Math 312, Midterm 2

Aaron M. Silberstein

March 22, 2013

You have 50 minutes to complete this midterm.
If n is a positive integer, let

$$
\mathcal{P}_{n}:=\{f(x) \in \mathbb{R}[x] \mid \operatorname{deg} f \leq 50\}
$$

be the vector space of polynomials of dimension n. In particular, any particular element of \mathcal{P}_{n} is a polynomial in the variable x. Let

$$
\mathcal{P}_{n}^{*}:=\left\{\varphi: \mathcal{P}_{n} \rightarrow \mathbb{R} \mid \varphi \text { linear }\right\} .
$$

denote the dual space of \mathcal{P}_{n}. We have an inner product on \mathcal{P}_{n} given by

$$
\langle f, g\rangle:=\int_{0}^{1} f(x) g(x) d x
$$

Consider the linear function

$$
D: \mathcal{P}_{50} \rightarrow \mathcal{P}_{50}
$$

given by

$$
D(f)=f^{\prime}(x)
$$

the derivative of the polynomial f.

1. (5 points) What is the dimension of \mathcal{P}_{50} ?
2. (5 points) What is the dimension of \mathcal{P}_{50}^{*} ?
3. (10 points) What is dim ker D ?
4. ($\mathbf{1 0}$ points) What is $\operatorname{dim} \operatorname{im} D$?
5. Consider the following subsets of \mathcal{P}_{50}. Which are vector spaces, under the induced operations of addition and scalar multiplication? Which are not? Give a brief answer for each.
(a) (10 points) $A=\left\{f(x) \in \mathcal{P}_{50} \mid\langle f(x), f(x)\rangle=1\right\}$.
(b) (10 points) $B=\left\{f(x) \in \mathcal{P}_{50} \mid\langle f(x), f(x)\rangle \geq 1\right\}$.
(c) (10 points) $C=\left\{f(x) \in \mathcal{P}_{50} \mid\langle f(x), f(x)\rangle \geq 0\right\}$.
(d) (10 points) $D=\left\{f(x) \in \mathcal{P}_{50} \mid\left\langle f(x), x^{3}+x^{2}+1\right\rangle=0\right\}$.
(e) (10 points) $E=\left\{f(x) \in \mathcal{P}_{50} \mid\left\langle f(x), x^{3}+x^{2}+1\right\rangle=1\right\}$.
(f) (10 points) $F=\left\{f(x) \in \mathcal{P}_{50} \mid f(0)=f(1)=1\right\}$.
(g) (10 points) $G=\left\{f(x) \in \mathcal{P}_{50} \mid f(0)=0, f(1)=1\right\}$.
6. Let

$$
H=\left\{f(x) \in \mathcal{P}_{50} \mid f(0)=f(1)=0\right\} .
$$

H is a vector space.
(a) (10 points) What is $\operatorname{dim} H$?
(b) (15 points) Let $g \in \mathcal{P}_{50}$. Find the unique $D^{*} g \in \mathcal{P}_{50}$ such that for all $f \in H$, $\langle D f, g\rangle=\left\langle f, D^{*} g\right\rangle$.
(hint: integration by parts. Don't forget to use all hypotheses!)

