes ¥ either to a complex line or quadric in CP?, or to a fiber of the S%-bundle,

or (if B = 5%) to a section of this bundle.
Specifically, we will need the following corollary.

Corollary 2.2.8. Suppose (X,w) is a symplectic manifold containing a symplec-
tically embedded sphere ¥ with self-intersection 0. Suppose that there exists an
embedded sphere S with self-intersection 0, that intersects ¥ geometrically once.

Then (X, w) is symplectomorphic to a blow up of S? x S?.

21



Chapter 3

Constructing Planar Open Books

A plumbing tree P is a tree where each vertex is endowed with an integer. Replacing
each vertex by an unknot such that two are linked exactly once if and only if there
is an edge between the corresponding vertices, gives a link L C S®. A 3-manifold
Y is obtained from a plumbing tree by doing surgery along L where the surgery
coefficient on each component is the integer on the corresponding vertex.

In this chapter we construct planar open books for 3-manifolds arising from
such a plumbing diagram, with the condition that the surgery coefficient is at most
minus the valence of the corresponding vertex. Because these open books will have
positive monodromy, they support Stein fillable contact structures. Although not
used explicitly, the construction of such open books is inspired by the algorithm
presented in [3] that describes how to turn rational contact surgery into a sequence

of (+1)-contact surgeries.
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We will gradually build up this construction, starting with the easiest version.
Plumbing on a linear tree yields a Lens space and one can obtain all contact struc-
tures in this way. Second we describe open books for small Seifert fibred spaces
with integral Euler number ey < —3. Again, all contact structures on these spaces
are constructed this way. Lastly we prove Theorem 3.3.1. Since there is no general
classification of contact structures on these spaces yet, we cannot say how many of

the contact structures are obtained in this way.

3.1 Lens Spaces

For coprime integers p > ¢ > 1, consider the continued fraction expansion

1
B:al— z[al,...,ak], Gi<—2,i:1,...,k.
q

QAo —

ag—...__

The Lens space L(p, q) is obtained from a linear plumbing tree with k vertices and
labels aq,...,a;. Notice that, performing a sequence of slam-dunks starting with

the rightmost component, one obtains a rational surgery diagram, <—£>—surgery

q
along an unknot. Instead, we will perform handle slides. Starting with the leftmost
component K7y, slide the right neighbor K, over K;. Thus K5 links K exactly
t1 = (a; + 1) times and has as surgery coefficient by = a; + ay + 2. The string

K3, ..., K; remains unchanged. Now we slide K3 over K. Notice that afterwards,

K3 links K exactly (ay + 1) times, K5 is linked an additional (ag 4 2) times and
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az + 2
as + 2
a; +1

Figure 3.1: Surgery diagrams for L(p, q): rational surgery, surgery on a linear tree

and its rolled up version.

the surgery coefficient is b3 = a; + ao + az + 4. Continuing similarly, we obtain a
new surgery diagram as in Figure 3.1. We call a sequence of handle slides as just
performed rolling up a linear tree. For an explicit example, see Figure 3.2 below.

The classification of tight contact structures on L(p, ¢) was found by Honda [19]

and Giroux [12].

Theorem 3.1.1. On the Lens space L(p,q), there are exactly 1M |a; + 1| Stein

fillable contact structures up to isotopy.

Theorem 3.1.2. Any tight contact structure on a Lens space L(p,q) is supported

by a planar open book.

24



Proof. Suppose
_E:[ala"'aa’k]a aiS—Qizl,...,k
q

as above and K the link in S® obtained from the linear plumbing by rolling up.

i
Jj=1

Recall that the surgery coefficient of a component K; is b; = > '_, a; +2(i — 1), as
in Figure 3.1.

We show that there exists an open book of S® such that each component K;
of K is contained in a page and homologically nontrivial. The aim is to employ
Theorem 2.1.13 for each surgery along K;. Start with the open book 7, given by the
positive Hopf fibration of S3. Next, we need to arrange for each K; to be contained
in a page and that the page framing differs from the framing at hand by 1. We
can realize K stabilizing a parallel copy of the core of a page of 7 |a; + 2|-times.
Recall from subsection 2.1.4 that there is not a unique way to do so. We choose
one. Proceeding by induction, suppose we have realized Ki,..., K;_;. To get K;,
pick a parallel copy of K; ; and stabilize it |a; + 2| times. Eventually we obtain an
open book for a contact structure on L(p, q). Since every stabilization is done on
a connected component of the boundary of a page, starting with an annulus, the
page of the resulting open book is planar. Moreover the number of choices during
this construction is exactly the number of tight contact structures on L(p,q). We
are left to show that different choices yield different contact structures. Notice

that Legendrian realizing K on a page gives in particular a Legendrian link in S%.

The contact, structures can then be distinguished by using a result of Lisca-Matié
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Figure 3.2: Rolling up the surgery for L(16,7).

[23)]. 0

Ezample 3.1.3. The Lens space L(16, 7) is shown in Figure 3.2. Notice that —16/7 =
[—3,—2,—2,—3]. This gives the linear plumbing tree which we roll up to obtain
the last picture in Figure 3.2. We exhibit the open book for a contact structure in
Figure 3.4. It is frequently useful to find a 4-manifold compatible with a given open
book. Such a 4-manifold is shown in Figure 3.5. A Legendrian realization of the
corresponding link K is given in Figure 3.3. Notice that this link is also obtained
from contact (—% + 1)—surgery along a Legendrian unknot with tb = —1 by the

algorithm described in [3].
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Figure 3.3: Legendrian realization of the ‘rolled up’ diagram in Figure 3.2.

\ &

Figure 3.4: Constructing an (abstract) planar open book. The monodromy consists

of one positive Dehn twists along each curve.
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Figure 3.5: 4-dimensional picture of the planar open book. All 2-handles have

framing —1.

3.2 Small Seifert fibred Spaces

A 3-manifold obtained by plumbing along a tree as in Figure 3.9 is called a small
Seifert fibred space and denoted with M (eg; 71,72, 73), Where 11 = [aq, ..., a,], r2 =
b1, ..., bg,], 73 = [c1, ..., cky). The coefficient e is called the integral Euler number.
For a recollection on facts about small Seifert fibred spaces; see e.g. [14]. For small

Seifert fibred spaces with ey < —3, the tight contact structures are classified in [34].

Theorem 3.2.1. Suppose a Y is a small Seifert fibred space with e < —3. Then

any tight contact structure on'Y is supported by a planar open book.

Before giving the proof, it is illuminating to see an example. The proof will

follow exactly that scheme, with more notational effort.

Ezample 3.2.2. Take Y = M(—3; —-3/2,—5/3, —5/3). This manifold has a plumbing
diagram as in Figure 3.6.

First consider the surgery diagram for the Lens space given by the horizontal
chain, which is L(45,19); note —32 = [-3, -2, -3, —2, —3]. Then the third compo-

nent, corresponding to the central —3, has one more stabilization than the previous
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-2

Figure 3.6: Plumbing diagram for M(—3; —3/2,—-5/3,—5/3).

ones. Notice that in the process of rolling up, a meridian of this component will
link all its neighbors to the right exactly once. We can use such a meridian in an
additional stabilization to hook in the surgery diagram for L(3, 2), which is the Lens
space obtained from the remaining vertical chain. Figure 3.8 displays a Legendrian
realization of this link.

Similar to the previous case, we can realize this link on pages of an open book
S3 with planar pages using stabilizations. Using Theorem 2.1.13 we obtain an open
book for Y with planar pages, supporting a Stein fillable contact structure. Such
an open book is given in Figure 3.7. Now one only needs to show that the manifold
obtained in this way is indeed M(—3;—3/2,—5/3,—5/3). This is done via Kirby

Calculus.

proof of theorem 3.2.1. Consider a small Seifert fibred space M (eg;r1,12,73) With
eg < —3 and rq, ro, r3 < —1. Denote the continued fraction expansions of r; by
ry = a1, ... ak], 72 = [b1,...,bg,] and r3 = [c1, ..., k). A plumbing diagram for
M is shown in Figure 3.9.

We now produce a Legendrian surgery diagram as in the example above: Roll
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j cee
_
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=’©
Figure 3.7: Open book for the supporting the contact structure given in Figure 3.8.

All 2-handles have framing —1.

up the linear plumbing tree corresponding to the Lens space L(p, q) with p, ¢ such

that

p
_5 = [@kyy ..y Q1,€0,C1y ..y Chy)

to obtain a sequence knots as pushoff’s of each other. Denote by A;, B;, C; and E
the components corresponding to a;, b;, ¢; and eg, respectively. Then this sequence
of pushoft’s starts with, say, Ay,. Pick an unknot U linking the component £, and
all the following ones once. We can hook in a surgery diagram of the Lensspace
L(p',q') with —]Z—: = [b1,...,by,] as follows. Roll up the linear plumbing tree for
L(p',q") and replace U with the link thus obtained. We can Legendrian realize this
link, noticing that the component F, and all the following ones, will have one more
stabilization than the previous elements.

The Legendrian surgery diagram one obtains this way yields a Stein fillable con-
tact structure on a manifold. A planar open book supporting this contact structure

is shown in Figure 3.10. Thus one only needs to see that the 3-manifold is indeed
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Figure 3.8: Legendrian realization of the surgery for M.

the one obtained by the plumbing graph in Figure 3.9. Set up the following nota-
tion: «; denotes the framing of the handle A;, similarly for 3;, v; and €. Initially,
all framings are —1. Denote by A; the 1-handles used for the stabilization of A;.
Similarly B; denotes the 1-handles used in the stabilization of B; and £ the ones
used to stabilize E. First, slide By, over the (—1)-framed 2-handles coming from
the stabilization By,. This changes f, to b, + 1 and allows to cancel the 1-handles
in By,. Slide By, over By,—1. This gives By, = by, and now By, only links By,
once. This untwines By,. One can untwine By, ; in the same way, not affecting
the properties of By,. Inductively, one can untwine all the B;, thereby cancelling
all the 1-handles in B. and turning the 2-handles B; into a chain, with By linking

the handles in C' and F once, as shown in figure 3.11.
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b,

Figure 3.9: Plumbing Diagram for M (eg; 71,72, 73).

Next one can untwine successively all the handles in C, starting with Cy,. This
yields a chain Cf, ..., C}, with framings 7; = ¢;, and C} links E once, as in figure
3.12.

Now untwine F. This cancels all the 1-handles in £, changes the framing € to
eo and now E links A, B; and C; once.

Eventually one is able to untwine the handles in A, starting with A;. After doing
this, one has a surgery picture at hand corresponding to the plumbing diagram in
Figure 3.9.

Recall that tight contact structures on these spaces were classified by Wu in
[34]. Simply counting the number of possibilities for choosing stabilizations when
Legendrian realizing the link obtained by rolling up and observing that different
choices give rise to different contact structures (via Lisca-Mati¢ [23]) shows that

one can find such a presentation for any contact structure on M (eg;ry,79,73). O
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3.3 General plumbing trees

The proof of Theorem 3.2.1 shows that, if done in the right order, one is able to
successfully untwine pushoft’s of 2-handles with framing —1 to chain’s of 2-handles
and done in the right order already untwined chain’s are not affected by further

untwinings. Thus one can prove the following theorem in exactly the same way as

Theorem 3.2.1.

Theorem 3.3.1. Suppose P is a plumbing tree such that each vertex is labeled with
a framing coefficient v satisfying r < —d, where d is the valence of that vertex.
Then any Legendrian realization of P gives rise to a Stein fillable contact structure

that is supported by a planar open book.
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Figure 3.10: Planar open book
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)

Figure 3.11: Untwining all the 2-handles By, ..., Bg,. The 1-handle belongs to £.

: : %3?

Figure 3.12: Untwining all the 2-handles 1, ..., Cy,. The 1-handle belongs to £.
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Chapter 4

On the diffeomorphism types of

Fillings

This chapter shows how to use planarity of open books compatible with symplectic
fillable contact structures to collect information about the diffeomorphism types of
their fillings.

In general, the strategy follows the line given by McDuff [24], as used by Lisca
[22], Ohta-Ono [29] and others. One seeks to symplectically embed a filling into
a closed symplectic manifold. Then knowing the complement of the image allows
us to obtain information about the filling itself. Here, we follow Lisca [22] but use
planarity of open books to produce such embeddings; see [8]. To see this, we study
a concrete example.

Consider the 3-manifold Y given by the plumbing diagram as in Figure 4.1. This
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Figure 4.1: Plumbing picture for the manifold Y.

Sons

(= ={"

Figure 4.2: Open book compatible with (Y, ¢&).

is a small Seifert fibred space with eg = —3.

From the classification of Wu [34], one concludes the following

Proposition 4.0.2. There exist exactly two Stein fillable and hence tight contact

structures on 'Y, up to isotopy. The two contact structures are contactomorphic.

By Theorem 3.3.1 and its proof, one obtains immediately

Lemma 4.0.3. (Y,¢) is supported by the planar open book shown in Figure 4.2,

where & is any of the two contact structures on 'Y .

Figure 4.3 (a) gives a picture of the 4-manifold W as in Figure 4.2, using dotted
circles for the 1-handles. Via handle slides and canceling the 1-handles one obtains
(b). This verifies directly that Y = W is given by the plumbing in Figure 4.1.
Also Figure 4.3 (c) gives a Legendrian surgery for W inducing one of the contact

structures on Y. To see the other, simply rotate this picture 180°, which also proves
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all 2-handles
have framing —1

(a) (b) ()

Figure4.3: Kirby pictures for W.

that these two contact structures are contactomorphic. For the remainder of this
chapter, let £ denote one of the two contact structures on Y.

The aim of this chapter is to prove the following result:

Theorem 4.0.4. Any symplectic filling W' for (Y, €) is diffeomorphic to a smooth
blowup of W, obtained from the plumbing; see Figure 4.3 (c). In particular, there

is a unique Stein filling of (Y, &) up to diffeomorphism.

The proof takes two steps. In the first step we compactify W’ to a closed
symplectic manifold X and study its complement in X. In the second step we show
that the diffeomorphism type of the complement of such a configuration in X is

unique.
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4.1 Compactification of Fillings

Theorem 4.1.1. Suppose W' is a symplectic filling for (Y,£). Then, for some
integer N > 1, W' is diffeomorphic to the complement of a symplectic configuration

F:O()U01UOQU03

Cq Cs Cs

in Xy = (8% x SQ#NWQ, w) with w a blow up of a symplectic structure on S% x S2.

Proof. From Lemma 4.0.3, the contact structure £ on Y induced by W’ is supported
by an open book with page F a pair of pants and monodromy ¢ consisting of
two positive Dehn twists about three curves, each parallel to one of the boundary
components, as in Figure 4.2. We attach Eliashberg handles H;, : = 1,2, 3, one to
each of the boundary components and extend ¢ by the identity over the resulting
2-sphere, still calling it ¢.

Further notice that ¢ is isotopic to the identity. Thus by adding these handles,
we obtain W/ C W” with OW” = S? x St

We can symplectically cap off W” with a S? x D?. Notice that the resulting
closed symplectic manifold contains an embedded symplectic sphere Sy = S?x{p} C
S? x D? with self-intersection 0. Thus from McDuff’s theorem we conclude that
(X,w) is a blow up of a ruled surface.
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Furthermore the cocore of an E-handle H; is a symplectic disk with a neighbor-
hood symplectomorphic to D? x D? C R* with its standard symplectic structure.
Thus these cocores can be glued to {pt} x D? in the final cap to form a symplectic
sphere S;. Each S, is disjoint from S; for 7 # j and intersects Sy geometrically
once. Thus we obtain a symplectic configuration as in I' and we are left to verify
the self-intersection of S;, i = 1,2, 3.

To find these, we only need to find the self-intersections topologically, which can
be done via Kirby calculus: start with Figure 4.2, i.e. the open book for (Y,¢).
Adding the E-handles amounts to attaching 2-handles with framing 0 with respect
to a page of the open book. Then switching to dotted circle notation gives Figure
4.4 (a). Specify the boundary curves of the cocores, which are denoted by dashed
circles in Figure 4.4, and endow them with labels 0. Now following through the
Kirby moves to see the S? x S! at hand, observe what the labels for the cocores
become and these correspond to the self-intersections of the S;. To do this, first slide
each pair of (—1)-framed 2-handles over the O-framed 2-handles to which they are
parallel. Thus these only link the dashed circle specified on that O-framed 2-handle
once and blowing them down rises label of each dashed circle to 2, as in Figure 4.4
(b). Now slide each O-framed 2-handle over its neighbors to the right, which gives
Figure 4.4 (¢). Now we can cancel the 1-handles, obtaining (d). From the labels
of the dashed circles we read off the self-intersection number of each S;, which is

—2. Notice the change in sign that comes from the fact that we need to turn the
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(a) all unlabeled 2-handles have framing —1
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Figure4.4: Calculating the self-intersections of S';.

handlebody upside down to see the configuration for what it is.

Because the sphere S in the homology class S; + Sy has self intersection 0 and
intersects Sy exactly one time, the neighborhood of Sy U S is a punctured S% x S2
and McDuff’s result implies that (X,w) is symplectomorphic to (S? x S2#N CcP’, w)
with w a symplectic structure on S? x S? blown up. Furthermore McDuff tells us

that we can choose this symplectomorphism to map the sphere Sy to S? x {pt}. O

4.2 Complements of the symplectic configuration

In this section we study the complement of the symplectic configuration I" obtained

in theorem 4.1.1. We do this first on the homology level.
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4.2.1 Homological properties of the configuration I

Recall that Hy(S? x S2#NCP ;Z) = Z & Z & &Y., Z with intersection form

[(1) (1)] @ (—In),

where (—Iy) denotes the negative identity N x N matrix. We fix a basis s; =
[S%x {pt}], s2 = [{pt} x S?| and f;, j = 1,... N, for the homology classes generated
by the CP”. Pick an almost complex structure J on Xy such that T' consists of

holomorphic spheres. Expressing the [C;] in terms of this basis

[Col = &1 (4.2.1)

N
[C] = olsi+olsa+ Y dlf;i=1,....3 (4.2.2)
j=1

we conclude first from [Cp] - [C;] = 1 that ¢? = 1 for all i. Thus for the following
we write o; for o).

We find that, since [C;]* = =2,

20;+2- > (¢])°=0. (4.2.3)

J

From the adjunction formula {c;(Xy), [C;]) = 2 + [C;]* we learn that
20 +2+ > ¢l =0. (4.2.4)
J

Subtracting equation (4.2.3) from equation (4.2.4) gives
> el + (4 =0. (4.2.5)
J
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Furthermore, since for i # k we have [C}] - [Ck] = 0,
0; + op — Z‘bﬁdﬁe = (. (4.2.6)
J
Now either Equation (4.2.3) or (4.2.4) imply

o;>—1,i=1,....3. (4.2.7)

From (4.2.5) we conclude that
¢l e{-1,0},i=1,....,3; j=1,...,N. (4.2.8)
Then, either of the Equations (4.2.3) or (4.2.4) imply that for each i there exist

i Jseieny € {1,..., N}

such that ¢ = —1 if and only if j = j/ for some I = 1,...,2(c; +1).

To meet Equation (4.2.6), one first notices that ;403 > 0. Furthermore, among
the {j7 1231”1) and { jl’“}figl’“q) exactly o; + oy, are equal. But for this to be possible,
one needs that o; + o, < min{2(o; + 1),2(0x + 1)}.

Without loss of generality, we can order the [C;] such that o; < 09 < 3. Then

we summarize the calculations above in the following lemma.

Lemma 4.2.1. In the situation above, there are the following possibilities for the

homology classes of ' = Coy UC, UCy UC3 C Xy.
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01::-—1.
[Col = s1
[Cl] = —81+82

4
[Cy] = 81+52—ij§
=1

4
(5] = 514852 — ijls
I=1
without loss of generality we can assume that fjlz = fjf if and only if L = 1,2. Notice
that N > 6.

o1 =n withn > 0. Then 0o = n+ s and 03 = n +t where we can assume that

s <t with s, t € {0,1,2}.

[Co] = s
2(n+1)
[C1] = ns;+s2— Z fi
n+5+1
[Cy] = (n+s)s1+ s2— Z sz
n+t+1)

[C3] = (n+1t)s;+ s9— Z

Furthermore notice that
Uz+1 -k Uk+1) — . .
{ }l ﬂ{ }l =0+ o, 1 £k

and

max{0,2n + s+t —2} < < 2n+s.

ﬂ{ A

i=1

Thus there are 10 subcases for oy =n > 1 and 7 in case o, = 0.
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4.2.2 Blowing down to a minimal model

We know from McDuff [24] that one can always blow down symplectic spheres with
square —1 and hence obtain a minimal symplectic manifold. This is also possible
relative to a symplectic configuration. The following lemma generalizes verbatim

from [22, Lemma 4.5]. We provide the argument here for completeness.

Lemma 4.2.2. In the situation of theorem 4.1.1, let J be an almost complex struc-
ture tamed by w such that T is holomorphic. Then, there exists a holomorphic
sphere S C Xy with square —1 and [S] - [Co] = 0. Furthermore, there exists such
a S disjoint from I' if and only if there exists a symplectic sphere S of square —1

such that [S]-[Ci] =0 fori=1,2,3.

Proof. Because Xy is obtained from S? x S? by blowing up, there exists a symplectic
sphere S C Xy of square —1 such that [S] - [Co] = 0. By [24, Lemma 2.1] the
homology class [S] is either represented by an embedded sphere or a cusp-curve
SiU...US;, i.e. aunion of (not necessarily embedded) holomorphic spheres. In

the first case, the first part of the lemma is proved. In the second case, notice that
[S] - [Co] = ([S1] + .. +[S]) - [Co] = 0
which, by positivity of intersection, implies that
[S;] - [Co]l =0fori=1,...,1.

Therefore
[S]? < —1fori=1,...,1L
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But

implies that [S;] - [S;] = —1 for at least one index i € {1,...,[l}. By the adjunction
formula [24] chosing S = S; is an embedded sphere.
If [S] is orthogonal to all the classes [C;] then, by positivity of intersections, S

must be disjoint from I', which proves the second part of the lemma. O

Thus, blowing down all the existing —1 spheres yields the following

Proposition 4.2.3. There exists a sequence of blowdowns (X, T') to (S? x S T”)
where T is given as follows. (The boxes in the right hand figure denote the appro-

priate number of intersections, as in Lemma 4.2.1.)

C Cy Cs C Cy Cs
Co | | | Co | | |

0 0 | |

-2 +2 +2 2n 2n+2s  2n+2t
case 01 = —1 case 01 =n >0
We like to argue that the symplectic configuration thus obtained is unique. For

the case where o7 > 0 this follows immediately from the following
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Proposition 4.2.4. Suppose S;, i = 1,2 are embedded symplectic 2-spheres in
(82 x S?,w) for some symplectic structure w, representing the same homology class
[S;] = nsy + sa, such that [Sy] - [Sa] = 2n. Here denote by s; and sq the homology
classes [S? x {pt}] and [{pt} x S?] in Ho(S? x S*;Z). Then the two spheres are

150topic.

Proof. Choose an almost complex structure that makes the spheres holomorphic.
If n < 0 the two spheres coincide by positivity of intersections. If n = 0, again by
positivity of intersections, the two spheres either coincide or are disjoint. In the
latter case, S; = {p;} x S? for two distinct points in the first factor. Any path
on that sphere joining p; and p, provides an isotopy. In the case n > 0 notice
that S and Sy intersect in 2n points (counting multiplicity). The moduli space of
spheres in this class is a manifold of real dimension 2(c;([ns; +s2]) —1) = 2(2n+1).
Keeping S1 NS, fixed, there exists a path v : [0, 1] — S? x S? with y(¢) N S; = v(0),
v(t) NSy = v(1) and such that for each ¢ there is a holomorphic sphere S; through

the 2n + 1 points S; N S5 U~(t). This provides an isotopy from S; to Ss. O

The case where o; = —1 is more difficult due to the presence of a symplectic
sphere of square —2. In this case we can use a construction by Abreu [28] who

shows that this case is symplectomorphic to a standard Hirzebruch surface.
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4.2.3 Proof of Theorem 4.0.4

Starting with one of these unique configurations in S? x S2, we can blow up back
to the situation in Theorem 4.1.1. Doing this in all possible ways and proving the
complements of the configuration I thus obtained are diffeomorphic is now possible
by using Kirby Calculus.

We show this process of blowing up in one situation, c.f. Figure 4.5. All other
cases are obtained similarly; see Figures 4.6 and 4.7. Start with the usual handle
decompostion for S? x S2, shown in the leftmost part of Figure 4.5. Add two
canceling 2/3-handlepairs and slide the 2-handles over the O-framed 2-handle. Thus
we find three unlinked 2-handles linking once an unknot and all components have
framing 0. Now pick one of these three handles and subtract it from the unknot.
When adding the other two 2-handles to the unknot, we find the middle of Figure
4.5. We can blow up the crossings and then each component individually until each
of the three components have framing —2. This is shown in the rightmost part of

Figure 4.5. Theorem 4.0.4 follows from the following theorem.

Theorem 4.2.5. Suppose W' is the complement of I' C Xy obtained by blowing
up a minimal model from Proposition 4.2.3. Then W' is diffeomorphic to a smooth

blow up of W as in Figure 4.3 (a).

Proof. We begin by examining all possible ways to blow up a minimal model as
described by Proposition 4.2.3 to get back to the original configuration I' C Xy.
For the case o0y = —1 there is only one way to do this, shown in the rightmost of
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Figure 4.5: Blowing back up to I' from the minimal model in case oy = —1.

Figure 4.5. The cases where 0y = n > 0 are shown in Figure 4.6 and 4.7.

Immediately from Figures 4.5, 4.6 and 4.7 one realizes that all the complements
are diffeomorphic up to blowup. Suppose there is a component, coming from the
blow up procedure, that links all three (—2)-framed 2-handles once. We can slide
such a component over the O-framed 2-handle and free it from the picture, without
changing its framing from —1. Thus such components can be blown down. Then,
by again sliding the components coming from the blow up procedure about the
O-framed 2-handle, one can get from one picture to the other. Such handle slides
do not change the diffeomorphism type of the complement.

This shows that there is at most one filling up to diffeomorphism and blowup.
Since we already provided one, the theorem is proved.

We finish by explicitly showing, for one case, how to find the filling that was
described in 4.3. To get a handle on W’ = Xy \ nbhd(I") we do the following. Put
all the framings of 2-handles coming from I" and the blow up circles in brackets

(). Then specify cocores of the blowup circles and label them 0. Now we can use
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Kirby calculus on the (-)-framed handles to simplify the picture. Eventually turning
the handlebody upside down gives a picture of W'; see [15]. This is explained
in Figure 4.8. Starting with the diagram on top, first blow down all the (—1)-
framed 2-handles. This gives the second diagram. Then, sliding the (0)-framed
handles over its neighbors to the right yields the third diagram. In there, the
two rightmost (0)-framed handles bound canceling 3-handles. When turning this
handlebody upside-down those 3-handles become 1-handles and then erasing all the
(-)-framed 2-handles gives a diagram for W, see the last picture. This is exactly

what is shown already in Figure 4.3.
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