Math 312, Midterm 2

Aaron M. Silberstein

March 22, 2013

- 1. (5 points) 51.
- 2. (5 points) 51 (the dual space has the same dimension as the original vector space; this was also on the first midterm).
- 3. (10 points) 1; a polynomial with zero derivative is constant.
- 4. (10 points) 50, by rank-nullity.
- 5. (Many answers suffice for these problems).
 - (a) (10 points) No; $0 \notin A$.
 - (b) (10 points) No; $0 \notin B$.
 - (c) (10 points) Yes; $\langle \cdot, \cdot \rangle$ is positive-definite.
 - (d) (10 points) Yes; D is the kernel of the linear map $f \mapsto \langle f, x^3 + x^2 + 1 \rangle$.
 - (e) (10 points) No; $0 \notin E$.
 - (f) (10 points) No; $0 \notin F$.
 - (g) (10 points) No; $0 \notin G$.
- 6. (a) (10 points) 49; H = ker ev₀ ∩ ker ev₁, where ev_x(f) := f(x). There is a polynomial f so that ev₀(f) ≠ 0. By rank-nullity, ker ev₀ has dimension 50. As ev₁ : ker ev₀ → ℝ has nontrivial image (there is a polynomial f for which ev₀(f) = 0 and ev₁(f) ≠ 0: for instance, x), rank nullity again shows that ker ev₁ restricted to ker ev₀ has dimension 49.
 - (b) (15 points)

$$\int_0^1 Df(x)g(x)\,dx = f(x)g(x)\Big|_0^1 - \int_0^1 f(x)Dg(x)\,dx.$$

But

$$f(x)g(x)\Big|_0^1 = 0$$

 $\langle Df(x), g(x) \rangle = \langle f(x), -Dg(x) \rangle.$

 \mathbf{so}