
fsolve

Use fsolve to have Maple use numerical approximation techniques (as opposed to
algebraic methods) to find a decimal approximation to a solution of an equation or
system of equations.

The syntax of fsolve is the standard Maple syntax:

fsolve(what,how) ;

where "what" stands for the equation (or system of equations) to be solved and
"how" refers to the variable(s) being solved for.

To read more about setting up equations for solution, see the description of the
solve command.

Using fsolve to solve a single equation: Because fsolve uses numerical
techniques rather than algebraic ones, it is required that the number of equations be
precisely the same as the number of variables being solved for. So, when fsolving
one equation, it is crucial that there be exactly one unspecified variable in the
equation.

There are two ways to use the fsolve command. The first is precisely like the
solve command:

> fsolve(x^2+5*x=17,x);

,-7.321825380 2.321825380

This demonstrates that fsolve , like solve , knows how many roots to expect of a
polynomial and will attempt to find them all (even if some are complex). When
solving a transcendental equation, fsolve is usually content to find one solution.

The second way to use fsolve is especially important when an equation has many
solutions, and you want to pick out a specific one. In this version of fsolve , it is
possible to specify a domain (interval) in which the solution should be found. For
example, consider the equation

> eqn:=x=tan(x);

 := eqn = x ()tan x

As we can see from plotting both sides, this equation has many solutions:

> plot({x,tan(x)},x=-8..8,-8..8);

x
8642-2-4-6-8

8

6

4

2

0

-2

-4

-6

-8

Just using fsolve on this equation will find one solution:

> fsolve(eqn,x);

4.493409458

Now, suppose we want to find the solution between 6 and 8. Then we enter:

> fsolve(eqn,x,x=6..8);

7.725251837
> tan(");

7.725251841

So we have found the solution to about 7 decimal places.

What can go wrong? Aside from syntax errors, there are a few things that can go
wrong when using fsolve . First, as with solve, it is possible that the "variable" in
the equation to be solved has already been given a value (perhaps one that was
forgotten in the course of the Maple session). This results in the following response:

> x:=3: fsolve(x^2=4,x);
Error, (in fsolve) invalid arguments

The other things that can go wrong involve Maple's seeming inability to find a
solution. This can result from one of two situations: first, there might be no solution
-- second, the numerical procedure being used by Maple might need a little
assistance from the user. For example:

> x:='x':fsolve(sin(x)=exp(x^2),x);

()fsolve , = ()sin x e()x2
x

This "non-response" from Maple indicates that it cannot find a solution. But that is
because this equation has no solutions. Sometimes, fsolve chooses its initial
approximation poorly and subsequently is unable to find a solution even if it exists.
In this case Maple returns a message to this effect, and suggests choosing a
"different" starting interval. In this case, using the second version of fsolve with
specified domain will remedy the problem. (Of course, to find the appropriate
domain, the most reasonable thing to do is plot the two sides of the equation and
look for the intersection point!).

Finally , fsolve will return an error message if there is a different number of
equations than unknowns:

> fsolve(a*x=1,x);
Error, (in fsolve) should use exactly all the indeterminates

Of course, the solve command is able to handle this equation easily.

> solve(a*x=1,x);

1
a

Using fsolve to solve systems of equations: To be consistent with its
"what","how" syntax, fsolve requires that a system of equations be enclosed in
braces { } and that the list of variables being solved for also be so enclosed. For
example:

> fsolve({2*x+y=17,x^2-y^2=20},{x,y});

{ }, = y -15.75516397 = x 16.37758198

It is important to remember that the number of equations must be the same as the
number of unknowns, and that no other (unspecified) variables are allowed in the
equations:

> fsolve({a*x+y=13,b*x-y=20},{x,y});
Error, (in fsolve) should use exactly all the indeterminates

Finally, we note that it is possible (and often advisable) to give fsolve a domain to
search in -- this is done by giving an interval for each variable separately, thereby
providing fsolve with a rectangular box-like region in which to find a solution. For
example, let's consider the system solved above:

> eqn1:=2*x+y=17: eqn2:=x^2-y^2=20:

We give the equations names mostly to remind you that this is possible.
Experimenting around with several plots ultimately resulted in the following one,
which shows that our "fsolve " statement above returned only one of the two

intersection points:

> plot({17-2*x,sqrt(x^2-20),-sqrt(x^2-20)},x=4..20,color=blue);

x
201816141210864

20

10

0

-10

-20

We can force fsolve to find the leftmost one as follows:

> fsolve({eqn1,eqn2},{x,y},{x=4..8,y=0..10});

{ }, = y 4.421830634 = x 6.289084683

The syntax here is important! First comes the set of equations to solve (enclosed in
braces), then the set of variables to solve for (enclosed in braces) and then the list of
ranges for the variables (enclosed in braces). Only the third of these (the list of
variable ranges) is optional when solving systems of equations. The other two must
be present.

As usual with solve and fsolve , we can substitute this solution (just as it is!)
back into the equations to make sure it is correct. First, we give it a name:

> s:=";

 := s { }, = y 4.421830634 = x 6.289084683
> subs(s,eqn1),subs(s,eqn2);

, = 17.00000000 17 = 19.99999999 20

So it seems to work.

One final note -- when you give intervals for the variables, it is necessary to give
ranges for all of the variables. Fsolve will return nothing if intervals are specified
for some but not all variables.

