Math 312, Midterm 1

Aaron M. Silberstein

February 12, 2013

You have 50 minutes to complete this midterm.

1. Let $A: \mathbb{R}^{30} \rightarrow \mathbb{R}^{40}, B: \mathbb{R}^{40} \rightarrow \mathbb{R}^{7}$ and $C: \mathbb{R}^{7} \rightarrow \mathbb{R}^{57}$ be linear transformations.
(a) ($\mathbf{1 0}$ points). What are the possible dimensions of the image of $C \circ B \circ A$?
(b) ($\mathbf{1 0}$ points). What are the possible dimensions of the kernel of $C \circ B \circ A$?
(c) (10 points). Can $C \circ B \circ A$ be injective? Can $C \circ B \circ A$ be surjective? Can $C \circ B \circ A$ be invertible? Use the answers to (a) and (b) to justify your answers.
2. ($\mathbf{1 0}$ points). Write down a basis of \mathcal{P}_{4}, the vector space of polynomials with real coefficients of degree ≤ 4.
3. (10 points). What is the dimension of the dual space of \mathcal{P}_{4} ?
4. Consider the linear map

$$
\mathrm{ev}_{3}: \mathcal{P}_{4} \rightarrow \mathbb{R}
$$

given by

$$
\operatorname{ev}_{3}(f)=f(3)
$$

(a) (5 points). What is the dimension of the kernel of ev_{3} ?
(b) (5 points). What is the dimension of the image of ev_{3} ?
(c) (10 points). Give a basis of the kernel of ev_{3} (Hint: any polynomial of the form $(t-3) g(t)$ is in the kernel).

