CHAPTER 8 - Infinite series

Section 8.1, page 619

Problems 35 and 36

We'll just calculate the limits:

>   limit(1-1/n,n=infinity), limit(n-1/n,n=infinity);

1, infinity

So the sequence in problem 35 converges to 1, and the one in problem 36 diverges.

Problem 55

>   a:=n->n^(1/n);

a := proc (n) options operator, arrow; n^(1/n) end proc

>   seq([n,evalf(a(n))],n=1..25);

[1, 1.], [2, 1.414213562], [3, 1.442249570], [4, 1.414213562], [5, 1.379729661], [6, 1.348006155], [7, 1.320469248], [8, 1.296839555], [9, 1.276518007], [10, 1.258925412], [11, 1.243575228], [12, 1.230...
[1, 1.], [2, 1.414213562], [3, 1.442249570], [4, 1.414213562], [5, 1.379729661], [6, 1.348006155], [7, 1.320469248], [8, 1.296839555], [9, 1.276518007], [10, 1.258925412], [11, 1.243575228], [12, 1.230...
[1, 1.], [2, 1.414213562], [3, 1.442249570], [4, 1.414213562], [5, 1.379729661], [6, 1.348006155], [7, 1.320469248], [8, 1.296839555], [9, 1.276518007], [10, 1.258925412], [11, 1.243575228], [12, 1.230...
[1, 1.], [2, 1.414213562], [3, 1.442249570], [4, 1.414213562], [5, 1.379729661], [6, 1.348006155], [7, 1.320469248], [8, 1.296839555], [9, 1.276518007], [10, 1.258925412], [11, 1.243575228], [12, 1.230...
[1, 1.], [2, 1.414213562], [3, 1.442249570], [4, 1.414213562], [5, 1.379729661], [6, 1.348006155], [7, 1.320469248], [8, 1.296839555], [9, 1.276518007], [10, 1.258925412], [11, 1.243575228], [12, 1.230...
[1, 1.], [2, 1.414213562], [3, 1.442249570], [4, 1.414213562], [5, 1.379729661], [6, 1.348006155], [7, 1.320469248], [8, 1.296839555], [9, 1.276518007], [10, 1.258925412], [11, 1.243575228], [12, 1.230...

Perhaps it's converging, let's see:

>   limit(a(n),n=infinity);

1

OK ... looks like we need to go pretty far out to get within 0.01:

>   fsolve(a(n)=1.01,n=25..50000);

651.1003353

So the error is not less than 0.01 until n=652. To get within 0.0001:

>   fsolve(a(n)=1.0001,n=1000..500000);

116677.5257

So we need 116,678 terms before we're within 0.0001.

Section 8.2, page 628

Problem 20

>   limit((sin(n))^2/2^n,n=infinity);

0

Problem 77

We want x = -cos(x). So we set

>   g:=x->evalf(-cos(x));

g := proc (x) options operator, arrow; evalf(-cos(x)) end proc

and then start with, say x=0.

>   g(0.0);

-1.

>   g(%);

-.5403023059

>   g(%);

-.8575532158

>   g(%);

-.6542897905

>   g(%);

-.7934803587

>   g(%);

-.7013687737

>   g(%);

-.7639596829

>   g(%);

-.7221024250

So we seem to be converging to about -0.72.  Let's ask Maple:

>   fsolve(x+cos(x)=0,x=-1..0);

-.7390851332

Section 8.3, page 638

Problem 39

>   Sum((exp(1)/Pi)^n,n=0..infinity)=sum((exp(1)/Pi)^n,n=0..infinity);

Sum((exp(1)/Pi)^n,n = 0 .. infinity) = -Pi/(exp(1)-Pi)

So this series converges.

Section 8.4, page 643

Problem 10

We'll integrate:

>   int(ln(x)/sqrt(x),x=2..infinity);

infinity

Since the integral diverges, so does the series.

Section 8.5, page 649

Problem 16

Since 1+ln(n)<sqrt(n) for large n, as can be seen from this graph:

>   plot({1+ln(n),sqrt(n)},n=1..20,color=blue,thickness=2);

[Maple Plot]

>   evalf(sqrt(20)),evalf(1+ln(20));

4.472135954, 3.995732274

we see that sum(1/(sqrt(n)^2),n = 1 .. infinity) < sum(1/((1+ln(n))^2),n = 1 .. infinity)  But

>   int(1/n,n=1..infinity);

infinity

So both series diverge.

Section 8.6, page 654

Problem 17

Ratio test:

>   a:=n->(n+1)*(n+2)/n!;

a := proc (n) options operator, arrow; (n+1)*(n+2)/n! end proc

>   limit(a(n+1)/a(n),n=infinity);

0

So the series converges.

Section 8.7, page 661

Problem 26

Alternating series test:

>   limit(1/(n*ln(n)),n=infinity);

0

And the denominator is increasing, so the fraction is decreasing. So sum((-1)^n/(n*ln(n)),n = 2 .. infinity) converges at least. To check absolute convergence, we'll use the integral test:

>   int(1/(n*ln(n)),n=2..infinity);

infinity

This diverges, so the original alternating series converges conditionally.

Section 8.8, page 671

Problem 17

First use the ratio test:

>   a:=n->n*(x+3)^n/5^n;

a := proc (n) options operator, arrow; n*(x+3)^n/(5^n) end proc

>   limit(a(n+1)/a(n),n=infinity);

1/5*x+3/5

>   solve(abs(%)<1,x);

RealRange(Open(-8),Open(2))

So the series converges for x between -8 and 2. What about the endpoints?

>   simplify(subs(x=-8,a(n)));

(-1)^n*n

>   simplify(subs(x=2,a(n)));

n

Since these don't go to zero (nth term test), the series diverges for x=-8 and x=2. So the interval of convergence is (-8,2) -- the series converges absolutely for all those values of x.

Section 8.9, page 677

Problem 34

We'll find an expansion of higher order, just to show we can:

>   taylor(exp(sin(x)),x=0,7);

series(1+1*x+1/2*x^2-1/8*x^4-1/15*x^5-1/240*x^6+O(x^7),x,7)

The linear approximation is thus 1+x, and the quadratic approximation is 1+x+x^2/2.

Section 8.10, page 686

Problem 21

If |x|<0.001, and since the Maclaurin series for sin(x):

>   taylor(sin(x),x=0,8);

series(1*x-1/6*x^3+1/120*x^5-1/5040*x^7+O(x^8),x,8)

is alternating, the error is less than the first omitted term. So the error is less than

>   0.001/6;

.1666666667e-3

i.e., less than 0.00017.

Section 8.11, page 697

Problem 4

>   taylor(sqrt(1+x),x=0,5);

series(1+1/2*x-1/8*x^2+1/16*x^3-5/128*x^4+O(x^5),x,5)

Problem 44

>   taylor(Int(t^2*exp(-t^2),t=0..x),x=0,10);

series(1/3*x^3-1/5*x^5+1/14*x^7-1/54*x^9+O(x^11),x,11)

This is an alternating series, so to get error less than 0.001 for  |x|<1, we need to find the first term with denominator greater than 1000:

>   taylor(Int(t^2*exp(-t^2),t=0..x),x=0,15);

series(1/3*x^3-1/5*x^5+1/14*x^7-1/54*x^9+1/264*x^11-1/1560*x^13+O(x^15),x,15)

So going up through the x^11 term will do.