
ANABELIAN INTERSECTION THEORY I: THE CONJECTURE OF
BOGOMOLOV-POP AND APPLICATIONS

AARON MICHAEL SILBERSTEIN˚

January 27, 2013

1. STATEMENT OF RESULTS

A. Grothendieck first coined the term “anabelian geometry” in a letter to G. Faltings [Gro97a] as a response
to Faltings’ proof of the Mordell conjecture and in his celebrated Esquisse d’un Programme [Gro97b]. The
“yoga” of Grothendieck’s anabelian geometry is that if the étale fundamental group πét

1 pX,xq of a variety
X at a geometric point x is rich enough, then it should encode much of the information about X as a
variety; such varietiesX are called anabelian in the sense of Grothendieck, and have the property that two
anabelian varieties have isomorphic étale fundamental groups if and only if they are isomorphic; and that the
isomorphisms between their étale fundamental groups are precisely the isomorphisms between the varieties.
Grothendieck did not specify how much extra information should be encoded, and there is currently not a
consensus on the answer. An anabelian theorem (or conjecture) is a theorem (or conjecture) which asserts
that a class of varieties are anabelian.

Grothendieck wrote in [Gro97a] about a number of anabelian conjectures, one regarding the moduli of
curves, defined over global fields (which is still open); one regarding hyperbolic curves, defined over global
fields; and a birational anabelian conjecture, which asserts that Spec of finitely-generated, infinite fields are
anabelian (in this case, we say the fields themselves are anabelian). The anabelian conjecture for hyperbolic
curves was proved in the 1990’s by A. Tamagawa and S. Mochizuki ([Tam97], [Moc99]). The birational
anabelian conjecture for finitely-generated, infinite fields is a vast generalization of the pioneering Neukirch-
Ikeda-Uchida theorem for global fields ([Neu69], [Uch77], [Ike77], [Neu77]), and is now a theorem due to
F. Pop [Pop94].

Grothendieck remarked that “the reason for [anabelian phenomena] seems. . . to lie in the extraordinary
rigidity of the full fundamental group, which in turn springs from the fact that the (outer) action of the
‘arithmetic’ part of this group. . . is extraordinarily strong” [Gro97a].

F. Bogomolov had the surprising insight [Bog91] that as long as the dimension of a variety is ě 2,
anabelian phenomena can be exhibited — at least birationally — even over an algebraically closed field,
even in the complete absence of the “arithmetic” part of the group Grothendieck referenced.

Given a field K, we let GK denote the absolute Galois group of K, the profinite group of field auto-
morphisms of its algebraic closure K (see [NSW08] for more details). Given two fields F1 and F2, we let
IsomipF1, F2q denote the set of isomorphisms between the pure inseparable closures of F1 and F2, up to
Frobenius twists. Given two profinite groups Γ1 and Γ2, we let IsomOutpΓ1,Γ2q denote the set of equiva-
lence classes of continuous isomorphisms from Γ1 to Γ2, modulo conjugation by elements of Γ2. There is a
canonical map

ϕF1,F2 : IsomipF1, F2q Ñ IsomOutpGF2 , GF1q (1)
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which, in general, is neither injective nor surjective.
The birational theory of a variety of dimension n overK is encoded in its field of rational functions, and

every field finitely-generated over K and of transcendence degree n arises as the field of rational functions
of a K-variety of dimension n. F. Pop, developing Bogomolov’s insight, conjectured an anabelian theorem
for fields, finitely-generated and of transcendence degree n ě 2 over an algebraically closed field k. We
complete the proof of:

THEOREM 1 (THE CONJECTURE OF BOGOMOLOV-POP FOR k “ Q,Fp). Let F1 and F2 be fields finitely-
generated and of transcendence degree ě 2 over k1 and k2, respectively, where k1 is either Q or Fp, and k2

is algebraically closed. Then ϕF1,F2 is a bijection. Thus, function fields of varieties of dimension ě 2 over
algebraic closures of prime fields are anabelian.

In [Pop11b], Pop proved that if GF1 » GF2 then F1 and F2 have the same characteristic and transcen-
dence degree. Thus, the conjecture reduces to the case when F1 and F2 are of the same characteristic and
transcendence degree. Bogomolov and Tschinkel [BT08] provide a proof in the case of transcendence de-
gree “ 2 when k “ Fp. Pop proved that ϕ is a bijection when F1 has transcendence degree ě 2 and k “ Fp
[Pop12]; and when F1 has transcendence degree ě 3 and k “ Q [Pop11a]. We prove the missing case:

THEOREM 2 (THE BIRATIONAL ANABELIAN THEOREM FOR SURFACES OVER Q). Let F1 and F2 be fields
finitely-generated and of transcendence degree 2 over Q. Then ϕF1,F2 is a bijection.

The proof of Theorem 2 is substantially different in structure from the other cases of Theorem 1. They
both have the same starting point, two theorems due to Pop from [Pop11a] and described in Section 3:

1. Given a subgroup Γ Ď GF there is a profinite group-theoretic recipe (Theorem 25) which determines
whether or not Γ is a decomposition or inertia group of a Parshin chain (Definition 14).

2. Given a collection S “ tTvu of inertia groups of rank-1 Parshin chains (which are group-theoretically
definable by Theorem 25), there is a recipe to determine whether there is a model X of F — that is, a
smooth variety with function field F — for which S is the set of inertia groups of Weil prime divisors
centered on X . In this case, S is called a geometric set of prime divisors (Definition 24).

Previous results took data such as these and reconstructed F directly, in a process which we now term
birational reconstruction. However, in our approach, we instead take the pair pGF ,Sq and reconstruct a
model MpSq of F for which S is the collection of inertia subgroups of all prime divisors on MpSq. We
obtain a description of the geometry of MpSq without first reconstructing F , and we call this approach
geometric reconstruction. The main tool is the ability to interpret intersection theory on MpSq using only
group theoretic recipes applied to S and GF , without any knowledge of MpSq other than its existence;
this technique is the anabelian intersection theory of the title. In Section 10 we show how Theorem 2
follows from the geometric reconstruction results which take up the bulk of the paper. A generalization of
the geometric reconstruction technique in transcendence degreeě 2 for arbitrary characteristic will come in
a sequel to this paper.

Grothendieck also asked for a “purely geometric” description of the groupGQ.Anabelian geometry over
Q gives such a description.1

Let X be an irreducible, geometrically integral, algebraic variety of dimension ě 2 defined over Q
so that X has no birational automorphisms defined over Q. We call such an X birationally, geometri-
cally rigid. Let k be the intersection of all subfields of Q over which a variety birationally equivalent

1In fact, Y. Ihara asked a more refined question, which T. Oda and M. Matsumoto raised to a conjecture: is GQ exactly the outer
automorphisms of the étale fundamental group functor from the category of Q-varieties to profinite groups? Pop showed [Pop11b]
how birational anabelian theorems over Q can be used to provide proofs of this conjecture. Thus, Theorem 2 gives us a new proof of
the Question of Ihara/Conjecture of Oda-Matsumoto. We will elaborate on applications of geometric reconstruction to refinements
of the Question of Ihara/Conjecture of Oda-Matsumoto in a later paper.
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to X is defined. Let QpXq be the rational function field of X . By our assumptions, QpXq is a field,
finitely generated over Q. Equation 27 shows that GQpXq is a geometric object: it is the inverse limit of the
profinitely-completed fundamental groups of all complements of Q-divisors in X .

THEOREM 3 (THE GEOMETRIC DESCRIPTION OF ABSOLUTE GALOIS GROUPS OF NUMBER FIELDS.).
The natural map

Gk Ñ OutcontpGQpXqq (2)

is an isomorphism, and the compact-open topology induces the topology on Gk induced by its structure as
a Galois group.

Theorem 3 answers Grothendieck’s question; this is analogous to a theorem of I. Bumagin and D. Wise,
which realizes any countable group as the outer automorphism group of a finitely generated group [BW02].
In Section 12, we write down, for any number field k, an infinite family of explicit varieties X which satisfy
the hypotheses of Theorem 3.

Any group GQpXq which satisfies the hypotheses of Theorem 3 is infinitely-generated and infinitely-
presented. It is then natural to ask whether absolute Galois groups of number fields are outer automorphism
groups of finitely-generated, finitely-presented, profinite groups of geometric provenance.

The “smallest group” currently considered to be a candidate to give such a geometric representation is
the group yGT , whose study was initiated by Drinfel’d [Dri90] and Ihara [Iha91]. yGT admits an injective
group homomorphism

ρ : GQ ÑyGT. (3)

It is not known whether ρ is surjective. yGT is a much-studied yet poorly-understood object; we review in
Section 11 the theory we will need, and refer to [LS06] for a more exhaustive survey.

We denote by M0,5 the moduli space of genus 0 curves with 5 distinct, marked, ordered points. As part
of the construction of yGT , we have an injection

η : yGT Ñ Outpπét
1 pM0,5qq, (4)

such that the composition
η ˝ ρ : GQ Ñ Outpπét

1 pM0,5qq (5)

is the injection induced by the theory of the fundamental group.
We prove a necessary and sufficient criterion for an element of yGT, as determined by its image under η,

to be in the image of ρ. M0,5 is birationally equivalent to P2, which gives the scheme-theoretic inclusion

γ : SpecpQpx, yqq ÑM0,5 (6)

of the generic point of M0,5. The étale fundamental group functor then gives a continuous surjection of
profinite groups

γ˚ : GQpx,yq Ñ πét
1 pM0,5q,

well-defined up to conjugation by an element of πét
1 pM0,5q.

THEOREM 4. Let α P im η. Then α P im η ˝ ρ if and only if α satisfies the following lifting condition: there
exists an automorphism

α̃ : GQpx,yq Ñ GQpx,yq (7)

so that the diagram
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GQpx,yq
α̃ //

γ˚
��

GQpx,yq

γ˚
��

πét
1 pM0,5q

α // πét
1 pM0,5q

commutes up to inner automorphisms.

This is the first necessary and sufficient geometric condition for an element of the Grothendieck-Teichmüller
group to lie in the image of GQ.

In Section 12 we provide explicit examples of surfaces which satisfy the hypotheses of Theorem 3, and
we conclude with the proof of Theorem 4.

2. THE GEOMETRIC INTERPRETATION OF INERTIA AND DECOMPOSITION GROUPS OF
PARSHIN CHAINS

DEFINITION 5. Let F be a field finitely generated over some algebraically closed field K of characteristic
zero; such a field will be called a function field. Note that the field K is determined by F (for instance, its
multiplicative group is the set of all divisible elements in the multiplicative group of F ); it will be denoted by
KpF q, and be called the field of constants of F . The transcendence degree of F over KpF q will be called
the dimension of F . We will denote by GF the absolute Galois group of F and F the algebraic closure of
F .

For general theory of valuations, including proofs of the algebraic theorems cited without proofs, see
[FJ08]. We will also use results from [Ser56] and [Gro03] with impunity.

DEFINITION 6. A valuation v on F is an ordered group pvF,ďq, called the value group of v, along with a
surjective map

v : F Ñ vF Y t8u (8)

which satisfies

1. vpxq “ 8 if and only if x “ 0.

2. vpxyq “ vpxq ` vpyq (here, we define8` g “ 8 for all g P vF Y t8u.)

3. vpx` yq ě mintvpxq, vpyqu, where we extend the ordering ď to vF Yt8u by g ď 8 for all g P vF .

A valuation v gives rise to a valuation ring Ov, which is the set of all x P F such that vpxq ě 0. Ov is
integrally closed in F and local, and we call its maximal ideal mv. We then define the residue field to be

Fv “ Ov{mv, (9)

A subring R Ď F is a valuation ring Ow for some valuation w if and only if for every x P Fˆ either x P R
or x´1 P R. Therefore, equivalently, we may define a valuation v by its place

pv : F Ñ Fv Y t8u (10)

where Ov is mapped to its reduction mod mv and F zOv is mapped to8. Any map from a field F to another
field L which is a ring homomorphism “with8” thus gives rise to a valuation on F .

DEFINITION 7. Two valuations will be called equivalent if and only if they have the same valuation ring.
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DEFINITION 8. If v is a valuation on F and w is a valuation on Fv, then we may define a valuation w ˝ v
on F by considering the composition

pw ˝ pv : F Ñ pFvqw Y t8u (11)

as a place map on F . This valuation is called the composition of w with v.

DEFINITION 9. A model X of a function field F is a smooth, connected KpF q-scheme of finite-type with a
map

sX : SpecF Ñ X, (12)

the structure map of the model, which identifies F with the field of rationalKpF q-functions onX . A normal
model is a model with the requirement of smoothness replaced by normality.

DEFINITION 10. By virtue of the structure map, the models form a full subcategory of the category of
schemes under SpecF . We define an F -morphism of models to be a morphism of varieties under SpecF ,
and BirpF q the full subcategory of varieties under SpecF whose objects are precisely the models of F .

DEFINITION 11. We say that a valuation v on F has a center on or is centered on X if X admits an affine
open subset SpecA such that A Ă Ov, the valuation ring of v. Let R Ă F be a subring giving an affine
open SpecR Ď X . Then the center of v on SpecR is the Zariski closed subset of X defined as Zpmv XRq;
the center of v on X is the union of the centers of v on SpecR as SpecR ranges over all affine opens of X .
We denote by |v| the center of v.

DEFINITION 12. A prime divisor v on F is a discrete valuation trivial on KpF q such that

tr. deg.KpF q Fv “ tr. deg.KpF q F ´ 1. (13)

(This condition is very important in birational anabelian geometry in general, and we say that v has no
transcendence defect; see [Pop94] for more details.)

DEFINITION 13. A rank-1 Parshin chain for F is a prime divisor. A rank-i Parshin chain is a composite
w ˝ v, where v is a rank-pi´ 1q Parshin chain, and w is a prime divisor on Fv.

DEFINITION 14. We denote by ParipF q the collection of i-Parshin chains for F, where i ď tr. deg.KpF q F .
Given a rank-k Parshin chain v we denote by Paripvq the collection of rank-i Parshin chains of the form
w ˝ v. Paripvq is empty if i ă k; is tvu if i “ k; and is infinite if i ą k. If S Ď ParkpF q we define

ParipSq “
ď

vPS

Paripvq. (14)

We also let
ParpSq “

ď

i

ParipSq and ParpF q “
ď

i

ParipF q. (15)

EXAMPLE 15. To describe the rank-1 Parshin chains on F , where F is the function field of a surface over
Q, we consider the set of all pairs pX,Dq where X is a proper model of F and D is a prime divisor on X .
On this collection, we have an equivalence relation generated by the relation „, where we say

pX,Dq „ pX 1, D1q

if there exists a rational map
ϕ : X Ñ X 1
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respecting the structure maps of the models X and X 1 such that D is mapped birationally to D1 by ϕ.
The rank-2 Parshin chains are then equivalence classes pX,D, pq where D is a prime divisor on D and

p is a smooth point on D, and the equivalence relation „ is now generated by saying

pX,D, pq „ pX 1, D1, p1q

as long as there is a rational map
ϕ : X Ñ X 1

respecting the structure maps of the models X and X 1 so that D is mapped birationally to D1 by ϕ and p is
mapped to p1 by ϕ.

Given an algebraic extension L|F every valuation extends to L, though not necessarily uniquely.

DEFINITION 16. We define XvpL|F q to be the set of valuations on L which restrict to v on F . If L|F is
Galois, then GalpL|F q acts transitively on XvpL|F q. For any Galois extension L|F and ṽ P XvpL|F q we
define the decomposition group

DṽpL|F q “def tσ P GalpL|F q | σpOṽq “ Oṽu . (16)

Each DṽpL|F q has a normal subgroup, the inertia group TṽpL|F q, defined as the set of elements which act
as the identity on Lṽ.

We have a short-exact sequence, the decomposition-inertia exact sequence

1 Ñ TṽpL|F q Ñ DṽpL|F q Ñ GalpLṽ|Fvq Ñ 1. (17)

If ṽ1, ṽ2 P XvpL|F q and ṽ1 “ σṽ2 for some σ P GalpL|F q, then

Dṽ1pL|F q “ σ´1Dṽ2pL|F qσ and Tṽ1pL|F q “ σ´1Tṽ2pL|F qσ.

Thus, allDṽpL|F q and TṽpL|F q, respectively, are conjugate for a given v, and when the lift is not important,
we denote some element of the conjugacy class of subgroups by DvpL|F q and TvpL|F q, respectively. We
define Dv and Tv, respectively, to be DvpF |F q and TvpF |F q.

For any Galois extension L|F , a valuation v on F and a valuationw on Fv, we may choose ṽ P XvpL|F q
and w̃ P XwpLṽ|Fvq. There is then a natural short exact sequence, the composite inertia sequence:

1 Ñ TṽpL|F q Ñ Tw̃˝ṽpL|F q Ñ Tw̃pLṽ|Fvq Ñ 1, (18)

where Tw Ď GFv, for any composite of valuations. Thus, if TṽpL|F q is trivial,

Tw̃ » Tw̃˝ṽ.

We will use three different types of fundamental groups, with the following notation:

1. πtop
1 will denote the topological fundamental group, the fundamental group of a fiber functor on the

category of topological covers of a topological space; covering space theory [Hat02] shows that πtop
1

can be computed using based homotopy classes of maps into S1; this is the original fundamental
group considered by Poincaré [Poi10].

2. π̂1 will denote the profinite completion of πtop
1 , the fundamental group of a fiber functor on the

category of finite topological covers of a topological space.

3. πét
1 will denote the étale fundamental group.
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For a normal variety X over an algebraically closed subfield of C, one has an equivalence between the
category of finite, étale covers of X and the finite, unramified covers of Xan, its corresponding analytic
space over C, by [GR57]. This leads immediately to the

THEOREM 17 (COMPARISON THEOREM). Let X be a normal variety over C and x P XpCq. There is a
canonical isomorphism

π̂1pX
an, xq » πét

1 pX,xq. (19)

Every known computation of nonabelian fundamental groups of varieties factors through this compari-
son theorem; in characteristic p, for instance, this is combined with Grothendieck’s specialization theorem
[Gro03, X.2.4] to obtain information about fundamental groups.

Let now K “ C and F be a function field over C. Then we have the following interpretation of Dv

when v is a prime divisor. First, v is the valuation associated to a Weil prime divisor on some normal model
X of F — that is, a normal variety with function field F , considered as a C-scheme. Given X , there is a
corresponding normal analytic space Xan. Let X be a model of F on which |v| is a prime divisor.

EXAMPLE 18. The exceptional divisor E on BlppXq, the blowup at some closed point p of X , gives a prime
divisor on F but its center on X is not codimension 1 and so is not centered as a prime divisor on X .

Let D1 Ď X be the nonsingular locus of |v|; notice that the underlying topological space of D1 is
connected, as v is a prime divisor.

DEFINITION 19. Let N then be a normal disc bundle for (equivalently, a tubular neighborhood of) D1 and

T “ N zD1

the complement of D1 in its normal disc bundle N , which admits the normal bundle fiber sequence

1 // F ι // T π // D1 // 1, (20)

where F is one of the fibers.

Let p be a point on F . Note that F , like all fibers of π, is a once-punctured disk and thus is homotopy
equivalent to a circle. There is a surjection

ρ : GF Ñ πét
1 pX, pq » π̂1pX

an, pq (21)

(proof: each normal étale cover of X gives a normal extension of its field of functions) whose kernel we
will define to have fixed field FX , and the following commutative diagram:

1 // π̂1pF , pq ι //

&&

π̂1pT , pq π //

��

π̂1pD
1, πppqq // 1

πét
1 pX, pq.

(22)

Then we have

PROPOSITION 20 (THE GEOMETRIC THEORY OF DECOMPOSITION AND INERTIA GROUPS). In the short
exact sequence 22:

1. The top row is a central extension of groups, as the normal bundle is complex-oriented.

2. The image of π̂1pF , pq in πét
1 pX, pq is a TvpFX |F q.
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3. The image of π̂1pT , pq in πét
1 pX, pq is a DvpFX |F q.

4. π̂1pD
1, πppqq is a quotient of GFv, corresponding to covers of D1 pulled back from covers of X .

We will denote by tv a generator of πtop
1 pF , pq Ď π̂1pF , pq, as well as any of its images in πét

1 pX, pq or
TvpFX |F q.

DEFINITION 21. We refer to such a tv as a meridian of v.

Each meridian is almost unique — its inverse also gives a meridian of v, albeit “in the opposite direc-
tion”. This should be viewed as a “loop normal to or around |v|”. Its image generates π̂1pF , pq. In general,
if we are working in a situation in which we do not specify a basepoint, the meridian becomes defined only
up to conjugacy.

DEFINITION 22. Let Γ be a subgroup of a group Π. Then the abelianization functor gives a map

ab : Γab Ñ πab
1 . (23)

We denote by Γa the image of ab. In particular, given v a valuation, and Π a quotient of GF or πtop
1 pXq for

some model of X , we will denote by T av and Da
v the images of inertia and decomposition, respectively, in

Πab, which will sometimes appear in the sequel as H1. We let tav be the image of a meridian in Πab.

We can also define the meridian of a valuation v on a modelX if |v| is smooth, and extend the definition
to non-smooth |v| as follows. We resolve the singularities of |v| on X to get a birational map

η : X̃ Ñ X

such that

1. η is an isomorphism outside of |v|.

2. |v| Ď X̃ is smooth.

Then we define a meridian tv on X to be
tv “ η˚ptvq (24)

where tv is a meridian on X̃ . To see this is well-defined, if we have two such maps η, η1 as in the following
diagram:

X̃2

ϕ

~~

ϕ1

  
X̃

η

  

X̃ 1

η1

~~
X,

(25)

we may always construct ϕ and ϕ1 birational morphisms so that:

1. The above diagram commutes.

2. ϕ,ϕ1, η ˝ ϕ, η1 ˝ ϕ1 are isomorphisms outside of |v|.

3. |v| is smooth in X̃2.
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In this case, the meridians inX defined by η1 and η are the image of a meridian in X̃2 under η ˝ϕ and η1 ˝ϕ1

so, by commutativity of the diagram, the two meridians are the same.
There is also the notion of a meridian for a higher-rank Parshin chain; we give here the notion for a

rank-2 Parshin chain.

DEFINITION 23. Let L be an algebraic extension of F , w ˝ v a rank-2 Parshin chain on F , and X a model
of F on which v has a center, but on which w ˝ v is not centered. Then the meridian of the rank-2 Parshin
chain tw˝v for L|F is the element of AutpL|F q induced by the inverse limit of the monodromies of a loop
on |v| around the point induced by w on the normalization of |v|. As in Definition 22, any image in an
abelianization will be denoted taw˝v.

Let F have dimension n. Then if v is an n´ 1-dimensional Parshin chain, Fv is the function field of a
curve over K. Fv is equipped with a fundamental, birational invariant: its unramified genus gpvq. We can
compute this as follows:

gpvq “ rkẐDv
a{xTva, T ap ypPParnpvq.

3. GEOMETRIC SETS AND THE MAXIMAL SMOOTH MODEL

DEFINITION 24. We say that a set S of prime divisors of a function field F is a geometric set (of F ) if and
only if there exists a normal model X of F such that S is precisely the set of valuations with centers Weil
prime divisors on X . In this case, we write

S “ DpXq.

If X is smooth, we say X is a model of S.

THEOREM 25 (POP). If F is a function field with KpF q “ Q, tr. deg.Q F ě 2, and let Γ Ď GF be a
closed subgroup, up to conjugacy. Then there is a topological group-theoretic criterion, given one of the
representatives of Γ to determine whether there exists i and v P ParipF q such that Γ “ Tv or Γ “ Dv, and
what this i is if it exists.

This theorem is proven with GF replaced by the pro-` completion of GF in [Pop11a]. To see this for
GF as a whole, we may apply Key Lemma 5.1 of [Pop11b]. As the maximal length of a Parshin chain is
the transcendence degree of F , this recipe immediately determines the transcendence degree of F . Pop also
proved [Pop11b]:

THEOREM 26 (POP). Given a geometric set S of prime divisors on F ,

1. If S is a geometric set of prime divisors on F , then a (possibly different) set S 1 of prime divisors on F
is a geometric set if and only if it has finite symmetric difference with S.

2. There exists a group-theoretic recipe to recover

GeompF q “ ttpTv, Dvq | v P Su | S a geometric setu .

DEFINITION 27. If S is any set of prime divisors on F , we define the fundamental group of S to be:

ΠS “ GF {xTvyvPS .

Here, xTvyvPS is the smallest closed, normal subgroup of GF which contains every element in every conju-
gacy class in each Tv. If T Ď S is a subset, then we denote by

ρT S : ΠT Ñ ΠS

the restriction map, and drop subscripts when they are unambiguous.
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Given a geometric set S , there are many possible X such that DpXq “ S; for instance, any model less
a finite subset of points has the same set of prime divisors. We now define the maximal model on which we
will be able to effect our intersection theory.

THEOREM 28. Let S be a geometric set for a function field F of dimension 2. There exists a unique model
MpSq of F such that the following holds:

1. DpMpSqq “ S.

2. MpSq is smooth.

3. π̂1pMan, pq » πét
1 pMpSq, pq » ΠS .

4. If X is any other smooth model of F which satisfies S “ DpXq, then there exists a unique F -
morphism X ÑMpSq, and this is a smooth embedding.

PROOF. Let U be a model of S, and let X be a smooth compactification of U . Let

B “ DpXqzDpUq

be the collection of field-theoretic prime divisors in the boundary of U in X . This is a finite set, as the
boundary divisor is itself a finite union of prime divisors. We now define a sequence of pairs pXi, Biq of
varieties Xi and finite sets of divisors Bi Ă DpXq inductively as follows:

1. Let X1 “ X, B1 “ B.

2. We now construct pXi`1, Bi`1q from pXi, Biq. First, take the collection tvju Ď Bi such that each |vj |
is a ´1-curve such that no other |v1| that intersects it in the boundary is a ´1-curve, and blow down.
Set Xi`1 to be this blowdown, and Bi`1 “ Biztvju.

As B1 is finite, at some point, this sequence becomes stationary — let’s say at pXn, Bnq. Then we define

Umax “ Xnz
ď

vPBn

|v|. (26)

To prove that this satisfies property 4, let U 1 be another model and X 1 a smooth compactification of it. Run
the algorithm on X 1 to get a pair pX 1n1 , B

1
n1q Then by strong factorization for surfaces (see Corollary 1-8-4,

[Mat02]), there exists a roof

Y

δ

~~

δ1

  
X 1n1 Xn,

where δ and δ1 are both sequences of blowups. For any morphism

ϕ : Z Ñ Z 1

of varieties we may define the exceptional locus

Epϕq “
 

p P Z 1 | dimpϕ´1ppqq ě 1
(

Let p P Epδ1q X Umax. Then δ1´1ppq is connected, so δpδ1´1ppqq is also connected. It is proper, so is either
a union of divisors or a point. If it is a union of divisors and one of these divisors were in U 1max, this divisor
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would be contracted, so Umax and U 1max would not have the same codimension 1 theory. We may argue the
same way for δ. Thus, δ ˝ δ1´1|UmaxzEpδ1q is well-defined and regular outside codimension 2, so extends to a
morphism

δ ˝ δ1´1 : Umax Ñ U 1max,

injective on closed points. By the same argument we may produce the inverse

δ1 ˝ δ´1 : U 1max Ñ Umax,

so we have that the maximal smooth model is indeed unique up to isomorphism.
To prove property 3, we note that the map

U Ñ Umax

gives a natural equivalence of the category of étale covers of U with the category of étale covers of Umax, by
the Nagata-Zariski purity theorem [Gro05, X.3.4], and thus gives an isomorphism on fundamental groups
by Theorem 17.

COROLLARY 29. Let U be an affine or projective smooth variety with function field F . Then U “

MpDpUqq.

PROOF. If U is proper, the algorithm in the proof of Theorem 28 terminates immediately, so Umax “ U .
If U is affine, let ι : U Ñ Umax be the embedding of U as an affine open of Umax. Assume there were a

closed point x P UmaxzU . Then there is an affine neighborhood U 1 Ă Umax such that x P U 1. Then U 1 XU
is affine. Its complement U 1zpU 1 X Uq must then contain a divisor, which contains x, and is not contained
in U . Thus, Umax has a different codimension-1 theory from U , which gives a contradiction.

Now, let F be a function field over Q, and fix an embedding of Q into C. Then if XF is the inverse
system of all smooth models of F ,

GF » lim
XPXF

π̂1ppX ˆQ SpecCqanq, (27)

where we will leave the notion of basepoint ambiguous (as we never need to specify it); the isomorphism 27
is highly noncanonical, but well-defined up to conjugation.

4. THE LOCAL THEORY: THE INTERSECTION THEOREM

The following theorem shows how the fundamental group detects intersections in the best-case scenario.

THEOREM 30 (THE LOCAL ANABELIAN INTERSECTION THEOREM). Let X be a smooth (not necessarily
proper) surface over C, and let C1 be a unibranch germ of an algebraic curve at a point p P X and C2 an
irreducible, reduced algebraic curve on X (a prime divisor), with distinct branches γj at p, with C1 distinct
from each branch of C2. Let Y “ XzC2 be the complement of C2 in X; this is an open subvariety of X .
Let w ˝ v1 be the rank-two Parshin chain corresponding to C1 at p, and let v2 be the Weil prime divisor
corresponding to C2. Then, we may choose meridians tav2 and taw˝v1 in πét

1 pXzC2q
ab

taw˝v1 “ ipp, C1 ¨ C2;Xq tav2 , (28)

11



where ipp, C1 ¨ C2;Xq is the local intersection number as defined in Fulton [Ful98, Definition 7.1]. Then

rTv2pFXzC2
|F qa : Tw˝v1pFXzC2

|F qas|ipp, C1 ¨ C2;Xq (29)

with equality iff ipp, C1 ¨ C2;Xq|
ˇ

ˇTv2pFXzC2
|F qa

ˇ

ˇ or Tv2pFXzC2
|F qa or Tw˝v1pFXzC2

|F qa are infinite in
πét

1 pXzC2q
ab.

LEMMA 31 (REEVE’S LEMMA). We use the notation of Theorem 30. There is a neighborhood B Ď X of
p biholomorphic to a unit ball B Ď C2 about the origin so that p corresponds to p0, 0q. Let BB be the
boundary of B, which is homeomorphic to a 3-sphere. Then for small enough such B,

1. H1pBBzpC2 X BBq,Zq »
À

j Ztaγj , the direct sum generated by the meridian around each branch,
where each curve goes in the counterclockwise direction after identifying the normal bundle with an
open disc in C.

2. C1 intersects BB in a loop `, which can be given an orientation by the complex orientation on X .
Then in H1pBBzpC2 X BBq,Zq, we have

` “
ÿ

j

ipp, C1 ¨ γj ;Xqt
a
γj . (30)

We include a simple proof of this lemma (communicated to us by David Massey), which seems to have
been first written down in the difficult-to-access Reeve [Ree55], and it seems to be sufficiently well-known
to experts that it does not occur elsewhere in the literature.

PROOF. We prove the two assertions in order.

1. Embedded algebraic curves have isolated singularities, so each γj intersects BB in a smoothly embed-
ded S1 (by the inverse function theorem), and each of these circles are disjoint. The Mayer-Vietoris
sequence gives the first claim immediately.

2. Let
fjpx, yq “ 0 (31)

be a local equation for γj , and let
u ÞÑ pxpuq, ypuqq (32)

be a local parameterization of the normalization C̃1 of C1 at p. By [Ful98, Example 1.2.5b]

ipp, C1 ¨ γj ;Xq “ vupfjpxpuq, ypuqq, (33)

the u-adic valuation — or order of vanishing — of fjpxpuq, ypuqq P Crruss.
Then the intersection with BB of C1 can be taken to be a path η : r0, 1s ÝÑ C with winding number
one around the origin so that

`ptq “ pxpηptqq, ypηptqqq. (34)

Let
πj : H1pBBzpC2 X BBq,Zq ÝÑ Ztaγj (35)

be the projection given by the direct sum decomposition as above. Consider the differential 1-form
d log fjpx, yq restricted to BB. Then

πjp`ptqq “
1

2πi

ż

`ptq
d log fjpx, yq,
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on B, as d log fjpx, yq is holomorphic away from the zero-set of fj and otherwise measures the
winding of a loop around the zero-set. But this pulls back to the contour integral

1

2πi

ż

ηptq
d log fpxpuptqq, ypuptqqq

which evaluates exactly to vupfjpxpuq, ypuqqq by the Residue Theorem.

PROOF OF THEOREM 30. Let BB be as in Lemma 31. Then given the map

ι : BBzpC2 X BBq ÝÑ X, (36)

we must compute
ι˚ : H1pBBzpC2 X BBq,Zq ÝÑ H1pX,Zq. (37)

But from Proposition 20, for each j,
i˚pt

a
γj q “ tav2

and in the notation of Proposition 20,
` “ taw˝v1 .

Thus by linearity, we have

taw˝v1 “
ÿ

j

ipp, C1 ¨ γj ;Xq t
a
v2 “ ipp, C1 ¨ C2;Xq tav2 .

5. THE GLOBAL THEORY I: POINTS AND LOCAL INTERSECTION NUMBERS

DEFINITION 32. Let S be a geometric set.

1. Let v P S. We define for every rank 2 Parshin chain p ˝ v the subset

∆pp ˝ vq “

"

w P S
ˇ

ˇ

ˇ

ˇ

@Y Ă S finite, s.t. w P Y and Tw is torsion-free in
Πab

SzY , T
a
p˝v ‰ t0u in Πab

SzY

*

. (38)

2. We say p ˝ v „ p1 ˝ v1 if and only if ∆pp ˝ vq “ ∆pp1 ˝ v1q, and the equivalence class of rank-two
Parshin chains will be denoted by rp ˝ vs and called a point. Given such a point rp ˝ vs, we will use
∆prp ˝ vsq to denote, for any p1 ˝ w P rp ˝ vs, ∆pp1 ˝ wq.

3. We say that a prime divisor w P S intersects a point rp ˝ vs if w P ∆prp ˝ vsq.

4. The set of points on S is denoted PpSq.

5. If v P S then Ppvq will be the set of points which contain an element of the form p ˝ v.

6. We denote by MpSq the closed K-points of the maximal smooth model MpSq of S .

By Theorem 30, Equation 38 roughly says that whenever we have removed so many divisors that T aw is
large enough to detect any possible intersection between |p ˝ v| and |w|, it does.
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DEFINITION 33. Let Y Ă S be a finite subset. Then we say that Y recognizes the intersection of v at p if
T av is torsion-free in Πab

SzY and Y X∆ppq “ tvu.

DEFINITION 34. Let X be a smooth surface over an algebraically closed field of characteristic zero. Let
D1, D2 be two divisors on X . We define the total intersection product

pD1 ¨D2q “
ÿ

pPD1

ipp,D1 ¨D2;Xq. (39)

THEOREM 35 (THE ALGEBRAIC INERTIA THEOREM). In this theorem (and its proof), all homology will
be taken with integral coefficients. Let tDiuiPI be a finite collection of smooth, distinct prime divisors on a
smooth, proper, complex, algebraic surface X such that

D “
ď

iPI

Di (40)

is simple normal crossing. Let
η1 : NSpXq Ñ

à

iPI

Ztavi (41)

be given by
η1pDq “

à

iPI

pD ¨ |vi|qt
a
vi . (42)

Then there is a short-exact sequence

NSpXq
η1 //

À

iPI Ztavi // xtaviyiPI Ď H1pXzDq // 0. (43)

We omit the proof, as it is a long, but straightforward application of the Mayer-Vietoris sequence and the
Hodge-Lefschetz p1, 1q-theorem.

COROLLARY 36 (THE SEPARATION OF INERTIA CRITERION). We preserve the notation of Theorem 35.
Suppose that, in addition to the hypotheses, for each i, j P I there does not exist E P NSpXq s.t. for every
k P Izti, ju,

pE ¨Dkq “ 0, but pE ¨Diq ‰ 0 or pE ¨Djq ‰ 0. (44)

For each i P I , let vi be the prime divisor on CpXq associated to Di. Then in H1pXzDq,

1. T avi » Z.

2. For j P I, j ‰ i,
T avi X T

a
vj “ 0. (45)

PROOF. We apply the hypothesis in Corollary 36 to Equation 43 to see that there are no elements in the
image of B none which are zero at all but one component to prove the first claim, and which are zero at all
but two components to prove the second claim.

LEMMA 37 (DIVISOR EXISTENCE LEMMA). LetD1, . . . , Dj be a finite set of divisors on a smooth surface,
and p1, . . . , pn be a finite set of points. Then there are infinitely (in fact “generically”) many prime divisors
which intersect each of the Di but not at the pi.

PROOF. Choose a very ample divisor C. Then C ¨Di ą 0 for all i. Then having an intersection at pi is a
closed condition (since C is basepoint-free), and so the divisors which do not intersect at those points form
an open, nonempty subset of the linear system |C|, which is then infinite.
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COROLLARY 38. Let S be a geometric set and let P PMpSq. Let v P S and let p ˝ v be a rank-2 Parshin
chain such that

|p ˝ v| “ P. (46)

Then

1. w P ∆pp ˝ vq if and only if P P |w|.

2. If w P ∆pp ˝ vq then there exists a set Y Ă S which recognizes the intersection of w and rp ˝ vs.

3. If v1 P S and p1 ˝ v1 is not centered on MpSq, then ∆pp1 ˝ v1q ‰ ∆pp ˝ vq.

Then there is a canonical map
ι : MpSq ÝÑ PpSq, (47)

given by
ιpxq “ tv P S | x P |v|u . (48)

This map is always an injection, and is a bijection if and only if MpSq is proper.

PROOF. Let X be a smooth compactification of MpSq with only simple normal crossings at the boundary
and let

BS “ DivpXqzMpSq Ă Par1pF q (49)

be the prime divisors supported as prime divisors on the boundary of X .

1. Let P P |w| and Υ Ă S a cofinite subset which does not contain w and so that T aw is torsion-free
in Πab

Υ . Then Lemma 31 implies that the projection of T ap˝v to the T aw-part of the direct summand is
torsion-free in T aw in any Πab

Υ , so must be torsion-free itself, so w satisfies the properties of an element
of ∆pp ˝ vq.

2. Lemma 37 shows that there exists a finite set tβiuiPI of prime divisors such that t|βi|uiPI Y t|w|u Y
t|β|uβPBS satisfies the hypotheses of Corollary 36, and so tβiuiPI Y twu recognizes the intersection
of w with p ˝ v.

3. This follows immediately from the fact that there exists a prime divisor in MpSq which intersects the
boundary at |p1 ˝ v1| and does not intersect |p ˝ v|, so the valuation associated to this divisor will be in
∆pp1 ˝ v1q but not in ∆pp ˝ vq.

The existence and injectivity of the map ι is now straightforward. The bijectivity in case of properness
follows from the valuative criterion for properness.

DEFINITION 39. Let S be a geometric set, v, w P S, and p ˝ w a rank-2 Parshin chain. Then we define the
local intersection number pp, v ¨ w;Sq as follows:

1. If there does not exist a set Y which recognizes the intersection of v at p (and this includes the case
where v R ∆ppq, then we define

pp, v ¨ w;Sq “ 0. (50)

2. Otherwise, let Y recognize the intersection of v at p. Then we define

pp, v ¨ w;Sq “ rTv : Tp˝wsΠSzY .
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THEOREM 40. Let S be a geometric set, p P PpSq a point with a center |p| PMpSq and v P S. Then
ÿ

p1˝wPp,wPS
pp1, v ¨ w;Sq “ ip|p|, |v| ¨ |w|;MpSqq. (51)

PROOF. By Corollary 38, either both sides of Equation 51 are zero, or there exists a geometric set which
recognizes the intersection of p with v. Now, each p1 ˝ w P p represents a branch of |w| at p, and we will
call this germ ξp1˝w. We then have by the Local Anabelian Intersection Formula

ip|p|, |v| ¨ |w|;MpSqq “
ÿ

|p1˝w|Pp

ip|p|, |v| ¨ ξp1˝w;MpSqq “
ÿ

|p1˝w|Pp

pp1, v ¨ w;Sq. (52)

DEFINITION 41. Let p ˝ v be a rank-2 Parshin chain with v P S. Then we say that p ˝ v is a nonnodal chain
for S if rp ˝ vs is distinct from every other rp1 ˝ vs, and we say that p ˝ v is a noncuspidal chain if there
exists a v1 P S with pp, v1 ¨ v;Sq “ 1. A rank-2 Parshin chain which is both nonnodal and noncuspidal will
be called a smooth chain.

PROPOSITION 42. If |p˝v| PMpSq then p˝v is nonnodal (resp. noncuspidal) if and only if |v| is not nodal
(resp. cuspidal) at |p ˝ v|.

PROOF. This follows directly from Corollary 38 and the definition of a nodal, resp. cuspidal, point on a
curve.

Recall that PpSq Ă 2Par2pF q; thus, each point of each geometric set is a subset of a larger set, and we
will consider them as sets in the next sequence of definitions.

DEFINITION 43. Let S 1 be a geometric set, and let p P PpS 1q. Then we define the S 1-limits of p in S by

LimSppq “ tπ P PpSq | π X p ‰ Hu. (53)

DEFINITION 44. If v P S 1, then we define the S 1-limits of v in S to be

LimSpvq “
ď

p˝vPPar2pvq

LimSprp ˝ vsq. (54)

DEFINITION 45. Let S 1 be a geometric set so that S Ă S 1. Then we define the boundary points of S relative
to S 1 as

BS1pSq “
ď

vPS1zS
LimSpvq, (55)

and the interior points of S relative to S 1 as

PS1pSq “ PpSqzBS1pSq. (56)

DEFINITION 46. We say that a point rp ˝ vs is absolutely uncentered on S if Tp1˝v1 is nontrivial in the total
fundamental group ΠS of S for some p1 ˝ v1 P rp ˝ vs. We define

apSq “ trp ˝ ws P PpSq | rp ˝ ws absolutely uncenteredu .

We define the candidate points of S by

ApSq “ PpSqzapSq,

and these are the points which are not absolutely uncentered.
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We have immediately:

PROPOSITION 47. For any geometric set S,

MpSq Ď ApSq.

That is, absolutely uncentered points of S do not have centers on MpSq, and candidate points have a chance.

The converse to this proposition is false in general:

EXAMPLE 48. Let F “ Qpx, yq, and X “ SpecQrx, ys and S “ DivpXq. If p ˝ v is not centered on X ,
then the algebraic inertia theorem (accounting for resolution of singularities) shows that T ap˝v “ Z in any
divisor complement, so

∆pp ˝ vq “ S. (57)

But as ΠS is trivial,
ApSq “ PpSq. (58)

Thus,
ApSq “ X Y t8u. (59)

However, for the “visible affine opens” we define below, the converse is true. The first goal of Anabelian
Intersection Theory is to identify these special geometric sets, and use this to construct a salvage of the
converse.

6. THE GLOBAL THEORY II: VISIBLE AFFINES AND PROPERNESS

In this section, we fix a two-dimensional function field F .

DEFINITION 49. Let U be a model of F which admits a surjective map

π : U ÝÑ B

to a hyperbolic curve B, with smooth, hyperbolic fibers of the same genus with at least three punctures.
We call U a visible affine of F (this is a topological fibration, if not a Zariski fibration). There is then a
horizontal-vertical decomposition

DpUq “ HY V

into horizontal divisors (the members of H) and vertical divisors (the members of V), where the verti-
cal divisors are given as the fibers of π. This π determines the horizontal-vertical decomposition, and a
horizontal-vertical decomposition determines π up to automorphisms of the base.

PROPOSITION 50. Let U be a visible affine of F with horizontal-vertical decomposition

DpUq “ HY V. (60)

Then

1. ιpPpUqq “ ApDpUqq.

2. For any v, v1 P V, Dv “ Dv1 in ΠDpUq.

3. For any v P V , πét
1 pBq “ ΠDpUq{Dv.
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4. Let
BB “ BzB. (61)

Then for each h P H and p P BB there exists q ˝ h P Par2phq such that 0 ‰ π˚pT
a
q˝hq Ď T ap , the

closure of a group generated by a meridian around p in B. In particular, let

IhU “ xT
a
p ypPPar2phq

be the closure of the subgroup of πét
1 pUq

ab generated by all inertia of rank-2 valuations, and let IB be
the divisible hull of π˚pIhU q Ď πét

1 pBq
ab. Then IB is independent of the choice of h, and

gpBq “ rkẐpπ
ét
1 pBq

ab{IBq, (62)

where gpBq is the unramified genus of B.

PROOF. 1. By Corollary 38, ιpUq Ď ApDpUqq. Let C be any smooth, hyperbolic, possibly open curve.
Then for any choice of basepoint p P C, π2pC, pq “ 0 and πtop

1 pC, pq is residually finite. Thus, for
v P V and p P |v| there is a short-exact fiber sequence

1 ÝÑ πét
1 p|v|, pq ÝÑ πét

1 pU, pq ÝÑ πét
1 pB, πppqq ÝÑ 1. (63)

Let q˝v be a rank-2 Parshin chain that is not centered on U . If w P V, Tq˝w is a nontrivial subgroup of
the first term of the short exact sequence; otherwise, Tq˝w projects to a nontrivial subgroup of πét

1 pBq.
In either case, Tq˝w is nontrivial, so ApDpUqq Ď ιpUq.

2. The fibration short exact sequence and Proposition 20 gives for any v P V that

Dv “ kerπ˚ : πét
1 pUq ÝÑ πét

1 pBq. (64)

3. By Proposition 20,
πét

1 p|v|, pq “ Dv (65)

in the short exact sequence 63, and the desired statement follows.

4. As π||h| is nonconstant, we can complete and we get a diagram

H

π

��

// H

π
��

B // B.

(66)

where π is surjective, and branch points are isolated. If p P BB then tp has inverse image a disjoint
union of loops in |h| and a choice of one such loop for each p P BB provides the necessary meridians
of rank-2 Parshin chains by Proposition 20.

We can similarly define IB and gpBq for any geometric set having a horizontal-vertical decomposition.

THEOREM 51. Let S be a geometric set of F with a disjoint union decomposition

S “ HY V,

where we call H the horizontal and V the vertical fibers. Then MpSq is a visible affine of F with horizontal-
vertical decomposition HY V if and only if it satisfies the following properties:
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1. Fullness. Let v P Par1pF q and v R S. Then either BSYtvupSq Ď apSq or #BSYtvupSq “ 1.

2. Homeomorphicity of Fibers. For v P S let

apvq “ Ppvq X apSq and Apvq “ Ppvq XApSq. (67)

Then for any v1, v2 P V ,
#apv1q “ #apv2q (68)

and
gpv1q “ gpv2q (69)

3. Disjointness of Fibers. ApSq “
š

vPV Apvq, (a disjoint union). Furthermore, there exists a geometric
set S 1 Ě S such that in S 1, for any v1 and v2 distinct elements of V, and any p1 P Par2pv1q and
p2 P Par2pv2q,

rp1s ‰ rp2s. (70)

Such an S 1 is called fiber-separating.

4. Hyperbolicity of Base. The base has at least three punctures; that is, the Ẑ-rank of IB is ě 2.

5. Numerical Equivalence of Fibers. For h P H and v P V , let

Shpvq “
ÿ

p˝vPPar2pvq s.t.
rp˝vsPApSq

pp, h ¨ v;Sq.

For every h P H there exists nh P N and a finite subset Σh Ď V such that for all v P V ,

Shpvq ď nh

with inequality strict only at Σh, and
č

hPH

Σh “ H

for any cofinite subset H Ď H.

6. Triviality of Monodromy. Let v P V . Then T av is torsion-free in Πab
Sztvu, and the action of Tv by

conjugation on any Dv1 for v1 P V is inner in ΠSztvu.

7. Inheritance. Let V 1 be any cofinite subset of V . Then all the above properties hold for V 1 YH.

In this case, S will be called a visible affine geometric set.

PROOF. It is straightforward that every visible affine satisfies the hypotheses. Let

S “ DpMpSqq

where MpSq is a smooth compactification of MpSq which is also fiber-separating. Such an S exists by
applying resolution of singularities to a compactification of MpT q for any fiber-separating T ; such a T
exists by Disjointness of Fibers.

We define two subsets of PpSq:

βi “ BSpSq X apSq and βe “ BSpSq XApSq. (71)
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We define the vertical support of BSpSq to be

∆pβeq “
ď

pPβe

∆ppq X V. (72)

By fullness, ∆pβeq is finite.
We define

V 1 “ Vz∆pβeq. (73)

Then S 1 “ V 1 YH is a geometric set with horizontal-vertical decomposition, by Inheritance.
If C,D and E are divisors on MpSq, we define

C „E D if and only if pC ¨ Eq “ pD ¨ Eq, (74)

where we use the total intersection product as in Definition 34. If E1, . . . , En generates NSpXq, then we
see that C is numerically equivalent to D if and only if C „Ei D for every i “ 1, . . . , n. If C and D are
numerically equivalent, effective and pairwise disjoint, they are algebraically equivalent by [Ful98][19.3.1].

Thus, to prove that MpSq is a visible affine open, we need to prove that there exists a cofinite subset
V2 Ď V 1 and a finite set th1, . . . , hnu Ă H such that:

1. |hi| generate NSpMpSqq bQ.

2. For all v1, v2 P V2, we have
|v1| „|hi| |v2| (75)

for each 1 ď i ď n.

Once we know this, we will know that the MpV2 YHq is indeed an affine open, for the divisors each vary
in an algebraic family. Triviality of Monodromy allows us to use [Tam97, Theorem 0.8] to “plug the holes”
and deduce that MpSq itself is indeed a visible affine open. It is here that we use homeomorphicity of fibers
to make sure we’re “plugging the holes” with the right divisors.

NSpMpSqq bQ is spanned by very ample, prime divisors. As the |v| with v P V 1 are mutually disjoint,
they cannot be very ample, as each very ample divisor intersects every other divisor. Thus, all very ample
divisors must be horizontal. We thus can choose h1, . . . , hn P H so that t|hi|u generates NSpMpSqq b Q.
For each hi we have

¨

˝|hi| ¨
ď

bPSzS

|b|

˛

‚ă 8. (76)

Thus, by separation of points, there is at most a finite subset σ1i Ă V 1 for which if s P σ1i there is an
intersection between |s| and |hi| at a point in βi, and we may take

σi “ σ1i Y pΣhi X V 1q.

But for each v1, v2 P V 1zσi, we have by Theorem 30,

|v1| „hi |v2|.

Thus, we may take

V2 “ V 1z
n
ď

i“1

σi. (77)
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PROPOSITION 52. Let U be a visible affine and X a maximal smooth model of F . Then there is an open
immersion

U ÝÑ X

under SpecF if and only if
DpUq Ď DpXq (78)

and
ApDpUqq “ PDpXqpDpUqq. (79)

PROOF. There is a birational map
U // X (80)

defined outside a set of codimension 2. The minimal such exceptional set is, however, exactly BDpXqpDpUqq,
so this arrow extends to a regular map if and only if BDpXqpDpUqq is empty or, equivalently, ApDpUqq “
PDpXqpDpUqq.

As immediate corollaries we have:

COROLLARY 53. Let S be a geometric set. Then a point p P PpSq is in the image of ι if and only if there
is a visible affine geometric set S 1 such that p P PSpS 1q. This is a group-theoretic criterion, and we will
call these points, as group-theoretic objects, geometric points and denote the collection of all of them by
PgeompSq; PgeompSq is identified by ι with MpSq.

COROLLARY 54. Given S , there is a group-theoretical recipe to determine whether MpSq is proper.

DEFINITION 55. A geometric set S such that MpSq is proper will be called itself proper.

DEFINITION 56. We define a partial ordering ĺ on GeompF q by saying that

S ĺ S 1

if the following two conditions hold:

1. S Ď S 1.

2. PgeompSq Ď PS1pSq.

The category formed by this partial ordering (so a morphism ϕ : S ÝÑ S 1 is the relation S ĺ S 1) is denoted
by GBirmaxpF q. The maximal smooth model M thus extends uniquely to a functor

M : GBirmaxpF q ÝÑ BirpF q

and the set of prime divisors likewise extends

D : BirpF q ÝÑ GBirmaxpF q.

COROLLARY 57. M is fully faithful. The functors

GBirmaxpF q
M //

BirpF q
D
oo

form an adjoint pair, with M right-adjoint to D.

21



7. ALGEBRAIC, NUMERICAL, AND LINEAR EQUIVALENCE OF DIVISORS

In this section, S will denote a proper geometric set. The divisor group DivpSq is defined to be the free
abelian group generated by S.

DEFINITION 58. 1. We call an element
ř

aivi P DivpSq effective if and only if each ai ě 0, and we
denote this by D ě 0. If D ě 0 and D ‰ 0 then we write D ą 0. We also define a preorder on the
divisors by:

D ě presp. ąqD1 ðñ D ´D1 ě presp. ąq 0.

2. The support of a divisor D, denoted supppDq, is the collection of v P S such that the coefficient of
v in D is nonzero.

3. Given a divisor D P DivpSq we may write D uniquely as

D “ D` ´D´

where D` and D´ are effective divisors, and supppD`q X supppD´q “ H.

It is clear that

PROPOSITION 59. The map
µ : DivpSq ÝÑ DivpMpSqq

given by

µ

˜

ÿ

i

aivi

¸

“
ÿ

i

ai|vi|

is an isomorphism.

Let v1 and v2 be two distinct prime divisors. We define the intersection pairing to be

pv1 ¨ v2q “
ÿ

p˝v2PPar2pv2q

pp, v1 ¨ v2;Sq,

By Theorem 30,

PROPOSITION 60. The intersection pairing pv1 ¨ v2q coincides under pushforward with the intersection
pairing on MpSq when v1 ‰ v2 and otherwise extends by linearity to give self-intersection on DivpSq.

Let F Ă S be a visible affine with horizontal-vertical decomposition F “ HY V , and

1. Let p be a puncture of the base, and let Tp be its inertia group; this is the divisible hull of the image
of a corresponding inertia group in F . Then if v P SzF , we say its multiplicity at p is the index

mppvq “

"

rT ap : πpT av qs if T ap X T
a
v ‰ t0u

0 otherwise

in pΠF{Dvq
ab, with this equal to zero if the two groups are disjoint.

2. The complete family of F will be the subset

FampFq Ă DivpSq

given by
V Y t

ÿ

vPS
mpipvqv | pi a puncture of the baseu.
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3. We define group-theoretical algebraic equivalence to be the equivalence relation on DivpSq gen-
erated by FampFq for all visible affines F and denote this by „alg. We define group-theoretical
linear equivalence to be the equivalence relation generated by FampFq for all visible affines with
base having trivial unramified fundamental group (that is, for genus 0 base) and denote this by „lin.
Two divisors D1 and D2 are said to be group-theoretically numerically equivalent if and only if for
any divisor E we have pD1 ¨ Eq “ pD2 ¨ Eq. This equivalence relation is denoted by „num.

4. Let D P DivpSq and D ą 0. Then we define |D| to be the set of effective divisors linearly equivalent
to D.

5. Let D P DivpSq and let
D “ E ´ E1 (81)

be some expression of D as a difference of two effective divisors.
Then we define the group-theoretical complete linear system to be

|D| “ tD1 ´ E1 | D1 P |E| and D1 ´ E1 ě 0u. (82)

We see immediately:

PROPOSITION 61. Let S be a proper geometric set of prime divisors. Then the pushforward of group-
theoretical linear (respectively, algebraic and numerical) equivalence on DivpSq by µ induces linear (re-
spectively, algebraic and numerical) equivalence on DivpMpSqq.

COROLLARY 62. The group-theoretical complete linear systems |D| coincide with complete linear systems
|µpDq| on MpSq and form finite-dimensional projective spaces over Q, and the lines in this projective space
are given by linear families.

In particular, the Picard and Néron-Severi groups of MpSq are group-theoretical invariants of pGF ,Sq.

8. LOCAL GEOMETRY: TANGENT SPACES

Let S be a geometric set on a two-dimensional function field F . As we work locally, we do not need
properness.

DEFINITION 63. Let p P PgeompSq be a point. Then

∆sppq “def tv P ∆ppq | v is smooth at pu. (83)

DEFINITION 64. Let w P S , smooth at a rank-2 Parshin chain q ˝ w such that rq ˝ ws P PgeompSq and let
p P ∆sprq ˝ wsq. Then we say that v and w are tangent to order n at p if and only if the local intersection
number

pp, v ¨ w;Sq ě n` 1. (84)

Because |v| and |w| are actually tangent to order n at p, tangency to order n forms an equivalence
relation, which we call „n´tan, and we thus recover the projectivized jet space

PJ n
p “ ∆sppq{ „n´tan,

at p. In particular,
PJ1 “ PTp,

the projectivized tangent space to MpSq at p. As MpSq is a smooth surface, PTp is a projective line.
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9. PROJECTIVE EMBEDDINGS AND PROJECTIVE COORDINATE RINGS

We start with some basic projective geometry, as in Artin [Art88]. Let pX,Lq be an abstract projective
space, given as its set of points X and a set of lines L.

1. A subset Y Ď X is linearly closed if for any two points P, P 1 P Y the line PP 1 Ď Y . The linearly
closed sets are closed under intersection. The linear closure of Y in X is the intersection of all
linearly closed spaces which contain Y . As X is linearly closed, the linear closure always exists. We
denote the linear closure of the union of a collection of subsets V1, . . . , Vn Ď X by V1 ¨ ¨ ¨Vn.

2. A point P P X is said to be linearly independent of a subset Y if and only if P R Y . In particular,
we call a set P1, . . . , Pn P X linearly independent if for any subset M Ď t1, . . . , nu and any k RM
we have pPmqmPM Ĺ PkpPmqmPM .

3. The dimension of X is the cardinality of a maximal set of linearly independent points minus 1, and
is denoted dimX (this is possibly infinite).

Let S be a proper geometric set on a function field F of dimension 2.

DEFINITION 65. We say a point p P PpSq is supported on a divisor D P DivpSq if and only if ∆ppq X
supppDq is nonempty. We say a set X Ď DivpSq separate points if and only if for any two points
p1, p2 P PpSq there are two divisors D1, D2 P X such that p1 P supppD1q, p1 R supppD2q and
p2 R supppD1q, p2 P supppD2q. Given a set S Ď DivpSq, we will define its support

supppSq “
ď

EPS

supppEq.

DEFINITION 66. A point p P PpSq is said to be in the base locus (and is called a base point) ofX Ď DivpSq
if p is supported on every element of X; a set without base locus is called basepoint free.

Separating points is strictly stronger than basepoint free.

DEFINITION 67. We say the linear system |D| separates tangent lines at p if and only if for any ` P
PTp, |D| X ` is nonempty.

DEFINITION 68. We call a divisor D very ample if |D| separates points and tangent lines.

For any divisor D and any effective divisor E there is an injective map

α : |D| ÝÑ |D ` E|

given by adding E to each effective divisor in |D|. This invokes a map in general

α : |D| ˆ |E| ÝÑ |D ` E|

and in our particular case,
αn : Symnp|D|q ÝÑ |nD|

as addition is symmetric. We will now call a divisor D n-adequate if the linear closure of αnpSymnp|D|qq
in |nD| is all of |nD|. Any very ample divisor is adequate; indeed, a very ample divisor gives relations on
the projective coordinate ring, which is generated in the first dimension.

DEFINITION 69. We define a projectivizing datum to be a quadruple pS, D, V, ρq where:

24



1. S is a proper geometric set.

2. D is a very ample divisor.

3. V is a Q-vector space.

4. ρ : |D| ÝÑ PV is an isomorphism.

We know by the fundamental theorem of projective geometry that this ρ is determined up to a semilinear
automorphism of V , and fixing a ρ rids us of the indeterminacy. Let ProjDatapSq be the collection of
projectivizing data for S. The outer automorphisms of GF act on the collection of all projectivizing data,
by translation of the corresponding S, D, and |D|.

PROPOSITION 70. Given a projectivizing data pS, D, V, ρq, the maps

Symnp|D|q ÝÑ |nD|

induce a canonical isomorphism

Symnpρq : PpSymnpV q{Inq » |nD|

compatible with all αi, where In Ă SymnpV q is a vector subspace.

Finally:

THEOREM 71. A projectivizing datum pS, D, V, ρq gives MpSq uniquely the structure of a smooth, projec-
tive Q-variety, so that

MpSq
{Q » Proj

˜

à

ně0

SymnpV q{In

¸

,

which induces an isomorphism
η : FracpQpMpSqqq ÝÑ F,

and a corresponding isomorphism
η : GF ÝÑ GQpMpSqq.

which respects inertia and decomposition groups of divisors.

10. THE PROOF OF THE BIRATIONAL ANABELIAN THEOREM FOR SURFACES

We can now apply the theory developed above to prove Theorem 2.

PROOF OF THEOREM 2. Let F be a field, finitely generated over Q and of transcendence degree 2. There
is a canonical, injective map

ϕ : AutpF q ÝÑ OutcontpGF q, (85)

as any automorphism of F which fixes each of its prime divisors must be the trivial automorphism. We
construct the inverse

ψ : OutcontpGF q Ñ AutpF q. (86)

Choose a projectivizing datum pS, D, V, ρq fixed by no non-trivial automorphisms of F . By Theo-
rem 71, we have

η : QrMpSqzDs Ñ F (87)
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which gives an injection from a finitely generated ring to its field of fractions; the automorphisms of F then
act simply transitively on this set, as pS, D, V, ρq is fixed by no non-trivial automorphisms of F ; however,
as pS, D, V, ρq are determined by group theory, OutcontpGF q acts on this set and this gives our section ψ.

We must now prove that every continuous outer automorphism ζ P OutcontpGF q for which ψpζq “ e is
an inner automorphism. Choose ζ 1 to be a genuine continuous automorphism in the class of ζ.

Let tLnu be a sequence of finite, Galois extensions of F and

Γn “ GalpF |Lnq

which satisfy the following properties:

1. ζpΓnq “ Γn.

2.
Ş

n Γn “ teu.

That such a filtration exists comes from the fact that there are only finitely many translates of any finite-
index, closed subgroup of GF , which follows from the fact that there is a group-theoretic recipe to detect
ramification information, and that there are only finitely many covers of a given degree with prescribed
ramification (which in turn follows from the fact that geometric fundamental groups in question are finitely-
presented). But we can reconstruct Ln from Γn, so any class of ζ then gives us an action of µ on

Ť

n Ln “ F
trivial on F , which shows that its action on Γn is induced by conjugation by an element of GF {Γn and as

GF “ lim
ÐÝ

GF {Γn, (88)

ζ is inner, and ψ is an isomorphism.

11. APPLICATION: GROTHENDIECK-TEICHMÜLLER THEORY

Let M0,5 be the moduli space of genus 0 curves with 5 distinct, marked, ordered points over Q. There is a
natural isomorphism

i : M0,5 Ñ P2zL (89)

where, if P2 is given projective coordinates X,Y, Z, L is the union of the six lines given by homogeneous
equations LX : X “ 0, LY : Y “ 0, LZ : Z “ 0, LXY : X “ Y, LXZ : X “ Z,LY Z : Y “ Z. S3 acts on
M0,5 by permuting these coordinates. Harbater and Schneps defined a subgroup of Outpπét

1 pM0,5qq

Out#
5 “

$

’

’

&

’

’

%

α P Outpπét
1 pM0,5qq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

α commutes with the action of S3

α sends generators of inertia subgroups of each LX , etc.,
to generators of possibly conjugate inertia subgroups

,

/

/

.

/

/

-

. (90)

A special case of the Main Theorem of [HS00] is that there is an isomorphism

η1 : yGT Ñ Out#
5 . (91)

The η of Formula 4 is the composition of η1 with the inclusion of Out#
5 into Outpπét

1 pM0,5qq. To prove
Theorem 4 we need first a lemma about visible affine opens.

LEMMA 72. Let S1 and S2 be visible affine geometric sets with

ker ρHS1 “ ker ρHS2 . (92)

Then
S1 “ S2. (93)
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PROOF. We note that a divisor v is not centered on Si if and only if ρHSipTvq is nontrivial, so under our
assumptions v is not centered on S1 if and only if it is not centered on S2. Let

S1 “ S2 Y tviuiPV ztwiuiPW , (94)

for some (possibly empty) finite, disjoint sets V and W . If W were nonempty, then each wi would be
uncentered on S1 so ρHS1pTw2qmust be nontrivial, contradicting that ker ρHS1 “ ker ρHS2 . As any divisor
complement of a visible affine adds generators to its fundamental group, S1 “ S2.

PROOF OF THEOREM 4. α as given in the hypotheses of the theorem satisfies the defining conditions of
Out#

5 , by the Main Theorem of Harbater and Schneps. Let α also satisfy the lifting condition of the theorem.
Then by the birational anabelian theorem for surfaces, α̃ “ ϕpβq for some β P AutpQpx, yqq. If α̃ preserves
the kernel of γ˚, by Lemma 72, α̃ must preserve the unique geometric set S which satisfies:

1. xTvyvPS “ ker γ˚.

2. MpSq is isomorphic to M0,5.

This implies that α̃ is such an automorphism of the affine M0,5{Q, considered as a Z-scheme (so that α̃
could come from GQ for example). But

AutpM0,5q » GQ ˆ S5, (95)

so the centralizer of S5 is GQ, and α P Im η ˝ ρ.

12. APPLICATION: ABSOLUTE GALOIS GROUPS OF NUMBER FIELDS ARE GEOMETRIC
OUTER AUTOMORPHISM GROUPS

If a field F satisfies the hypotheses of Theorem 3, then AutpF q “ Gk, so Theorem 3 follows immediately
from Theorem 2.

We can write down explicit examples of fields F which satisfy the hypotheses of Theorem 3. We recall
the following consequence of the main theorem from [Tur94]:

PROPOSITION 73. Consider the affine curve

Cα : x5 ` y4 ` αxy ` x “ 0.

Then for all but finitely many α P Q, this curve is nonsingular, hyperbolic, and has trivial automorphisms
over its field of definition, which is Qpαq.

Let C and C 1 be two non-isomorphic, complete, hyperbolic curves over Q, with no Q-automorphisms,
so that the compositum of their minimal fields of definition is k. CˆC 1 is the image of any variety birational
to it under the canonical map (induced by the canonical bundle), so is a birational invariant. As C ˆ C 1 has
no automorphisms over Q, there are no automorphisms of QpC ˆ C 1q over Q; otherwise they would have
to act on the image of the canonical map. Let k “ Qpαq; for any number field k, there are infinitely many
such α, by Steinitz’s theorem. Then, the field F “ QpC1 ˆ Cαq satisfies the hypotheses of Theorem 3, so

OutpGF q » Gk.
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