MATH 104 Spring 2013: Calculus

FINAL EXAM

NAME:												
INSTRUCTOR:	Ryan Blair	Patricia Cahn	Camelia Pop	Radmila Sazdanovic								
	nnsylvania's			with the Univer- y in completing								
Your signature												
INSTRUCTIONS:												

- 1. WRITE YOUR NAME at the top.
- 2. TRANSFER YOUR ANSWER CHOICES (letter only) into the second row of the table at the bottom of this page.
- 3. To obtain credit, you MUST SHOW YOUR WORK. You will receive partial credit based on your work, even if your final answer is wrong. Likewise, a right answer with poor or no work will not receive full credit.
- 4. There are to be NO calculators, cell phones (or any other kind of technology), or books, or notes during this exam. You are allowed one double-sided handwritten **8.5** x 11in sheet of notes during this exam.
- 5. You have 2 hours to complete the exam. Do the exam quickly, but read carefully! You gain nothing by doing a different problem than what is asked.
- 6. If you have a question, re-read carefully. These questions should not require clarification, and we will not give hints or explain a misunderstood concept. If you suspect an error in the question or a true ambiguity, please raise your hand and someone will help you directly.
- 7. Best wishes.

SCORE:

PROBLEM	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	TOTAL
ANSWERS																
Do not write below this line.																
SCORE																

PROBLEM 1:

Find the volume of the solid of revolution obtained by revolving the region bounded by graphs of functions $f(x)=x^3$, x=0, y=8 around y-axis.

(a)
$$\frac{96\pi}{5}$$
 (b) $\frac{94\pi}{5}$ (c) $\frac{92\pi}{9}$ (d) $\frac{98\pi}{5}$ (e) $\frac{89\pi}{7}$ (f) $\frac{16}{5}$

(c)
$$\frac{92}{9}$$

(d)
$$\frac{98\pi}{5}$$

(e)
$$\frac{8}{100}$$

(f)
$$\frac{16}{5}$$

PROBLEM 2: Which of the following integrals can be used to compute the volume of the solid of revolution obtained by revolving the region bounded above by $y=2-\frac{x^4}{2}$ and below by y=-6 around the line x=5.

Justify your answer with a picture.

(a)
$$\int_{-1}^{1} 2\pi \left(2 - \frac{x^4}{2}\right) (5 - x) dx$$
 (b) $\int_{-2}^{2} 2\pi \left(2 - \frac{x^4}{2}\right) (5 - x) dx$

(c)
$$\int_{-2}^{2} 2\pi \left(4 - \frac{x^4}{2}\right) (7 - x) \ dx$$
 (d) $\int_{-2}^{2} 2\pi \left(2 - \frac{x^4}{2}\right) x \ dx$

(e)
$$\int_{-2}^{2} 2\pi \left(8 - \frac{x^4}{2}\right) (5 - x) dx$$
 (f) $\int_{-2}^{3} 2\pi \left(4 - \frac{x^5}{2}\right) (5 - x) dx$

 $\ensuremath{\mathbf{PROBLEM}}$ 3: Find the arc length of the function f(x) whose derivative is

$$f'(x) = \sqrt{x^2(\ln x)^2 - 1},$$

between x = 1 and x = e.

(a)
$$\frac{e^3+1}{4}$$
 (b) $\frac{e^2+1}{5}$ (c) $\frac{e^2+1}{4}$ (d) $\frac{e^2+3}{4}$ (e) $\frac{2e^2+1}{4}$ (f) $\frac{2e^3+1}{5}$

 $\ensuremath{\mathbf{PROBLEM}}$ 4: Evaluate the following integral

$$\int_0^2 \sqrt{4 - x^2} \ dx.$$

(a) π (b) 2π (c) $2\pi+1$ (d) 3π (e) $3\pi+3$ (f) 1

PROBLEM 5: Compute the following integral

$$\int \frac{5+x}{x^2+x-6} \, dx.$$

(a)
$$\frac{3}{5}\ln|x-2| - \frac{1}{5}\ln|x+3| + C$$
 (b) $\frac{7}{5}\ln|x-3| - \frac{2}{5}\ln|x+3| + C$

(c)
$$\frac{3}{5}\ln|x-2| - \frac{2}{5}\ln|x+3| + C$$
 (d) $\frac{7}{5}\ln|x-2| - \frac{1}{5}\ln|x+3| + C$

(e)
$$\frac{7}{5}\ln|x-2| - \frac{2}{5}\ln|x+3| + C$$
 (f) $\frac{3}{5}\ln|x-3| - \frac{2}{5}\ln|x+3| + C$

 ${\bf PROBLEM~6:}$ Evaluate the following improper integral or show that it does not converge:

$$\int_0^1 x^{-\frac{2}{5}} \ dx = \int_0^1 \sqrt[5]{\frac{1}{x^2}} \ dx.$$

(a) 2 (b) $\frac{10}{7}$ (c) 4 (d) $\frac{5}{3}$ (e) $\frac{11}{3}$ (f) The integral diverges.

PROBLEM 7: What is the centroid of the region bounded by the curves $y=x^2$ and $y=8-x^2$?

Hint: draw a picture of this region as your first step.

(a) (-2,3) (b) (2,5) (c) (-1,4) (d) (0,4) (e) (0,3) (f) (1,4)

PROBLEM 8: Find the constant C so that the function

$$f(x) = \begin{cases} C\sqrt{x-1}, & 1 \le x \le 2; \\ 0, & \text{otherwise.} \end{cases}$$

is a probability density function, and then compute its mean m.

(a)
$$C=4,\, m=rac{9}{5}$$
 (b) $C=rac{3}{2},\, m=rac{3}{5}$ (c) $C=2,\, m=1$

(d)
$$C=3, m=\frac{8}{5}$$
 (e) $C=\frac{3}{2}, m=\frac{7}{5}$ (f) $C=\frac{3}{2}, m=\frac{8}{5}$

PROBLEM 9: Solve the initial value problem:

$$\frac{dy}{dx} = \frac{y^2}{x^2 + 1}$$
$$y(0) = 1.$$

(a)
$$y = \frac{-1}{\arctan x - 1}$$
 (b) $y = \frac{1}{\arctan x + 1}$ (c) $y = \frac{2}{\arctan x - 1}$ (d) $y = \frac{x}{\arctan x - 1}$ (e) $y = \frac{2x}{\arctan x + 1}$ (f) $y = \frac{1}{\arctan x}$

(d)
$$y = \frac{x}{\arctan x - 1}$$
 (e) $y = \frac{2x}{\arctan x + 1}$ (f) $y = \frac{1}{\arctan x}$

PROBLEM 10: Find the general solution of

$$xy' = y + \frac{x^2}{x+1}.$$

$$\begin{array}{llll} \text{(a)} & x \ln |x+1| + x + C & \text{(b)} & x \ln |x+1| + C x^2 & \text{(c)} & x \ln |x+1| + C x \\ \text{(d)} & x^2 \ln |x+1| + C x & \text{(e)} & x \ln |x+1| + x^2 + C & \text{(f)} & C x \ln |x+1| + x \end{array}$$

(e)
$$x^2 \ln |x+1| + Cx$$
 (e) $x \ln |x+1| + x^2 + C$ (f) $Cx \ln |x+1| + x$

PROBLEM 11: Find the limit as n goes to infinity $\lim_{n\to\infty}a_n$ of the sequence $\{a_n\}_{n\geq 0}$

$$a_n = \cos\left(\frac{\pi}{2} + \frac{1}{n^2 + 1}\right).$$

(a) 0 (b) 1 (c)
$$-1$$
 (d) $\frac{1}{2}$ (e) $\frac{\sqrt{2}}{2}$ (f) 2

PROBLEM 12: Determine whether the following series converge or diverge

(i)
$$\sum_{n=1}^{\infty} (\ln(2n) - \ln n)$$
 (ii) $\sum_{n=1}^{\infty} \frac{1}{n^{\pi}}$ (iii) $\sum_{n=1}^{\infty} \frac{(\cos(n))^2}{\sqrt{n^5}}$

You must explain your reasoning for each series, even if you can deduce the answer by process of elimination.

(a) All series converge

(i) and (iii) diverge; (ii) converges

(c) (i) and (ii) diverge; (iii) converges (d) All series diverge

(e) (ii) and (iii) converge; (i) diverges (f) (ii) converges; (i) and (iii) diverge

 $\ensuremath{\mathbf{PROBLEM}}$ 13: Find the interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{n}{5^n} (x+3)^n.$$

(a) (-2,8) (b) (-8,2) (c) (-8,2] (d) [-2,8] (e) $(-\infty,\infty)$ (f) $[\frac{14}{5},\frac{16}{5})$

PROBLEM 14: Compute the following limit:

$$\lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{k!} = \lim_{n \to \infty} \left(1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots + \frac{1}{n!} \right).$$

(a)
$$\pi$$
 (b) 1 (c) e (d) $\frac{1}{2}$ (e) $e+\pi$ (f) 2

PROBLEM 15: For what values of x can $\sin x$ be approximated by $x - \frac{x^3}{3!}$ with an error strictly less than $\frac{1}{10}$?

(a)
$$-\sqrt[7]{12} < x < \sqrt[7]{12}$$
 (b) $-1 < x < 1$ (c) $-\sqrt[5]{10} < x < \sqrt[5]{10}$

(d)
$$-2 < x < 2$$
 (e) $-\sqrt[5]{12} < x < \sqrt[5]{12}$ (f) $-\sqrt[5]{13} < x < \sqrt[5]{13}$

EXTRA SPACE