Problem Set 1

DUE: To Shanshan's mailbox, January 18, 1 pm. No extensions.

These problems are intended to be straightforward with not much computation.

1. Solve all of the following equations. [Note that the left sides of these equations are identical.]

a). 2x + 5y = 5 b). 2x + 5y = 0 c). 2x + 5y = 1 d). 2x + 5y = 2x + 3y = -1 x + 3y = -2 x + 3y = 0 x + 3y = 1

- 2. [Bretscher, Sec.2.1 #13]
 - a) Let $A := \begin{pmatrix} 1 & 2 \\ c & 6 \end{pmatrix}$. With your bare hands (not using anything about determinants) show that A is invertible if and only if $c \neq 3$.
 - b) Let $M := \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. With your bare hands (not using anything about determinants) show that M is invertible if and only if $ad bc \neq 0$. [*Hint:* Treat the cases $a \neq 0$ and a = 0 separately.]
- 3. Let A and B be 2×2 matrices.
 - a) If B is invertible and AB = 0, show that A = 0.
 - b) Give an example where AB = 0 but $BA \neq 0$.
 - c) Find an example of a 2×2 matrix with the property that $A^2 = 0$ but $A \neq 0$.
 - d) Find all *invertible* $n \times n$ matrices A with the property $A^2 = 3A$.
- 4. [Bretscher, Sec.2.3 #19] Find all the matrices that commute with $A := \begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix}$.
- 5. a) Find a real 2 × 2 matrix A (other than A = ±I) such that A² = I.
 b) Find a real 2 × 2 matrix A such that A⁴ = I but A² ≠ I.
- 6. Let L, M, and P be linear maps from the (x_2, x_2) plane to the (y_1, y_2) plane:
 - L is rotation by 90 degrees counterclockwise.
 - M is reflection across the line $x_1 = x_2$.

 $N\vec{v} := -\vec{v}$ for any vector $\vec{v} \in \mathbb{R}^2$.

- a) Find matrices representing each of the linear maps L, M, and N.
- b) Draw pictures describing the actions of the maps L, M, and N and the compositions: LM, ML, LN, NL, MN, and NM.
- c) Which pairs of these maps commute?

d) Which of the following identities are correct—and why?

1)
$$L^2 = N$$
 2) $N^2 = I$ 3) $L^4 = I$ 4) $L^5 = L$
5) $M^2 = I$ 6) $M^3 = M$ 7) $MNM = N$ 8) $NMN = L$

1[Last revised: January 11, 2013]