Problem Set 2

Due: Friday 1 pm to Shanshan's mailbox.
Lots of problems. Most are really short.
In addition to the problems below, you should also know how to solve all of the problems in Chapters 1 and 2 of the text, particularly those at the beginning of each of the problem sets for each section. Most are simple mental exercises.

1. Consider the system of equations

$$
\begin{aligned}
x+y-z & =a \\
x-y+2 z & =b \\
3 x+y & =c
\end{aligned}
$$

a) Find the general solution of the homogeneous equation.
b) If $a=1, b=2$, and $c=4$, then a particular solution of the inhomogeneous equations is $x=1, y=1, z=1$. Find the most general solution of these inhomogeneous equations.
c) If $a=1, b=2$, and $c=3$, show these equations have no solution.
2. [Bretscher, Sec.2.2 \#10] Let \mathcal{L} be the line in \mathbb{R}^{2} that consists of all scalar multiples of the vector $(4,3)$. Find the matrix of the orthogonal projection onto this line \mathcal{L}.
3. [Bretscher, Sec.2.2 \#17] Let $A:=\left(\begin{array}{cc}a & b \\ b & -a\end{array}\right)$, where $a^{2}+b^{2}=1$. Find two perpendicular non-zero vectors \vec{v} and \vec{w} so that $A \vec{v}=\vec{v}$ and $A \vec{w}=-\vec{w}$ (write the entries of \vec{v} and \vec{w} in terms of a and b). Conclude that thinking of A as a linear map it is an orthogonal reflection across the line \mathcal{L} spanned by \vec{v}.
4. [Bretscher, Sec.2.2 \#31] Find a nonzero 3×3 matrix A so that $A \vec{x}$ is perpendicular to $\vec{v}:=(1,2,3)$ for all vectors $\vec{x} \in \mathbb{R}^{3}$.
5. [Bretscher, Sec.2.3 \#19] Find all the matrices that commute with $A:=\left(\begin{array}{cc}0 & -2 \\ 2 & 0\end{array}\right)$.
6. [Bretscher, Sec.2.3 \#48]
a) If $A:=\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)$ and $B:=\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)$, compute $A B$ and A^{10}.
b) Find a 2×2 matrix A so that $A^{10}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
7. Which of the following sets are linear spaces?
a) $\left\{\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)\right.$ in \mathbb{R}^{3} with the property $\left.x_{1}-2 x_{3}=0\right\}$
b) The set of solutions x of $A x=0$, where A is an $m \times n$ matrix.
c) The set of polynomials $p(x)$ with $\int_{-1}^{1} p(x) d x=0$.
d) The set of solutions $y=y(t)$ of $y^{\prime \prime}+4 y^{\prime}+y=0$ (you are not being asked to actually find these solutions).
8. Proof or counterexample. In these L is a linear map from \mathbb{R}^{2} to \mathbb{R}^{2}, so its representation will be as a 2×2 matrix.
a) If L is invertible, then L^{-1} is also invertible.
b) If $L \vec{v}=5 \vec{v}$ for all vectors \vec{v}, then $L^{-1} \vec{w}=(1 / 5) \vec{w}$ for all vectors \vec{w}.
c) If L is a rotation of the plane by 45 degrees counterclockwise, then L^{-1} is a rotation by 45 degrees clockwise.
d) If L is a rotation of the plane by 45 degrees counterclockwise, then L^{-1} is a rotation by 315 degrees counterclockwise.
e) The zero map $(0 \vec{v}:=0$ for all vectors $\vec{v})$ is invertible.
f) The identity map ($I \vec{v}:=\vec{v}$ for all vectors \vec{v}) is invertible.
g) If L is invertible, then $L^{-1} 0=0$.
h) If $L \vec{v}=0$ for some non-zero vector \vec{v}, then L is not invertible.
i) The identity map (say from the plane to the plane) is the only linear map that is its own inverse: $L=L^{-1}$.
9. Think of the matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ as mapping one plane to another.
a) If two lines in the first plane are parallel, show that after being mapped by A they are also parallel - although they might coincide.
[Remark: The simplest way to describe a straight line in \mathbb{R}^{2} (or even \mathbb{R}^{n}) that passes through two points, say P and Q, is to think of this line as the path $\vec{x}(t)$ of a particle at time t with $\vec{x}(t)=P+t \vec{v}$ where $\vec{v}=Q-P$ and $-\infty<t<\infty$. For any point \hat{P} the line $\vec{y}(t)=\hat{P}+t \vec{w}$ is parallel to $\vec{x}(t)$ if $\vec{w}=c \vec{v}$ for some scalar c. Here we are assuming $\vec{v} \neq 0$ and $\vec{w} \neq 0$.]
b) Let Q be the unit square: $0<x<1,0<y<1$ and let Q^{\prime} be its image under this map A. Give a geometric argument to show that the area $\left(Q^{\prime}\right)=|a d-b c|$. [For simplicity in your figure assume the points (a, c) and (b, d) are in the first quadrant with $a>b$ and $c<d$ anduse the rectangle with vertices at $(0,0),(a+b, 0),(a+$ $b, c+d)$, and $(0, c+d)$.] [More generally, the area of any region is magnified by $|a d-b c|$, which is called the determinant of A.]
10. Let A be a matrix, not necessarily square. Say \vec{v} and \vec{w} are particular solutions of the equations $A \vec{v}=\vec{y}_{1}$ and $A \vec{w}=\vec{y}_{2}$, respectively, while $\vec{z} \neq 0$ is a solution of the homogeneous equation $A \vec{z}=0$. Answer the following in terms of \vec{v}, \vec{w}, and \vec{z}.
a) Find some solution of $A \vec{x}=3 \vec{y}_{1}$.
b) Find some solution of $A \vec{x}=-5 \vec{y}_{2}$.
c) Find some solution of $A \vec{x}=3 \vec{y}_{1}-5 \vec{y}_{2}$.
d) Find another solution (other than \vec{z} and 0) of the homogeneous equation $A \vec{x}=0$.
e) Find two solutions of $A \vec{x}=\vec{y}_{1}$.
f) Find another solution of $A \vec{x}=3 \vec{y}_{1}-5 \vec{y}_{2}$.
g) If A is any square matrix, for any given vector \vec{w} can one always find at least one solution of $A \vec{x}=\vec{w}$? Why?
11. Let V be the linear space of smooth real-valued functions and $L: V \rightarrow V$ the linear map defined by $L u:=u^{\prime \prime}+u$.
a) Compute $L\left(e^{2 x}\right)$ and $L(x)$.
b) Find particular solutions of the inhomogeneous equations

$$
\text { a). } u^{\prime \prime}+u=7 e^{2 x}, \quad \text { b). } w^{\prime \prime}+w=4 x, \quad \text { c). } z^{\prime \prime}+z=7 e^{2 x}-3 x
$$

12. Let $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ and $B: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, so $B A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ and $A B: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
a) Why must there be a non-zero vector $\vec{x} \in \mathbb{R}^{3}$ such that $A \vec{x}=0$.
b) Show that the 3×3 matrix $B A$ can not be invertible.
c) Give an example showing that the 2×2 matrix $A B$ might be invertible.
[Last revised: January 18, 2013]
