Problem Set 1

Due: To Shanshan's mailbox, January 18, 1 pm. No extensions.
These problems are intended to be straightforward with not much computation.

1. Solve all of the following equations. [Note that the left sides of these equations are identical.]
a). $2 x+5 y=5$
$x+3 y=-1$
b). $2 x+5 y=0$
$x+3 y=-2$
c). $2 x+5 y=1$
$x+3 y=0$
d). $2 x+5 y=2$
$x+3 y=1$
2. [Bretscher, Sec.2.1 \#13]
a) Let $A:=\left(\begin{array}{ll}1 & 2 \\ c & 6\end{array}\right)$. With your bare hands (not using anything about determinants) show that A is invertible if and only if $c \neq 3$.
b) Let $M:=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. With your bare hands (not using anything about determinants) show that M is invertible if and only if $a d-b c \neq 0$. [Hint: Treat the cases $a \neq 0$ and $a=0$ separately.]
3. Let A and B be 2×2 matrices.
a) If B is invertible and $A B=0$, show that $A=0$.
b) Give an example where $A B=0$ but $B A \neq 0$.
c) Find an example of a 2×2 matrix with the property that $A^{2}=0$ but $A \neq 0$.
d) Find all invertible $n \times n$ matrices A with the property $A^{2}=3 A$.
4. [Bretscher, Sec.2.3 \#19] Find all the matrices that commute with $A:=\left(\begin{array}{cc}0 & -2 \\ 2 & 0\end{array}\right)$.
5. a) Find a real 2×2 matrix A (other than $A= \pm I$) such that $A^{2}=I$.
b) Find a real 2×2 matrix A such that $A^{4}=I$ but $A^{2} \neq I$.
6. Let L, M, and P be linear maps from the $\left(x_{2}, x_{2}\right)$ plane to the $\left(y_{1}, y_{2}\right)$ plane:
L is rotation by 90 degrees counterclockwise.
M is reflection across the line $x_{1}=x_{2}$.
$N \vec{v}:=-\vec{v}$ for any vector $\vec{v} \in \mathbb{R}^{2}$.
a) Find matrices representing each of the linear maps L, M, and N.
b) Draw pictures describing the actions of the maps L, M, and N and the compositions: $L M, M L, L N, N L, M N$, and $N M$.
c) Which pairs of these maps commute?
d) Which of the following identities are correct-and why?
1) $L^{2}=N$
2) $\quad N^{2}=I$
3) $L^{4}=I$
4) $\quad L^{5}=L$
5) $M^{2}=I$
6) $M^{3}=M$
7) $M N M=N$
8) $N M N=L$

1[Last revised: January 11, 2013]

