Math 312, Midterm 2

Aaron M. Silberstein

March 22, 2013

1. (5 points) 51.

2. (5 points) 51 (the dual space has the same dimension as the original vector space; this was also on the first midterm).
3. ($\mathbf{1 0}$ points) 1 ; a polynomial with zero derivative is constant.
4. ($\mathbf{1 0}$ points) 50, by rank-nullity.
5. (Many answers suffice for these problems).
(a) (10 points) No; $0 \notin A$.
(b) (10 points) No; $0 \notin B$.
(c) (10 points) Yes; $\langle\cdot, \cdot\rangle$ is positive-definite.
(d) ($\mathbf{1 0}$ points) Yes; D is the kernel of the linear map $f \mapsto\left\langle f, x^{3}+x^{2}+1\right\rangle$.
(e) (10 points) No; $0 \notin E$.
(f) (10 points) No; $0 \notin F$.
(g) (10 points) No; $0 \notin G$.
6. (a) ($\mathbf{1 0}$ points) $49 ; H=\operatorname{ker~ev}_{0} \cap \operatorname{ker~ev}_{1}$, where $\mathrm{ev}_{x}(f):=f(x)$. There is a polynomial f so that $\operatorname{ev}_{0}(f) \neq 0$. By rank-nullity, ker evo has dimension 50. As ev_{1} : $\mathrm{ker}^{\mathrm{ev}} \mathrm{en}_{0} \rightarrow \mathbb{R}$ has nontrivial image (there is a polynomial f for which $\operatorname{ev}_{0}(f)=0$ and $\operatorname{ev}_{1}(f) \neq 0$: for instance, $\left.x\right)$, rank nullity again shows that ker ev ${ }_{1}$ restricted to ker ev ${ }_{0}$ has dimension 49 .
(b) (15 points)

$$
\int_{0}^{1} D f(x) g(x) d x=\left.f(x) g(x)\right|_{0} ^{1}-\int_{0}^{1} f(x) D g(x) d x
$$

But

$$
\left.f(x) g(x)\right|_{0} ^{1}=0
$$

$$
\langle D f(x), g(x)\rangle=\langle f(x),-D g(x)\rangle .
$$

