Exploring limits and plotting -- First steps in Maple

1. First we need to define $h(x)$ and set the value of k :
$>\mathrm{h}:=\mathrm{x}->\sin (\mathrm{k} * \mathrm{x}) / \mathrm{x} ; \mathrm{k}:=2$;

$$
\begin{aligned}
h:=x & \rightarrow \frac{\sin (k x)}{x} \\
k & :=2
\end{aligned}
$$

Now we will use the "for" statement to make a table of values of $h(x)$ with x approaching zero:
> for t from 1 to 6 do print(0.1^t, evalf(h(0.1^t))); od;
.1, 1.986693308
.01, 1.999866669
.001, 1.999998667
.0001, 1.999999987
.00001, 2.000000000
. $10^{-5}, 2.000000000$
It would seem from this that the limit of $\sin (2 \mathrm{x}) / \mathrm{x}$ as x approaches zero is 2 .
2. We will choose $\mathrm{k}=3, \mathrm{k}=10, \mathrm{k}=-5$ and $\mathrm{k}=\mathrm{sqrt}(2)$:
> k:=3: for t from 1 to 6 do print(0.1^t, evalf(h(0.1^t))); od;
.1, 2.955202067
.01, 2.999550020
.001, 2.999995500
.0001, 2.999999955
.00001, 3.000000000
Page 1

$$
.110^{-5}, 3.000000000
$$

The limit of $\sin (3 x) / x$ as $x->0$ seems to be 3 .
> k:=10: for t from 1 to 6 do print(0.1^t, evalf(h(0.1^t))); od;

$$
\begin{gathered}
.1,8.414709848 \\
.01,9.983341665 \\
.001,9.999833334 \\
.0001,9.999998333 \\
.00001,9.999999983 \\
.110^{-5}, 10.00000000
\end{gathered}
$$

The limit of $\sin (10 x) / x$ as $x->0$ seems to be 10 . There is a definite pattern here. I guess that the limit of $\sin (-5 x) / x$ as $x->0$ will be -5 .
> k:=-5: for t from 1 to 6 do print(0.1^t,evalf(h(0.1^t))); od;

$$
\begin{gathered}
.1,-4.794255386 \\
.01,-4.997916927 \\
.001,-4.999979167 \\
.0001,-4.999999792 \\
.00001,-4.999999998 \\
.110^{-5},-5.000000000
\end{gathered}
$$

Good. Finally, we choose $\mathrm{k}=\mathrm{sqrt}(2)$, and expect to get the sqrt(2) for the limit:
> $k:=s q r t(2):$ for t from 1 to 6 do print(0.1^t,evalf(h(0.1^t))); od;

$$
.1,1.409504229
$$

$$
.01,1.414166422
$$

.001, 1.414213091
.0001, 1.414213557
.00001, 1.414213562
$.110^{-5}, 1.414213562$
The conclusion from all this is that the limit of $\sin (\mathrm{kx}) / \mathrm{x}$ as $\mathrm{x}->0$ is k .
3. We go through the same k's and draw the plots. Since the $\mathrm{k}=2$ plot was in the assignment sheet, we omit that one.
> k:=3: plot(h(x), x=0.01..2);

> k:=10: plot(h(x), x=0.01..2);

> k:=-5: plot(h(x), x=0.01..2);

Page 3
> k:=sqrt(2): plot(h(x),x=0.01..2);

In each case, the conclusion of our numerical work in problem 2 was supported. Each time the limiting value of $\sin (k x) / x$ as $x->0$ appears to be k.
4. We define the function s and proceed as we did in problems 2 and 3.
> s:=x-> (1+k*x)^(1/x);

$$
s:=x \rightarrow(1+k x)^{\left(\frac{1}{x}\right)}
$$

> k:=1: for t from 1 to 6 do print(0.1^t, evalf(s(0.1^t))); od;
.1, 2.593742460
.01, 2.704813829
.001, 2.716923932
.0001, 2.718145927
.00001, 2.718268237
. $110^{-5}, 2.718280469$
The limit as x -> 0 , about 2.71828 , looks a lot like the number e (denoted in Maple by $\exp (1))$:

> evalf(exp(1));

> $\mathrm{k}:=2$: for t from 1 to 6 do print (0.18281828 $\mathrm{evalf}\left(\mathrm{s}\left(0.1^{\wedge} \mathrm{t}\right)\right)$); od;

$$
\begin{gathered}
.1,6.191736422 \\
.01,7.244646118 \\
.001,7.374312390 \\
.0001,7.387578632 \\
.00001,7.388908321 \\
.110^{-5}, 7.389041321
\end{gathered}
$$

This is a number I don't recognize. But since the limit when k was 1 was e, let's divide this number by e:

```
> evalf(7.389041321/exp(1));
```

$$
2.718276392
$$

So the limit (as $\mathrm{x}->0$) appears to be $\mathrm{e}^{\wedge} 2$. Maybe the k ends up being the exponent this time. I predict that for $\mathrm{k}=3$ I'll get $\mathrm{e}^{\wedge} 3=\exp (3)$.
> k:=3: for t from 1 to 6 do print(0.1^t, evalf(s(0.1^t))); od;
.1, 13.78584918
.01, 19.21863198
.001, 19.99553462
.0001, 20.07650227
.00001, 20.08463311
. $110^{-5}, 20.08544654$
> evalf(exp (3));

$$
20.08553692
$$

Looks good! Just to check, let's try k=-5:
> k:=-5: for t from 1 to 6 do print(0.1^t, evalf(s(0.1^t))); od;
.1, . 0009765625
.01, . 005920529220
.001, . 006653968579
.0001, . 006729527022
.00001, . 006737104780
$.110^{-5}, .006737862775$
> evalf(exp(-5));
.006737946999

Conclusion: the limit of $\left(1+\mathrm{k}^{*} \mathrm{x}\right)^{\wedge}(1 / \mathrm{x})$ as $\mathrm{x}->0$ is $\mathrm{E}^{\wedge} \mathrm{k}$.
5. First we'll do the graph, then the numbers:
> $\mathrm{f}:=\mathrm{x}-\mathrm{P}(\sec (\mathrm{x})-1) / \mathrm{x}: \operatorname{plot}(\mathrm{f}(\mathrm{x}), \mathrm{x}=0.01 \ldots 1)$;

It looks as though the limit as x goes to zero is zero.
$>$ for t from 1 to 6 do print(0.1^t, evalf(f(0.1^t))); od;
.1, . 05020918000
. $01, .005000200000$
.001, . 0005000000000
.0001, . 00005000000000
.00001, 0
$.110^{-5}, 0$
I now believe that the limit is zero.

$>g:=x->\sec (x)-\tan (x): \operatorname{plot}(g(x), x=P i / 4 \ldots 3 * P i / 4)$;

Since $\mathrm{Pi} / 2$ is about 1.57 , it looks like the limit of g as x -> $\mathrm{Pi} / 2$ is zero! Let's try the table:

$$
\begin{aligned}
& >\text { for } t \text { from } 1 \text { to } 6 \text { do } \\
& \text { print (evalf(Pi/2+0.1^t), evalf(g(Pi/2+0.1^t))); od; } \\
& 1.670796327,-.050041707 \\
& 1.580796327,-.00500006 \\
& 1.571796327,-.0005003 \\
& 1.570896327,-.000053 \\
& 1.570806327,0 \\
& 1.570797327,0
\end{aligned}
$$

Now I really believe that the limit of g as x approaches $\mathrm{Pi} / 2$ is zero.
>h:=x->sqrt $(x+5) /(\operatorname{sqrt}(x)+5):$
To get an idea of what happens as x->infinity, we'll try plotting over a large domain:
> plot(h(x), x=10..1000);

Even a larger range:

$>\operatorname{plot}\left(\mathrm{h}(\mathrm{x}), \mathrm{x}=10 \ldots 10^{\wedge} 6\right)$;

Looks like the limit as x->infinity is 1 . Let's do some numerics:
$>$ for t from 1 to 10 do print (10^t, evalf(h(10^t))); od;
10, . 4744978678
100, . 6831300514
1000, . 8656289313
10000, . 9526190181
100000, . 9844593310
1000000, . 9950273632
10000000, . 9984216070
100000000, . 9995002749
Page 8
> evalf(h(10^50));
1.000000000

I accept 1 as the value of the limit.
6. To do this one, we'll define the function $\mathrm{g}(\mathrm{x})$ and then plot over very small intervals containing the putative flex points:
$>g:=x->(-35 / 8)+12 * x-9 * x^{\wedge} 2-2 * x^{\wedge} 3+(25 / 4) * x^{\wedge} 4-$ $5 * x^{\wedge} 5+3 * x^{\wedge} 6-x^{\wedge} 7+x^{\wedge} 8 / 8:$
$>\operatorname{plot}(g(x), x=-1.3$);

That was just to make sure we copied the function definition correctly. The first "flex" is at or near $x=1$:
> plot(g(x), x=0.9..1.1);

It still looks like a flex. Just to make sure, let's make the interval even smaller:
> plot(g(x), x=0.99..1.01);

This seems like a genuine flex. Now for the other point, which seems to be between 2.5 and 3 :
> plot (g(x), x=2.6..2.9);

Let's zoom in around 2.73:
> plot(g(x), x=2.7..2.75);

So this is not just a flex, the function has two turning points that we couldn't see before!

